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Abstract 

Contamination of animal feed with mycotoxins still occurs very often, despite great 

efforts in preventing it. Animal feeds are contaminated, at low levels, with several 

mycotoxins, particularly with those produced by Aspergillus and Fusarium genera (Aflatoxin 

B1, Ochratoxin A, Zearalenone, Deoxynivalenol and Fumonisina B1). In animal feed, to date, 

only Aflatoxin B1 is limited through EU regulation. Consequently, mycotoxins cause serious 

disorders and diseases in farm animals. In 2009, the European Union (386/2009/EC) approved 

the use of mycotoxin-detoxifying agents, as feed additives, to prevent mycotoxicoses in farm 

animals. The present review gives an overview of the problem of multi-mycotoxin 

contamination of feed, and aims to classify mycotoxin adsorbing agents (minerals, organic, 

and synthetic) for feed decontamination, focusing on adsorbents with the ability to bind to 

multiple mycotoxins, which should have a more effective application in farms but they are 

still little studied in scientific literature. 
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1. Introduction  

1.1 Overview of mycotoxins in animal feed 

Mycotoxins are low molecular weight (MW) secondary metabolites produced by 

filamentous fungi that have adverse effects at low levels on humans and animals. They have a 

significant impact on economies and international trade. Fungi producing mycotoxins are 

known as mycotoxigenic. Some of them are capable of producing more than one mycotoxin 

and some mycotoxins are produced by more than one fungal species. The most relevant 

groups of mycotoxins found in animal feed are produced by three genera of fungi: Aspergillus 

(aflatoxins (AFs) and ochratoxin A (OTA)), Penicillium (OTA), and Fusarium species 

(trichothecenes, fumonisins (FBs), and zearalenone (ZEN)) (Fig. 1; Table 1) (Marin et al., 

2013). They appear in the feed chain because of fungal infection of crops, and due to the use 

of mouldy grains and forage as components of animal feed. Fungi can invade and produce 

mycotoxins on the growing plants before harvesting (pre-harvest toxins), or produce toxins 

after harvest and during crop storage and transportation (postharvest toxins). In general, 

environmental conditions, such as high temperatures, high moisture levels, and insect 

damage, cause stress and predispose plants in the field to mould growth and mycotoxin 

contamination (Medina et al., 2015). Moreover, poor harvesting practices, improper drying, 

handling, packaging, and transport conditions contribute to increasing the risk of mycotoxin 

production (Bhat et al., 2010). 

The economic consequences of mycotoxin contamination are very significant, and often 

crops with large amounts of mycotoxin have to be destroyed. The most susceptible crops to 

contamination with mycotoxins are cereals such as wheat, maize, barley, rye and oat (Cano-

Sancho et al. 2010; Rodríguez-Carrasco et al., 2013; Vidal et al., 2013). Cereals constitute a 

major part of the daily diet of animals and they are important ingredients in animal compound 

feed (Pinotti et al., 2016). A high percentage of feed samples have been reported to be 
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contaminated with mycotoxins, and what is more, most of them have been reported to be 

contaminated with more than one mycotoxin (Kosicki et al., 2016; Streit el at., 2012; 

Zachariasova et al., 2014). In most cases, the concentrations were low enough to ensure 

compliance with the EU guidance values or Maximum Permitted Levels (MPLs) (Table 2, 

and 3). However, farm animals have shown to exhibit symptoms of chronic mycotoxicoses 

when exposed to feed contaminated with toxins below the guideline levels (Wielogórska et 

al., 2016). Additionally, farmers generally notice acute adverse effects on animal 

performance, such as low weight gain (WG), reproductive and metabolic disorders, with 

consequent economic losses, because not all mycotoxins found in animal feed have been 

regulated (see section 1.4). Therefore, producers often have to set internal limits more 

stringent than those regulated, in order to avoid losses. 

Different strategies, including preventive measures at pre- and postharvest, have been 

developed to neutralize mycotoxins in animal feed such as good agricultural practices (GAP) 

and good storage practices (GSP). These actions are considered the best way of controlling 

mycotoxin contamination; however, even exercising of good practices might not completely 

avoid or eliminate mycotoxins in the feed chain (Di Gregorio et al., 2014). Moreover, the use 

of physical and chemical methods for the detoxification of agricultural commodities 

contaminated with mycotoxins is restricted due to the problems associated with safety issues, 

possible losses in nutritional quality coupled with limited efficacy and cost implications (EC, 

2009; Kolosova and Stroka, 2011). 

As mycotoxins cause serious diseases in farm animals, the EU approved the use of 

mycotoxin-detoxifying agents, by including a new group of feed additives defined as 

‘substances that can suppress or reduce the absorption, promote the excretion of mycotoxins 

or modify their mode of action’ (EC, 2009). At the same time, the EFSA reported a review of 

mycotoxin-detoxifying agents used as feed additives (Boudergue et al., 2009) that covered 
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aspects such as mode of action, efficacy and feed/food safety. Since then, numerous studies 

have been published on the efficacy of the adsorbing agents (Di Gregorio et al., 2014; 

Magnoli et al., 2011; Neff et al., 2013; Nesic et al., 2008; Pfohl-Leszkowicz et al., 2015; 

Santos et al., 2011; Wang et al., 2012). However, most studies still focus on the efficacy of 

adsorption of a specific mycotoxin, usually tested at high levels which, as mentioned 

previously, in real settings is rarely the case. 

In the light of the high co-occurrence of mycotoxins in agricultural commodities, the task 

of developing a more versatile solution for multi-toxin feed decontamination is challenging. 

The present review intends to address the problem of animal feed multi-mycotoxin 

contamination, as well as to classify mycotoxin adsorbing agents (minerals, organic and 

synthetic) for feed decontamination, focusing on adsorbents with the ability to bind to 

multiple mycotoxins, which are in great demand by animal feed producers, but are still little 

studied in scientific literature. 

1.2 Occurrence and co-occurrence of mycotoxins in animal feed 

Despite efforts to control fungal contamination, extensive mycotoxin contamination has 

been reported in both developing and developed countries. Recent surveys have been carried 

out to evaluate the worldwide incidence of mycotoxin contamination in feedstuffs and feed 

raw materials (Pinotti et al., 2016; Streit et al., 2013). On a global level, 30% to 100% of 

food and feed samples are contaminated (Pinotti et al., 2016). According to Streit et al. 

(2012) 72% of feed samples surveyed contained detectable levels of mycotoxins, while only 

1-18% samples (depending on the toxin) presented levels above the EU guidelines or 

regulations. Also, Rodrigues and Naehrer (2012) studied the prevalence of mycotoxins in 

feedstuffs and finished feed worldwide between 2009 and 2010. Their results (from HPLC) 

revealed that 81% of the 6000 samples tested positive for at least one mycotoxin, although in 

many cases the regulatory and guidance levels were not surpassed. The most commonly 
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occurring mycotoxins were deoxynivalenol (DON) (65%), FBs (56%) and ZEN (44%), 

followed by AFs (31%) and OTA (27%). AF production occurred primarily in cereal samples 

from regions with tropical or subtropical climates such as Southern Europe, Africa, South and 

Southeast Asia. The amount of AFB1 was often the highest in the mixtures of AFs (Rodrigues 

and Naehrer, 2012). While DON contamination was observed worldwide, more than 60% of 

positive samples were found in samples (wheat, maize and barley) from North America, 

Northern and Central Europe, and North Asia (Rodrigues and Naehrer, 2012; Streit et al., 

2012). The highest incidence of ZEN contamination (more than 30% of positive samples) was 

found in North and South America, Central Europe, Africa, and North and Southeast Asia 

(Rodrigues and Naehrer, 2012). On the other hand, FB contamination was found mostly in 

maize and maize products from in South America, Southern Europe, Africa, and Southeast 

Asia, FB1 being the most abundant (Rodrigues and Naehrer, 2012). Different Fusarium 

mycotoxins were often found jointly in contaminated cereals (Cano-Sancho et al., 2010; 

Stanciu et al., 2017). Lastly, OTA prevalence was highest in South Asia and Africa, but its 

distribution in contaminated feed lots tended to be very heterogeneous (Rodrigues and 

Naeher, 2012).  

However, occurrence patterns of mycotoxins are changing as a consequence of rising 

average temperatures due to climate change (Medina et al., 2015; Miraglia et al., 2009; 

Wielogórska et al., 2016). In Southern Europe, AF contamination, previously uncommon in 

Europe, will become increasingly significant. In fact, Italian researchers detected AFB1 in 

cattle feed and AFM1 in cow’s milk surpassing the maximum allowable in the EU, in 8.1% 

and in 1.7%, respectively (Decastelli et al., 2007). 

Nevertheless, studying the occurrence of any given mycotoxin alone, provides incomplete 

information about the risk associated with the respective feedstuff considering the fact that 

mycotoxigenic fungi are usually capable of producing more than one mycotoxin, so animal 
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feed is particularly vulnerable to multiple contaminations (Streit et al., 2012). Results of feed 

surveys performed in Europe also highlight the problem of high levels of co-contamination 

with a number of different mycotoxins (Zachariasova et al., 2014). Of the 82% of feed 

samples that were contaminated, type B-trichothecenes and FBs occurred most often, 75% 

were co-contaminated with more than one mycotoxin while only two samples exceeded the 

recommended EU levels (Monbaliu et al., 2010). Along the same lines, Griessler et al. (2010) 

conducted a survey on feed and feed ingredients sourced in Southern Europe. 

The Fusarium mycotoxins (type B-trichothecenes, ZEN and FBs) were the major 

contaminants, while AFs and OTA were detected less frequently. It was further reported that 

23% of all samples from Spain contained at least two mycotoxins.  

Other researchers evaluated the level of mycotoxins in raw materials and products for 

animal nutrition in Poland in 2011-2014. A total of 1384 samples (maize samples, maize 

silage samples, small grain cereal samples and complete feed samples) were analysed for the 

occurrence of DON, Nivalenol (NIV), T-2 and HT-2 toxins, ZEN, FBs, OTA, and AFs. Also 

in this case, DON as well as ZEN were the most frequently occurring mycotoxins, present in 

89% and 92% of maize samples, and in 86 and 88% of maize silage samples, respectively. 

Additionally, in 24 samples the content of mycotoxins exceeded EU recommendations. 

Regarding the complete feed, trichothecenes and ZEN were found in more than 90% of the 

samples (Kosicki et al., 2016).  

Multi-mycotoxin contamination is a topic of great concern and seems to be increasing. 

The frequent detection of mycotoxin co-occurrence even in studies screening for a limited 

number of analytes underlines the importance of mycotoxin reduction strategies like the 

addition of multi-composition adsorbents in order to sequester a wider range of mycotoxins. 

1.3 Toxic effects of major mycotoxins on farm animals 
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Animal feeds are routinely subject to contamination from diverse sources. AFB1, DON, 

ZEN, OTA and FB1 are considered the most economically significant mycotoxins in terms of 

their prevalence and their negative effects on animal performance (Table 1), (Di Gregorio et 

al., 2014). The diseases caused by short or long exposure to mycotoxins are known as 

mycotoxicoses. Clinical symptoms usually subside upon removal of contaminated feed. In 

general, smaller organisms are more susceptible to mycotoxin poisoning. Poultry, pigs, and 

also aquatic vertebrates are very sensitive to mycotoxins. Due to their high consumption of 

cereals, they are exposed to these toxins and to chronic contamination. Ruminants have, 

however, generally been more resistant to the adverse effects of mycotoxins, since the rumen 

microbiota is capable of degrading mycotoxins.  

On the other hand, when mycotoxins are present simultaneously, interactive effects can be 

classified as additive, antagonistic or synergistic. Numerous reports of synergistic or additive 

effects mainly for AFs in combination with FBs, trichothecenes, OTA or mixtures of various 

Fusarium toxins have been published (Ruiz et al., 2011). The studies show that co-

contaminated samples may exhibit adverse health effects even with concentrations of toxins 

being within regulatory limits (Grenier and Oswald, 2011).  

The economic impact of mycotoxins includes loss of human and animal life, increased 

health care and veterinary care costs, and reduced livestock production (Zain, 2011). 

Aflatoxins 

AFs are relatively hydrophilic molecules produced by fungi of the genus Aspergillus. 

AFB1 is the most potent naturally occurring carcinogen classified by the IARC as group 1 

(IARC, 1993, 2002). It is the only mycotoxin with an established MPL in feedstuffs (see 

section 1.4 and Table 2). Lactating animals fed AFB1 contaminated feeds will produce milk 

contaminated with its monohydroxylated derivative AFM1, classified by the IARC as group 

2B, possibly carcinogenic to humans (IARC, 1993, 2002). Chronic toxicity is the most 
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common form of aflatoxicosis and it is caused by the consumption of relatively small amounts 

of these toxic compounds over an extended period. The main target organ of AFB1 toxicity is 

the liver, where it may be metabolized into different metabolites (Di Gregorio et al., 2014). 

The effects of long term exposure of levels AFs are associated with reduction in WG, 

decreased milk or egg production, increased disease susceptibility, reduced feed efficiency, 

tumours and teratogenicity (Table 1) (Streit et al., 2012). Poultry, cattle, and swine are the 

domestic species of greatest economic concern in terms of aflatoxicosis. Some species of fish 

and birds are extremely sensitive to the toxic and carcinogenic action of AFB1 (Anater et al., 

2016). In poultry, dietary 2.5 mg AFs/kg significantly reduced the feed intake (FI) by 9-11% 

(Rawal et al., 2010). Also reductions of WG of 30% in chickens following the consumption of 

feed contaminated at levels of 0.03 mg AFB1/kg of feed, were observed (Boudergue et al., 

2009). In ruminants, first effects were observed at levels of 1-2 mg AFB1/kg of feed such as 

lower feed ingestion and milk yield in cattle, while in pigs some mortalities and liver diseases 

were observed within one month after ingestion of contaminated feeds at 0.8-3 mg AFB1/kg 

(Meissonnier et al., 2005). In fish (Oreochromis niloticus, Nile tilapia) a reduction in growth 

rate was observed along with hepatic damage at levels from 0.245 mg AFB1/kg of feed 

(Matejova et al., 2017). Rainbow trout is considered the most sensitive fish species to AFs 

(Anater et al., 2016). 

Ochratoxin A 

OTA is a nephrotoxic mycotoxin that causes renal toxicity and possesses carcinogenic, 

teratogenic, immunotoxic and possibly neurotoxic properties. This toxin has been classified 

by the IARC as a possible human carcinogen (Group 2B) (IARC, 2002). In animals, it has 

been shown that after a prolonged OTA intake, a nephropathy linked to the degeneration of 

the convoluted tubule of the nephron and renal interstitial fibrosis occurs, followed by a 

decrease in the thickness of the basal membrane and glomerular hyalinization (Pfohl-
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Leszkowicz et al., 2015). Ruminants seem to be resistant to OTA exposure. In pigs, acute 

ochratoxicosis episodes mention kidney diseases (nephropathy), while in chronic 

ochratoxicosis the first signs were reductions of feed consumption and WG at the level of 1-

1.4 mg OTA/kg of feed (Boudergue et al., 2009). In poultry, nephropathy was reported to 

occur from level of 2 mg OTA/kg of feed, and the first signs of chronic ochratoxicosis were 

noticed at a minimal level of 0.5 mg OTA/kg of feed in laying hens and chickens (Boudergue 

et al., 2009). Also, in catfish adverse effects were observed at concentration of 1.0 mg 

OTA/kg feed (Matejova et al., 2017). 

Deoxynivalenol 

DON belongs to the trichothecene B group and, although being one of its least acutely 

toxic members, is of particular interest owing to its high prevalence in cereals worldwide. 

DON is also known as vomitoxin, and it is primarily known for causing feed refusal, weight 

loss, decreases nutritional efficiency and causes lesions in the GI tract, vomiting, bloody 

diarrhoea and severe dermatitis accompanied by haemorrhaging (Bryden, 2012). Other 

symptoms are immune disorders, such as immunosuppression or immunostimulation. In pigs, 

the most sensitive of the susceptible species, DON has also a neurotoxic effect that produces 

an anorexic syndrome, by altering the concentration of neurotransmitters in the hypothalamus, 

cerebellum, and frontal cortex (Marin et al., 2013). DON may be produced together with two 

acetylated derivatives, 3-acetyldeoxynivalenol (3-AcDON) and 15-acetyldeoxynivalenol (15-

AcDON), which have differential toxicity on pig intestine (Pinton et al., 2012). The first signs 

of reduction of feed consumption in pigs, were observed at levels of 1-3 mg of DON/kg feed 

(Marin et al., 2013). Regarding ruminants, the animal species least sensitive to DON, feed 

refusal syndrome was noticed in cows after consumption during 10 weeks of a wheat 

concentrate level of 6.4 mg DON/kg feed (Boudergue et al., 2009). In poultry, which seem to 

be relatively resistant to DON compared to other livestock, the effects vary according to the 
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species. Yunus et al. (2010) found that dietary levels of DON below and above the 

recommended limits (1.8 and 18 mg/kg, respectively) affected chicken performance and organ 

status to various degrees, while according to Awad et al. (2006), concentrations above 5 mg 

DON/kg of diet are necessary to cause detrimental effects in poultry. Trout are extremely 

sensitive to DON. A significant decrease in FI, WG, growth rate, and feed efficiency in trout 

exposed to diets naturally contaminated from 0.3 to 2.6 mg DON/kg of feed for 8 week was 

observed (Anater et al., 2016). 

Zearalenone 

ZEN is a non-steroidal estrogenic toxin produced by certain Fusarium species. ZEN, and 

some of its metabolites, can competitively bind to oestrogen receptors leading to reproductive 

disorders and estrogenic dysfunction in humans and animals (especially in breeding animals), 

impairing fertility and increasing the frequency of stillbirths along with reducing sperm 

quality (Zinedine et al., 2007). During pregnancy, ZEN reduces embryo survival and foetal 

weight. Additionally, ZEN produces vulvar dilatation and redness, retention or absence of 

milk, and rectal prolapse (Zinedine et al., 2007). Swine are also the animal species most 

severely affected by ZEN. In pigs, first signs of estrogenic syndrome appeared from 3-7 days 

on a ZEN contaminated diet at levels of 1.5 mg/kg feed (Boudergue et al., 2009). Regarding 

ruminants, a reduction of fertility in dairy cattle was observed for levels of ZEN above 0.5 

mg/kg feed (Boudergue et al., 2009). Among the livestock species of interest, poultry seems 

to be the most resistant to ZEN. Based on experimental studies, levels above 100 mg ZEN/kg 

feed are needed to see the first signs of intoxication (Boudergue et al., 2009). Otherwise, a 

slight tendency toward prolonged clotting time and lowered iron concentrations in the liver 

and ovary after exposing rainbow trout to 10 mg ZEN/kg for 24, 72, and 168 h was observed 

by Wozny et al. (2012). 

Fumonisins 
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Acute and chronic toxicity by FBs has been largely demonstrated in several animal 

species, including carcinogenicity and cardiovascular toxic effects (Voss et al., 2007). Based 

on toxicological evidence, the IARC has classified FB1 as possibly carcinogenic to humans 

(group 2B) (IARC, 2002). The liver and kidney are the major target organs for FB toxicity 

(Voss et al., 2007), but also the intestine is a possible target (Bouhet and Oswald, 2007). In 

horses, consumption of FB contaminated feeds has been recognized as a cause of an illness 

known as equine leukoencephalomalacia (ELEM). The first symptoms are lethargy, 

blindness, and decreased feed intake, followed by convulsions and death after several hours or 

days (Morgavi and Riley, 2007). Similarly, FB1 contaminated feeds have shown to cause a 

syndrome known as porcine pulmonary edema (PPE) in pigs (Table 1). Clinical signs usually 

include decreased feed consumption, dyspnoea, weakness, cyanosis, and death (Morgavi and 

Riley, 2007). Based on several studies, levels above 100 mg FB1/kg feed are needed to get 

first signs of zootechnical disturbance in pigs (Boudergue et al., 2009). Cows and poultry are 

considerably less sensitive to FBs than horses and pigs (Boudergue et al., 2009).  

On the other hand, in fish, FBs have a disruptive effect on neural and liver tissues. 

Sensitivity to FB1 in fish is dependent on both species and individual body weight (BW) 

(Anater et al., 2016).  

1.4 European regulation of mycotoxins in feedingstuffs 

Approximately 100 countries have developed specific limits for mycotoxins, while the 

number of regulated mycotoxins differs for food and feed, for example between the US and 

the EU. According to FAO, Europe has the most extensive regulations for mycotoxins in feed. 

Canadian regulations are among the most detailed, as they additionally include mycotoxins 

not regulated in EU feedstuffs such as diacetoxyscirpenol, DAS (a type A trichothecene), with 

China and Iran also having demanding limits in place (FAO, 2004). Nevertheless, regulations 

in the rest of the world undoubtedly focus mainly on AFs, with only 15 countries in Africa 
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having specific, feed oriented mycotoxin regulations in place (FAO, 2004). All countries with 

mycotoxin regulations have at least regulatory limits for AFB1 or the sum of aflatoxins B1, 

B2, G1, and G2 in foods and/or feeds (Wielogórska et al., 2016).  

Currently in the EU, AFB1 is the only mycotoxin with MPLs set in feeds under Directive 

2002/32. For animal feed, MPLs set by the EC for AFB1 is 0.02 mg/kg for all feed materials 

(EC, 2003). The current limits for AFB1 in animal feedingstuffs range from 0.005 to 0.02 

mg/kg (Table 2), (Directive 2003/100/EC). Additionally, guidance values have been 

recommended for a further five mycotoxins in feedstuffs: DON, ZEN, OTA and FBs 

(2006/576/EU) (Table 3). Recently the EC has established recommendations on the presence 

of T-2 and HT-2 toxin in cereals and cereal products for feed and compound feed 

(2013/165/EU) (Table 3). Also, a maximum level of 500 mg/kg of rye ergot (Claviceps 

purpurea) sclerotia has been set for unprocessed cereals in order to avoid the presence of 

ergot alkaloids in food and feed (2015/1040/EU). However, food/feed may be contaminated 

with a much wider range of mycotoxins. In fact, the EFSA has recently issued scientific 

opinions on the risk to human and animal health related to the reported presence of Alternaria 

toxins (EFSA, 2011). 

On the other hand, European regulations for animal-derived products have been imposed, 

especially for AFM1 in milk (0.025-0.05 µg/kg) (EC No 1881/2006), which in particular 

imply a strict control of the AFB1 content in feed for dairy cattle. Otherwise, the EC has not 

established MPLs of OTA in meat or other animal products. However, some countries have 

enforced MPLs of OTA concentrations, for example Denmark (pig kidney 10 µg/kg), Estonia 

(pig liver 10 µg/kg), Romania (pig kidney, liver and meat 5 µg/kg), Slovakia (meat 5 µg/kg, 

milk 5 µg/kg). Others countries have developed national guidelines for recommended 

maximum OTA levels, for example Italy (pig meat and derived products 1 µg/kg) (FAO, 

2004). 
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2. Prevention and decontamination of mycotoxins in food and feed 

There are multiple possible origins of fungal infection, so prevention strategies for fungal 

and mycotoxin contamination must be carried out at an integrative level all along the food 

production chain (plant growth, harvest, storage and distribution). The intervention should 

occur before any fungal infestation, or during the period of mould invasion of plant material 

and mycotoxin production, and also when the agricultural products have been identified as 

heavily contaminated (Jouany, 2007). Several codes of practices have been developed by 

Codex Alimentarius for the prevention and reduction of mycotoxins in cereals, and raw 

materials. These recommendations are divided into two parts: recommended practices based 

on GAP and Good Manufacturing Practices (GMP), and the use of Hazard Analysis and 

Critical Control Points (HACCP) (Awad et al., 2010; FAO, 2001). 

Different pre- and postharvest control strategies have been extensively reviewed 

elsewhere (Awad et al., 2010; Jouany, 2007; Kabak et al., 2006). Common practical measures 

include planting of more resistant varieties of cereals, selection of high quality seeds, 

avoiding high plant densities, preventive management towards insect infestations as well as 

suitable management of crop residues that are often the primary inoculum of mycotoxigenic 

fungi. Appropriate field management practices such as crop rotation, soil cultivation, 

irrigation, and fertilisation are known to influence mycotoxin formation in the field (Awad et 

al., 2010; Kabak et al., 2006). Prediction models integrating some of these field parameters 

and weather input are being developed to assess the risk of mycotoxin contamination of pre-

harvest cereals (Jouany, 2007). Careful selection of harvest date, equipment and harvesting 

procedures to minimise crop damage and removal of damaged crops and high moisture plant 

parts also reduces mould infections. During postharvest, storage and distribution, the control 

of moisture levels of stored grains (less than 15%), maintenance at low temperatures as well 
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as preservation of the integrity of grains are critical in preventing mycotoxin production 

(Kabak et al., 2006). The development of resistant hybrids appears to be a very promising 

technology, but commercial hybrids are not always available (Abbas et al., 2009). On the 

other hand, cereals modified by genetic engineering could be used to limit the risk of fungal 

infection. Commercially, this technology is based on the use of plants with resistance to insect 

attack, which indirectly cause a reduction in fungal infection and mycotoxin contamination. 

Genetic research is also being carried out on the induction of mycotoxin detoxification 

pathways or inhibition of mycotoxin production in the grain (Duvick, 2001; Karlovsky, 

2011). However, in Europe genetically modified food is still not well received by the 

population.  

When prevention is not achieved at field level or during harvest, decontamination 

procedures such as physical treatments of contaminated grains can be used including washing, 

polishing, mechanical sorting and separation, density segregation, and flotation. However, the 

efficiency of these techniques depends on the level of contamination and the distribution of 

mycotoxins throughout the grain. Additionally, the results obtained are uncertain and often 

connected with high product losses. 

With regard to chemical decontamination methods, they require not only suitable reaction 

facilities but also additional treatments (drying, cleaning) that can make them time consuming 

and expensive (Jouany, 2007). Nevertheless, various chemicals including oxidising and 

reducing agents, acids, bases, salts and chlorinating substances have been tested for their 

ability to degrade mycotoxins in agricultural commodities. Only a limited number of these are 

effective without diminishing the feed nutritional value or palatability (Kolosova and Stroka, 

2011). Chemically, some mycotoxins can be destroyed with calcium hydroxide, 

monoethylamine, ozone or ammonia. Particularly, ammoniation is an approved procedure for 
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the detoxication of AF contaminated feed in several countries (Boudergue et al., 2009). 

However, the use of chemical decontamination processes is not legal within the EU (Directive 

2002/32). With regard to mycotoxin decontamination, the EC is in favour of the use of 

physical decontamination processes such as the use of adsorbents (see section 3.1) and sorting 

procedures (Directive 2002/32).  

3. Detoxifying agents 

Although prevention of mycotoxin contamination in the field and during storage is the 

main goal of agricultural and feed industries, the absence of mycotoxins in the ration of farm 

animals cannot be fully assured. Due to the increasing number of reports on the presence of 

mycotoxins in feeds, there is a rise in demand for practical decontamination procedures. It 

should be pointed out that the mixing of batches with the aim of decreasing the level of 

contamination below the maximum tolerable level is not permitted under Directive 2002/32. 

 In 2009, a new functional group was added in the category of technological feed 

additives. This group is defined by the Commission Regulation (EC) No 386/2009 as 

‘substances for reduction of the contamination of feed by mycotoxins: substances that can 

suppress or reduce the absorption, promote the excretion of mycotoxins or modify their mode 

of action’ (EC, 2009). These substances are known as detoxifying agents. The use of such 

products does not mean that animal feed exceeding the established MPLs may be used. The 

additives are added to the diet of animals (mainly of swine, poultry and cattle) in order to 

reduce the absorption of mycotoxins from the GI tract and their distribution to blood and 

target organs. Depending on their mode of action, they act either by binding mycotoxins to 

their surface (adsorption), or by degrading or transforming them into less toxic metabolites 

(biotransformation). Therefore, we can define at least two main categories: adsorbing agents 

and biotransforming agents. 
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 Adsorbing agents (AA) 

Mycotoxin-AA are large MW compounds which bind the mycotoxins present in 

contaminated feed without dissociating in the GI tract of the animal, thus limiting their 

bioavailability after ingestion, decreasing exposure of animals to mycotoxins. Mycotoxins 

may bind to AA by different types of interactions such as hydrophobic binding, hydrogen 

bonds, electrostatic attraction or repulsion and coordination bonds (Di Gregorio et al., 2014). 

In this way the mycotoxin-AA complex passes through the animal and is eliminated via the 

faeces. This complex has to be stable throughout the entire digestive track, so its stability in 

varying pH, which is influenced by the AA physical properties (total charge and charge 

distribution, the size of the pores, and the accessible surface area) and targeted toxins’ 

physicochemical properties (polarity, solubility, and shape), is one of the crucial parameters 

to be evaluated in order to prevent desorption of the toxin (Avantaggiato et al., 2005; Huwig 

et al., 2001; Kabak et al., 2006). AA are also known as mycotoxin binders, mycotoxin binding 

agents, sequestering agents, or adsorbents. These agents can be divided in three sub-groups: 

inorganic compounds, organic or synthetic (Di Gregorio et al., 2014; Jard et al., 2011). 

 Biotransforming agents (BA) 

Another strategy is the degradation of mycotoxins into non-toxic metabolites by using 

BA. Biotransformation can be achieved by mycotoxin-degrading enzymes or by 

microorganisms producing such enzymes. Several microbial species, including bacteria, yeast 

and fungi have been recognised for their ability to biotransform mycotoxins into less toxic 

metabolites through routes such as (de)acetylation, oxygenation, ring/side chain cleavage, 

deepoxidation, isomerisation or glucosylation (Wielogórska et al., 2016). Eubacterium BBSH 

797 strain isolated from bovine rumen fluids was one of the most studied species being able to 

efficiently degrade DON, and other trichothecenes, which after in vitro and in vivo tests was 
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introduced onto the market as the commercial biotransforming product Mycofix® BBSH 

(Biomin, Getzersdorf, Austria). Also, some of the enzymes responsible for biotransforming 

characteristics recognized in these microbial species, have been isolated and applied directly 

as detoxifying agents (Boudergue et al., 2009). However, the application in practice of BA is 

limited due to lack of information about transformation mechanisms, the toxicity of products 

derived from biotransformation, the effect of transformation reactions on the nutritional 

values of feeds, and safety towards animals (Wielogórska et al., 2016).  

3.1 Adsorbing agents (AA) 

3.1.1 Inorganic adsorbents 

Aluminosilicates  

Aluminosilicates constitute the most abundant group of rock-forming minerals. The basic 

structural unit of silicate clay minerals consists of the combination of silica tetrahedral and 

aluminium octahedral sheets, both with oxygen and hydroxyl groups (Di Gregorio et al., 

2014). Most studies on the alleviation of mycotoxicosis by the use of AA have focused on 

aluminosilicates. Within this group, there are two major subclasses: phyllosilicates and 

tectosilicates. Phyllosilicates include bentonites, montmorillonites, smectites, kaolinites, and 

illites. They can adsorb substances on their surface or within their interlaminar space. The 

tectosilicates include zeolites. They provide a large and specific binding surface but also size, 

shape and charge selectivity due to which they have been compared to molecular sieves 

(Huwig et al., 2001). Inactivation of mycotoxins by adsorbents has been reviewed by many 

authors (Avantaggiato et al., 2007, 2005, 2003; Diaz and Smith, 2005; Jouany, 2007; Huwig 

et al., 2001; Kabak et al., 2006; Kong et al., 2014; Phillips et al., 2008; Ramos at al., 1996a; 

Vekiru et al., 2007; Vila-Donat et al., 2017a,b). However, most of the AA appear to bind to 

only a limited group of mycotoxins while showing very little or no binding to others (Jouany, 

2007; Kabak et al., 2006; Kong et al., 2014; Ramos and Hernández, 1997; Ramos et al., 
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1996a; Vekiru et al., 2007; Vila-Donat et al. 2017a,b). Furthermore, it should be noted that 

clays could adsorb micronutrients and have negative effects on the bioavailability of minerals 

and trace elements (Kolosva and Stroka, 2011). Also, the risk of natural clays to be 

contaminated with dioxins and metals has to be considered (Jouany, 2007). 

 Hydrated sodium calcium aluminosilicate (HSCAS) 

HSCAS (calcium montmorillonite clay) are commonly used in animal feed as anti-caking 

agents. HSCAS has shown to act as an enterosorbent that tightly and selectively binds AFs in 

the GI tract of animals decreasing their bioavailability and associated toxicity (Harper et al., 

2010; Neff et al., 2013; Phillips et al., 2008). Evidence suggests that AFs may react at 

multiple sites on HSCAS particles, especially the interlayer region, but also at edges and basal 

surfaces (Kolosova and Stroka, 2011). Other mechanisms of AFB1 sorption by HSCAS 

surfaces may involve the chelation or interaction of AFB1 with interlayer cations (especially 

Ca) or various edge-site metals (Di Gregorio et al., 2014). HSCAS is quite effective with 

respect to AFs but fails to prevent toxic effects of Fusarium mycotoxins, such as FBs, or 

trichothecenes (Avantaggiato et al., 2005; Harper et al., 2010; Kabak et al., 2006; Neff et al., 

2013; Phillips et al., 2008; Ramos and Hernández, 1997).  

 Bentonites (montmorillonites) 

Bentonites are phyllosilicate clays with a layered crystalline microstructure of variable 

composition. They are frequently referred as smectites because it is the dominant mineral 

clay. Smectite includes mainly montmorillonite. The adsorption effectiveness of bentonite 

depends on the montmorillonite content and the interchangeable cations (Kolosova and 

Stroka, 2011). Montmorillonite is composed of layers of octahedral aluminium and 

tetrahedral silicon coordinated with oxygen atoms. The large surface area and high cation 

exchange capacity of the smectite group make them capable of adsorbing organic substances 
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by the penetration of both cations and polar molecules. Bentonites have demonstrated a large 

efficacy on mycotoxins adsorption, specifically AFs (Kong et al., 2014; Magnoli et al., 2011; 

Ramos and Hernández, 1996; Thieu et al., 2008; Vekiru et al., 2007; Vila-Donat et al., 

2017a,b), and other mycotoxins (ZEN, OTA and FBs) in numerous in vitro and in vivo studies 

(Avantaggiato et al., 2005; Miazzo et al., 2005; Ramos et al., 1996a,b; Wang et al., 2012). 

According to Deng et al. (2010), under dry conditions AF molecules bind to smectite by 

direct ion-dipole interactions and by coordination between exchangeable cations and carbonyl 

groups, whereas under humid conditions, AF molecules bind to smectite by H-bonding 

between the carbonyl oxygens and hydration-shell water  (the authors provide a graphical 

interpretation of the interaction between AF and smectite). 

The safety and efficacy of bentonite as feed additive has also been evaluated by the EFSA. 

It has been observed that bentonites are not genotoxic and are not absorbed following 

application as a feed additive, hence providing no direct toxicological risk for the animal 

(EFSA, 2011). A bentonite/dioctahedral montmorillonite (Mycofix®, Biomin, Austria) has 

been the first-ever product authorized by the EU as AA with proven mycotoxin counteracting 

properties that fulfils the strict requirements on AF-binding capability according to EC 

1060/2013. 

 Zeolites 

The zeolite structure consists of an assemblage of SiO4 and AlO4 tetrahedra joined 

together in various regular arrangements through shared oxygen atoms to form an infinite 

three-dimensional cage-like structure. The partial substitution of Si4+ by Al3+ results in an 

excess of negative charge which is compensated by alkali and earth alkaline cations such as 

sodium, calcium and potassium ions (Dakovic et al., 2003; Huwig et al., 2001). Zeolites have 

a large internal surface, associated with its elevated cation exchange capacity and with the 
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adsorption of polar molecules (Di Gregorio et al., 2014). Some studies have shown that 

natural zeolite-clinoptilolite have the ability to adsorb AFs and other mycotoxins such as 

FBs (Dakovic et al., 2010). However, modified zeolites are more effective than natural ones 

towards FBs (Baglieri et al., 2013) (see section 3.1.3). The role of zeolites as feed additives 

on the prevention of certain farm animal diseases has been also reviewed by Papaioannou et 

al. (2005). 

Other clays: 

Other mineral adsorbents such as diatomite (a mineral formed by the accumulation and 

fossilisation of diatomaceous algae shells in lacustrine and marine environments) and 

sepiolite (a complex magnesium silicate belonging to the group of hormites) have been 

studied as mycotoxin adsorbents over the last few years. The negative charges associated with 

the high specific surface area make sepiolite an adequate sorbent for some polar molecules. 

Sepiolite showed good results in the adsorption of AFs, however the efficiency of adsorption 

of other mycotoxins is limited. Usually sepiolite is associated with bentonite and both have 

similar properties such as high surface area and significant sorption capacity. However, the 

cation exchange capacity of sepiolite is much lower than that of smectite (Di Gregorio et al., 

2014). Regarding diatomaceous earth, it is fossilized by the deposit of silica in its structure, 

which is arranged in thin or thick layers, interspersed by clay lenses. This material is very thin 

with a porous structure, high surface area and microstructure mainly composed of amorphous 

silica, or opal and frustules. Diatomaceous earth is used as anti-caking agent during feed 

processing (Weaver et al., 2013).  

3.1.2 Organic adsorbents 

Facing the relative inefficacy of the clay adsorbents towards mycotoxins other than AFs, 

natural organic binders have been proposed (Avantaggiato et al., 2014; Jouany, 2007; Mezes 
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et al., 2010; Ringot et al., 2007). The mixture of inorganic and organic adsorbents could make 

them more adapted to the most frequent cases of multi-contaminated feeds. 

 Yeast cell wall (YCW) 

Saccharomyces cerevisiae occurs as part of natural microbial populations in foods and it 

is used as a starter culture in fermented food and beverages. YCW mainly consists of proteins, 

lipids and polysaccharides, with glucans and mannans being the two main constituents of the 

latter fraction. In fact, YCW exhibits a great variety of accessible mycotoxin adsorption loci 

as well as different binding mechanisms (hydrogen bonds, ionic or hydrophobic interactions) 

(Ringot el al., 2007). Adsorption on the cell wall surface is an interaction between the toxins 

and functional groups of the cell surface. YCW has shown much larger sorption capabilities 

across a wider spectrum of mycotoxins such as ZEN, OTA, and FBs (Fruhauf et al., 2012; 

Pfohl-Leszkowicz, et al., 2015; Shetty and Jespersen, 2006), including DON, being the β-D-

glucan fraction of YCW directly correlated with the binding process (Faucet-Marquis et al., 

2014). Also mannans (from S.cerevisiae) have demonstrated to be effective at binding DON 

at different pH values, with adsorption rate decreasing as DON concentration increases 

(Cravet et al., 2010). Furthermore, esterified glucomannans (EGM) have been proved to be 

effective in counteracting the toxic effects of different mycotoxins simultaneously exposed 

(Aravind et al., 2003; Avantaggiato et al., 2005; Li et al., 2012; Mohaghegh et al., 2017). 

 Lactic acid bacteria (LAB) 

LAB are a group of gram-positive, acid-tolerant, generally non-sporulating bacteria that 

have common metabolic and physiological characteristics. These bacteria, usually found in 

decomposing plants and dairy products, produce lactic acid as the major metabolic end-

product of carbohydrate fermentation. Some LAB strains (Lactobacillus rhamnosus) 

displayed the ability to bind certain compounds (e.g. AFB1 and ZEN) in the small intestine 
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with cell wall peptidoglycans, polysaccharides and teichoic acid proposed as crucial elements 

in that process. Gram-positive bacteria seem more efficient towards non-polar toxins (such as 

ZEN) due to higher hydrophobicity of the cell surface (Kabak et al., 2006). The strength of 

the mycotoxin-LAB interaction seems to be influenced by the peptidoglycan structure and, 

more precisely, by its amino acid composition (Dalié et al., 2010). Moreover L. rhamnosus is 

considered a safe and effective chemopreventive because of its use in various dairy products 

including yogurt.  

 Micronized fibres and bio-sorbents 

Micronized fibres can be obtained from different plant materials such as cereals or 

legumes (wheat, barley, alfafa, oat, pea hulls). They consist mainly of cellulose, hemicellulose 

and lignin, and they have been utilised as mycotoxin adsorbents due to favourable gut 

adsorption and enhanced faecal excretion (Aoudia et al., 2009). Particularly, micronized 

wheat fibres exhibited beneficial effects against OTA adsorption (Aoudia et al., 2009). 

However, the binding ability for AFB1 of the cellulose products is less compared with the 

values of other inorganic adsorbents (Kong et al., 2014).  

Regarding bio-sorbents, red wine waste such as dehydrated grape pomace (rich in 

phenolic compounds) has recently been demonstrated in vitro to be an excellent adsorbent for 

simultaneously removing several mycotoxins in a liquid medium (AFB1, ZEN, OTA and 

FBs) (Avantaggiato et al., 2014). In addition, apple pomace (rich in fibres and pectin) was 

tested previously in pigs as mycotoxin adsorbent by incorporating it in DON-contaminated 

feed, and authors suggested that the negative effect of DON may be attenuated (Gutzwiller et 

al., 2007). Furthermore, interesting findings were obtained from in vitro studies regarding 

humic acids, originating from natural decaying of organic plant materials. They also have 

shown the capacity to adsorb mycotoxins, especially AFB1, OTA and ZEN (Sabater-Vilar et 

al., 2007; Santos et al., 2011).  
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 Activated carbon (AC)  

AC is a non-soluble powder, produced by pyrolysis of several organic compounds, 

followed by its chemical or physical activation aimed at developing a highly porous structure. 

Based on literature data, AC seems to be the most effective adsorbent with high affinity for 

different mycotoxins (including DON) in vitro (Avantaggiato et al., 2005, 2004, 2003; Diaz 

and Smith, 2005; Mezes et al., 2010; Ramos et al., 1996a,b; Sabater-Vilar et al., 2007). 

Nevertheless the in vitro efficacy of AC toward some mycotoxins was not confirmed in vivo 

(Avantaggiato et al., 2005). Generally, the adsorption properties of AC depend on the source 

materials, surface area and pore size distribution (Kolosova and Stroka, 2011). However, AC 

is unspecific, hence essential nutrients are also adsorbed particularly if their concentrations in 

feed are much higher compared to those of a mycotoxin (Van Alfen, 2014). Vekiru et al. 

(2007) also reported that AC strongly adsorbed vitamins and minerals essential for growth 

and development. Moreover, when they were analysed in vivo, components of the food matrix 

can compete or inhibit the interaction with a mycotoxin (Wielosgorksa et al., 2016).  

It should be noted that organic adsorbents, especially cereal or leguminous fibres as 

well as pulp and peels of fruits, may contain fungal contamination, so they would have to be 

analysed before use to rule out the presence of mycotoxins. 

3.1.3 Synthetics 

 Organoaluminosilicates or modified clays 

In animals, aluminosilicates appear to be selective in their ‘chemisorption’ of AFs with 

little or no beneficial effect against ZEN, OTA and FBs. This limitation can be overcome by 

chemical modifications. These consist of alterations of surface properties by exchange of 

structural charge-balance cations with high molecular weight quaternary amines, which 

results in an increased hydrophobicity (Papaioannou et al., 2005). In vitro results have 
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verified the binding efficacy of modified montmorillonite and clinoptilolite against ZEN and 

OTA (Dakovic et al., 2003; Jiang et al., 2012; Papaioannou et al., 2005). Moreover, other 

authors have shown organically modified clays are more effective than natural clays towards 

FBs (Baglieri et al., 2013; Dakovic et al., 2010; Doll et al., 2005). Specifically, Baglieri et al. 

(2013) showed that the addition of modified clays (2%) to contaminated maize allowed a 

reduction of more than 70% of the amount of FB1 released in solution. Also, in vitro 

adsorption of ZEN by a modified montmorillonite nanocomposite was reported by Feng et al. 

(2008). This material demonstrated the ability to bind ZEN in aqueous solutions with little 

nonspecific adsorption of common nutrients, such as vitamins. Moreover it showed very low 

desorption rate and higher adsorption capacity of ZEN compared to unmodified 

montmorillonite nanocomposite. Nano grade particle size and hydrophobic properties of 

modified montmorillonite nanocomposite seems responsible for the specific adsorption (Feng 

et al., 2008). 

 Polymers  

Polymers, such as cholestyramine (an anion exchange resin), divinylbenzene-styrene and 

polyvinylpyrrolidone (a highly polar amphoteric polymer) have been demonstrated to bind 

mycotoxins in vitro and in vivo (Avantaggiato et al., 2005; Jard et al., 2011; Jouany, 2007; 

Mezes et al., 2010; Ramos et al., 1996b). Cholestyramine is an insoluble quaternary 

ammonium exchange resin which strongly binds various anionic compounds and may weakly 

adsorb neutral or cationic compounds by non-specific binding. This compound proved in vitro 

to be an effective adsorbent for OTA, FBs and ZEN (Avantaggiato et al., 2005, 2003; Döll et 

al., 2004; Ramos et al., 1996b). Its efficacy (inclusion up 2% in feed) was confirmed by GI 

models (ZEN) and by in vivo experiments (FBs) (Avantaggiato et al., 2003, 2005; Kolosova 

and Stroka, 2011). Also, cholestyramine reduced DON levels in buffer (pH 7) by 
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approximately 60% (Cavret et al., 2010), while only 5% of DON could be adsorbed by 

cholestyramine in a dynamic digestive tract (Avantaggiato et al., 2005).  

 However, the high cost of these polymers would be a limiting factor for practical 

applications. 

4. Adsorbing agents with multi-toxin efficacy 

4.1 In vitro studies 

In binding studies in vitro, the efficacy of the AA seems to be mainly dependant on the 

physicochemical properties of the adsorbent and mycotoxin, as well as the pH. Also, binding 

efficiency of the adsorbent is highly affected by the presence of the matrix or even gastric 

juice which can decrease its performance compared to the results obtained in buffer (Jaynes et 

al., 2007; Vekiru et al., 2007). Other factors such as feed structure, moisture content and 

oxygen availability during testing could heavily affect the results of binding studies (Paulick 

et al., 2015). Moreover, they appear to be highly influenced by the levels of mycotoxins 

themselves, their co-occurrence or possible co-operative effects (Faucet-Marquis et al., 2014; 

Santos et al., 2011). 

To date, most of the in vitro binding studies in scientific literature has focused on the 

efficacy of adsorption of a specific mycotoxin, usually tested at high levels. Moreover, most 

of them have been carried out using buffer solutions, and in many cases without feed matrix. 

However in the “real-world”, animal feed is rarely contaminated by a single mycotoxin, and 

metabolic digestions are not taken into account on in vitro testing, unless GI models or 

biological juices have been used. As a result, there are many discrepancies between in vitro 

and in vivo studies. Accordingly, only in vitro studies focused on the adsorption of multiple 

mycotoxins, and carried out taking into account the aforementioned points, have been 

highlighted in this section. 
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Following this line, Avantaggiato et al. (2004) investigated for the first time the 

intestinal absorption of two mycotoxins (DON and NIV) simultaneously. Before this, an in 

vitro screening test of 14 adsorbents (Mycorsorb®, Mycofix Plus®, Myco AD®, 

cholestyramine, bentonite, zeolite, AC, glucomannans (GM), etc.) was carried out. 

Successively, the efficacy of AC (the only one that showed reductions) in adsorbing DON and 

NIV by using a dynamic GI model was tested. The in vitro intestinal absorptions were 51% 

and 21% respectively, of the 170 µg and 230 µg ingested through contaminated spiked wheat. 

The use of a GI model simulating animal conditions confirmed that DON absorption mainly 

occurred at the small intestinal level and specifically the jejunum. 

Also, Santos et al. (2011) evaluated two different adsorbents (organic activated 

bentonite and humic acid) intended for use as feed additives in the prevention or reduction of 

the adverse effects exerted by 0.1 mg OTA/kg and 0.5 mg ZEN/kg in a common in vitro 

model, with a pH course comparing pH that can be expected in the digestive system of a 

monogastric animal (pH 7.4, pH 3.0, and pH 8.4). Both AA showed an adsorbing capacity of 

> 96% towards both mycotoxins, regardless pH, except for the humic acid product, that 

showed extensive desorption at pH 8.4. 

Later, Avantaggiato et al. (2007) investigated combined mycotoxin binding properties 

of different compounds to enhance multi-binding capacity. They performed an in vitro study 

to assess the multi-toxin-binding efficacy of a carbon/aluminosilicate-based product (a 

mixture of six components, “Standard Q/FIS”) in a 2 % concentration, by using a dynamic GI 

model. On the basis of the results, a reduction of mycotoxin absorption was observed (up to 

88% for AFB1, 44% for ZEN, 29% for FB1 and OTA), suggesting that this multi-composed 

adsorbent could be beneficial in reducing both individual and combined adverse effects of 

mycotoxins in animals. Most recently, the same research team examined the ability of an 

organic adsorbent, grape pomace (rich in phenolic antioxidants), to simultaneously adsorb 
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different mycotoxins from solution. Results showed that AFB1 was the most (83%) adsorbed 

mycotoxin followed by ZEN (67%), OTA (62%), and FB1 (29%), whereas the adsorption of 

DON was negligible. This study proved for the first time that grape pomace can 

simultaneously adsorb several mycotoxins, and that mycotoxins did not compete for 

adsorption in a multi-mycotoxin system. Hydrophobic interactions may be associated with 

AFB1 and ZEN adsorption, whereas polar non covalent interactions may be associated with 

OTA and FB1 adsorption. So grape pomace may have a wide range of technological 

applications as bio-sorbent to decontaminate multi-mycotoxin contaminated feed 

(Avantaggiato et al., 2014). 

In vitro studies have to be confirmed in vivo. Thus, studies with animals would be 

necessary to prove the effectiveness of these adsorbents in reducing the toxic effects of 

mycotoxins without affecting the regular utilization of essential nutrients in animal feed, such 

as vitamins and minerals. 

4.2 In vivo studies  

Co-contamination is more likely to occur in the field than mono-contamination by 

mycotoxins (Grenier and Oswald, 2011; Streit et al., 2012; Zachariosova et al., 2014). The 

toxicity and clinical signs observed in animals when feed is multi-contaminated by 

mycotoxins are complex and diverse. The effects of specific mycotoxins and adsorbents differ 

for each animal species (Magnoli et al., 2011). Consequently, the evaluation of the efficacy of 

the AA against the different mycotoxins present in feeds is undertaken separately for poultry, 

swine, ruminants, and other species. Nevertheless, variability exists in the literature even 

within the same species. These variations may arise due to differences in adsorbents and 

doses, mycotoxin levels, animals’ age, nutritional, health status, BW, as well as the sensitivity 

of the animals exposed (Neeff et al., 2013).  
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In this section, different in vivo trials, mainly with poultry and swine, testing the 

efficacy of the adsorbents in counteracting mycotoxin effects produced as a consequence of 

multi-toxin contaminated FI, have been summarized below and on Table 4. Data on multi-

mycotoxin trials with other animal species are scarce in scientific literature. 

Broilers: 

With regard to studies with poultry, Miazzo et al. (2005) investigated the use of 

sodium bentonite (0.3%) to detoxify diets containing a combination of two mycotoxins (2.5 

mg AFB1/kg + 200 mg FB1/kg) in broiler chicks. In broilers fed with co-contaminated feed 

(AFB1+FB1), the relative weights of organs (liver, kidney, gizzard and spleen) increased. 

Particularly, livers of birds were enlarged, yellowish, friable, and had rounded borders. Liver 

histopathology showed multifocal and varied cytoplasmatic vacuolization. The addition of 

bentonite to the contaminated diet counteracted these effects by reducing the incidence and 

severity of the pathological changes. The authors concluded that sodium bentonite was 

effective to counteract only some of the AFB1 promoted effects. It could be attributed to 

competition between AFB1 and FB1 for the active surfaces sites of the adsorbent, rendering a 

greater bioavailability of AFB1 in the presence of high dose of FB1. 

Some authors pointed out that combined use of different adsorbents with diverse 

structural properties would provide versatile tools for preventing multi-mycotoxicosis by 

binding a wider range of mycotoxins (Avantaggiato et al., 2007; Huwig, 2001). On these 

lines, Liu et al. (2011) performed experiments in vivo on the effects of different mycotoxin 

adsorbents including EGM (0.05%), HSCAS (0.2%) and a combination of both (EGM + 

HSCAS, 0.1%) on performance, nutrient retention and meat quality in broilers fed on mould-

contaminated maize (0.45 mg AFB1/kg, 0.06 mg OTA/kg, and 0.32 mg T-2/kg). The results 

indicated that mycotoxins in contaminated feed retard growth, nutrient retention and meat 
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quality, whereas the addition of HSCAS helped correct the decreased FI and the retention of 

phosphorus. The addition of EGM decreased yellowness in breast muscle, and the 

combination of both adsorbents (EGM + HSCAS, 0.1 %) significantly improved BW gain and 

FI. Moreover, the retention of crude lipid, crude protein, ash and phosphorus increased with 

the mix, making it the most effective treatment. The authors stressed that the addition of a 

combination of adsorbents to contaminated feed would be a versatile way of preventing 

mycotoxicosis. 

More recently, a Greek research group examined in vivo the use of two bentonites 

(1%) differing in composition, as potential binders of three mycotoxins present in broiler diets 

at levels not exceeding the EU maximum (0.013 mg AFB1/kg, 0.1 mg OTA/kg and 1 mg 

ZEN/kg). The study revealed that the examined bentonites may maintain optimum broiler 

performance when mycotoxins present in the feed do not exceed EU limits and guidance 

values, possibly by ameliorating the negative effects of other mycotoxins, not regulated by 

EU, present at the same time in the feed since multi-contamination is more likely to occur in 

the field than single contamination (Pappas et al. 2014). 

With regard to organic sorbents, Aravind et al. (2003) assessed the ability of EGM 

(0.05%) to alleviate the adverse effects of several combinations of mycotoxins (0.168 mg 

AFB1/kg, 0.0084 mg OTA/kg, 0.053 mg ZEN/kg, 0.032 mg T-2/kg) naturally found in broiler 

feed (Table 4). The naturally contaminated diet significantly decreased BW, feed 

consumption and feed efficiency, and increased the relative weights of liver and gizzard. 

Moreover, it was associated with significant decreases in urea nitrogen and haematocrit 

values along with altered γ-glutamyl transferase activity. However, the addition of EGM to a 

contaminated diet increased performance and serum levels of urea nitrogen and decreased the 

activity of γ-glutamyl transferase. These results suggested that EGM at 0.05% counteracted 
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the toxic effects of the naturally multi-contaminated diet alleviating growth depression and 

reducing organ weights. 

Other researchers studied the effects of EGM as an adsorbent in feed multi-

contaminated with DON and ZEN (Girish et al., 2008; Swamy et al., 2002; Yegani et al., 

2006). Swamy et al. (2002) studied the effects of feeding blends of grains naturally 

contaminated with Fusarium mycotoxins (9.7 mg DON/kg, 21.6 mg FA/kg, 0.8 mg ZEN/kg) 

on production parameters, clinical chemistry, and muscle coloration in broilers, and the 

possibility of EGM (0.2%) in counteracting these adverse effects. The feeding of 

contaminated grains caused significant linear increases in blood erythrocyte count and serum 

uric acid concentration and a significant linear decline in the serum lipase activity. EGM 

supplementation did not have any effect on feed consumption, WG or feed efficiency but 

counteracted most of the blood parameter alterations caused by the Fusarium mycotoxin-

contaminated grains and reduced breast muscle redness (Swamy et al., 2002). Similar results 

were reported by Girish et al. (2008) who described the efficacy of GM included in naturally 

Fusarium contaminated feeds by preventing some blood and immunological parameter 

alterations on turkeys, and also by Yegani et al. (2006) on broiler breeder hens (Table 4). 

Li et al. (2012) also investigated the toxicity of feed-borne Fusarium mycotoxins 

(102.08 mg AF/kg, 281.92 mg ZEN/kg, 5,874.38 mg FB/kg, 2,038.96 mg DON/kg) on 

physiological, biochemical and immunological parameters of broiler chickens and evaluated 

the efficacy of YCW (2%) adsorbent in preventing adverse mycotoxin-induced effects. They 

demonstrated that naturally contaminated diets induced adverse changes in organ weight, 

serum biochemistry, and immunological parameters as compared with broiler chickens fed the 

control diet. However, the addition of YCW (2%) adsorbent to contaminated feeds showed a 

positive protective effect on the relative weight of the liver, spleen, bursa of Fabricius and 

thymus, antibody titers of Newcastle disease, and splenic mRNA expression of IL-1β, IL-6, 
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and IFN-γ. The addition of YCW thus neutralized the detrimental effects of the naturally 

contaminated feed. 

Very recently, Mohaghegh et al. (2017) evaluated the effect of Mycosorb® (EGM 

0.05-0.1%) on performance, immunity, blood haematological and serum biochemical 

parameters in broilers exposed to diets naturally contaminated with mycotoxins (0.4273 mg 

AFB1/kg, 0.20631 mg DON/kg, and 0.0022 mg OTA/kg), (Table 4). Mycotoxin 

contamination affected chicken performance, organ weights, some haematological and most 

of the serum biochemical parameters. Dietary EGM supplementation (0.5, 0.1%) considerably 

improved the decreased BW gain and FI. However, only EGM (0.1%) ameliorated the 

negative impact of mycotoxins on the feed conversion ratio. Results indicated that 

supplementing EGM, particularly at 0.1% level, efficiently reversed the adverse effects of 

mycotoxins on broiler chickens. 

Swine: 

In pigs, the presence of trichothecenes (mainly DON) in feed is usually concomitant with 

ZEN (Gutzwiller et al., 2007; Swamy et al., 2003; Weaver et al., 2014). Doll et al., (2005) 

investigated the effects of dietary inclusion of a modified aluminosilicate (0.4%) in maize 

contaminated with Fusarium toxins (8.6 mg DON/kg and 1.2 mg ZEN/kg) for piglets. They 

could not demonstrate any detoxifying capacity in the tested additive. However, when much 

lower dosages were tested (0.14-0.31 mg DON/kg and 0.16-1.55 mg ZEN/kg) in sows, a 

beneficial effect of zeolite (clinoptilolite) was observed on the reproductive performance of 

the animals, since it resulted in larger litter sizes and piglets' BW at both birth and weaning 

(Kyriakys et al., 2002). 

 Recently, Weaver et al. (2013) determined the ability of three different feed additives (A: 

calcium montmorillonite clay, 2%; B: sodium bentonite, sepiolite clay and a dried brewer’s 
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yeast component, 1.5%; C: a mixture of diatomaceous earth and yeast culture, 1.1%) to 

ameliorate the chronic negative effects of feeding diets containing 0.15 mg AFB1/kg and 

1.1 mg DON/kg to pigs. The additives A and B in co-contaminated diets, reduced 

mycotoxin effects on the immune system and the liver, and showed some ability to 

improve growth. The additive C played a role in reducing liver damage. In general, the 

authors conclude that AFB1 and DON can be harmful to the growth and health of pigs 

consuming mycotoxins chronically. The selected feed additives improved pig health. 

However, the ability of feed additives to reduce mycotoxin was variable, and their function 

may depended on other factors, such as mycotoxin type, contamination level and pig 

health. 

Regarding organic adsorbents, the efficacy of a polymeric GM in preventing Fusarium 

mycotoxicosis in pigs fed with a blend of naturally contaminated grains (5.5 mg DON/kg, 

20.9 mg FA/kg, 0.4 mg ZEN/kg and 0.3 mg 15-Ac-DON/kg) was also tested (Table 4). 

Supplementation of GM polymer (0.2%) prevented some toxin-induced changes in 

metabolism. This may have been because this material is a high-MW polymer and acted by 

adsorbing mycotoxin molecules in the intestinal lumen and prevented uptake into blood and 

target tissues; however, GM polymer did not prevent the mycotoxin-induced growth 

depression (Swamy et al., 2003). More recently, Weaver et al. (2014) determined the effects 

of feeding naturally contaminated corn (4.8 mg/kg DON and 0.3 mg/kg ZEN) on pig 

performance and health status, and the ability of two yeast based feed additives (YCW and 

yeast fermentation product) to help pigs to manage the problem of mycotoxins. Results of 

this study indicated that the consumption of the contaminated feed reduced FI and BW gains, 

and increased oxidative DNA damage. However, the yeast fermentation additive improved 

the growth performance of pigs by increasing FI and WG, while the YCW product did not 

significantly improve the growth performance, but tended to reduce oxidative stress 
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associated with the consumption of mycotoxins (Weaber et al., 2014). Thus, the addition of 

both, the YCW product and yeast fermentation product, showed some benefits in reducing the 

effects of mycotoxins on pigs. However, the authors underlined these responses may vary 

under different mycotoxin concentrations, types, and mixtures. 

On the other hand, Gutzwiller et al. (2007) studied the effects of Fusarium toxins (2.1-3.2 

mg DON/kg 0.06-0.25 mg ZEN/kg) on growth, humoral immune response and internal organs 

in weaner pigs, and the efficacy of apple pomace (8%) in alleviating the negative effects 

induced by these mycotoxins. Results showed that pomace may alleviate the negative effect 

of DON on growth but does not counteract the hormonal effects of ZEN (Table 4). 

Veal: 

Regarding veal, only one study was found in literature. Specifically, Martin et al. 

(2010) studied the effects of feeding veal calves with corn naturally contaminated with the 

Fusarium mycotoxin (10.27 mg DON/kg, 1.27 mg 15-Ac-DON/kg and 1.84 mg ZEN/kg) and 

evaluated the modified YCW (1%) on performance, immunity and carcass characteristics of 

calves. Veal calves were able to tolerate a moderate feeding level of corn grains naturally 

contaminated with Fusarium mycotoxins. As there were generally no negative effects of the 

mycotoxin level in the diet, the efficacy of YCW as a mycotoxin adsorbent could not be 

assessed, but YCW alone had negligible effects on performance. The authors underlined that 

the reaction of calves depends on the compounds, concentration, duration of exposure and 

combinations of different mycotoxins in the diet. 

5. Conclusions 

A very high percentage of cereal-based animal feed is contaminated with more than one 

mycotoxin, the major contaminants being Fusarium mycotoxins (DON, ZEN and FBs). Only 

a low percentage of feed samples is contaminated above permitted/guideline levels. However, 
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animals (poultry, fish, and pigs, particularly) exhibit symptoms of mycotoxicosis even when 

exposed to feed contaminated with mycotoxins below the guidance levels, probably as a 

consequence of negative synergistic effects produced when different mycotoxins are 

simultaneously present in feed. 

The use of many of the available physical and chemical methods for the decontamination 

of agricultural commodities contaminated with mycotoxins is restricted due to the problems 

associated with safety issues, possible losses in the nutritional quality of treated commodities 

coupled with limited efficacy and cost implications. The use of the adsorbents as feed 

additives is the only practical solution to feed decontamination, although it should be adapted 

to the current demands of farmers and AA have to be widely studied to guarantee their 

effectiveness and safety. 

Based on the available data, inorganic adsorbents such as aluminosilicates (bentonites, 

HSCAS and some zeolites) have extensively demonstrated efficacy towards AFs. However, 

their efficacy against other mycotoxins, such as trichothecenes, is limited. Only bentonite and 

zeolite seem capable of partially adsorbing ZEN. On the other hand, modified clays are 

proving to be quite more effective than other unmodified clays in adsorbing FBs, OTA and 

ZEN. In addition, it has been showed that organic adsorbents (YCW, EGMs, dietary fibres or 

bio-sorbents) are more effective in binding to a wider spectrum of mycotoxins (ZEN, OTA, 

FBs).  

Regarding DON, only some YCW (β-glucans and mannans), AC or synthetic polymers 

(cholestyramine) have been identified as potential adsorbents. However, a mix of different 

AA could give a cumulative efficacy or synergy due to their specific characteristics. On the 

other hand, combining mycotoxin binding properties of different adsorbents (mineral and 

organic), could be further adapted to the most frequent cases of multi-contaminated feed.  
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Most of the in vitro studies published in scientific literature are focused on adsorbent 

efficacy toward a single mycotoxin (very often AFB1, since it is the only one with MPLs in 

animal feed). Moreover, many assays have been performed with buffer solutions, and by 

testing with toxins and adsorbents far above regulated levels. Few in vitro binding studies 

have been performed by using GI models (with physiological juices at different pH) and 

focused on multi-mycotoxin adsorption. The latter, conducted recently, cover interactions 

thus closing the gap between in vitro and in vivo testing, and could reduce the number of 

animal studies. However in vitro predictions about the ability of adsorbents to protect animals 

from the adverse effects of mycotoxins should be approached with caution and should be 

confirmed in vivo with animals.  

Regarding multi-binding in vivo studies, there are many studies with chickens and even 

with pigs, but other animal species such as cows and fish have been studied very little or not 

at all, probably because of the long duration and the high costs of experiments. In addition, 

the concentrations of adsorbent and mycotoxin used in the reviewed works are highly 

variable. Available data indicate that observed effects depend on the level and type of 

mycotoxin, as well as duration of exposure, type and dose of adsorbent, on the animal species 

and physiological condition of the animal. However, the combination of different adsorbents 

(mineral and organic) seems to be more effective in better counteracting the adverse effects 

produced by the simultaneous exposure of several mycotoxins in feed. In any case, future in 

vivo studies should be done by assaying naturally multi-contaminated feed, using “real-world” 

mycotoxins and adsorbent concentrations, tested at levels within the EU-regulations, and 

taking into account EFSA report endpoints; paying attention to their efficacy and safety, and 

their potential for interactions with critical nutrients (vitamins and minerals).  

Animal feed is increasingly made from plant materials such as cereals and cereal by-

products, and multiple contamination is increasingly observed in these raw materials. So a 
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potential adsorbent would have to be efficient in dealing with several mycotoxins. The 

development of such products would be an interesting trend in trying to counteract the toxic 

effects of co-occurring mycotoxins in animal feed. Therefore, further research should be 

conducted towards the achievement of this goal. 
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Figure and Table legends 

Figure 1. Chemical structures of major mycotoxins in animal feed. 

Table 1. Overview of the most relevant mycotoxins in animal farms. 

Table 2. Maximum levels for AFB1 in feed and feedingstuffs (Directive 2002/32/CE, 

amended by Directive 2003/100). 

Table 3. Guidance values for DON, ZEN, FBs and OTA in feedstuffs (2006/576/EU) and for 

T-2 and HT-2 (2013/165/EU). 

Table 4. Multi-binding efficiencies of various mycotoxin adsorbents in different animal 

species. 
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Table 1.  

Major classes 
of mycotoxins 

Most relevant 
representatives 
in animal feed 

Mycotoxin-producing 
fungi 

Main effects observed in animals References  

Aflatoxins AFB1, AFB2,  

AFG1, AFG2 

Aspergillus flavus,  

Aspergillus parasiticus 

Liver disease (hepatotoxic), 
carcinogenic and teratogenic effects. 

Magnoli et al., 2011; Rawal et 
al., 2010; Streit et al., 2012. 

Trichothecenes DON, 3- or 15-
Ac-DON, NIV 
(type B)  

T-2, HT-2 (type 
A) 

Fusarium 
graminearum,  

Fusarium 
sporotrichioides,  

Fusarium poae,  

Fusarium equiseti 

Immunologic effects, haematological 
changes, digestive disorders 
(diarrhoea, reduced FI) dermatitis, 
oral lesions, haemorrhages of 
intestinal tissues, edema. 

Awad et al., 2006; Bryden, 
2012; Pinton et al., 2012. 

Zearalenone ZEN Fusarium 
graminearum 

Estrogenic effects (edema of vulva, 
enlargement of uterus), atrophy of 
ovaries and testicles, abortion. 

Wozny et al., 2013; Zinedine et 
al., 2007. 

Ochratoxins OTA Aspergillus ochraceus,   

Penicillium 
verrucosum,   

Penicillium 
viridicatum 

Nephrotoxicity, porcine nephropathy, 
mild liver damage, immune 
suppression. 

Boudergue et al., 2009; Pfohl-
Leszkowicz et al., 2015. 

Fumonisins FB1, FB2 Fusarium 
verticillioide, 
Fusarium proliferatum 

PPE (porcine pulmonary edema), 
ELEM (equine 
leukoencephalomalacia), 
nephrotoxicity, hepatotoxicity. 

Bouhet and Oswald, 2007; 
Morgavi and Riley, 2007; Voss 
et al., 2007. 

Aflatoxin B1 (AFB1), Aflatoxin B2 (AFB2), Aflatoxin G1 (AFG1), Aflatoxin G2 (AFG2), Deoxynivalenol (DON), T-2 toxin (T-2), HT-2 toxin (HT-2),  
Zearalenone (ZEN), Ochratoxin A (OTA), Fumonisin B1 (FB1), Fumonisin B2 (FB2), Feed Intake (FI), 15-acetyldeoxynivalenol (15-Ac-DON),  
3-acetyldeoxynivalenol (3-Ac-DON), Nivalenol (NIV).
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Table 2. 

Feedstuffs Maximum content of AFB1 in 
mg/kg* 

All feed materials 0.02 
Complete feedingstuffs for cattle, sheep and goats with the 
exception of : 

- Complete feedingstuffs for dairly cattle 
- Complete feedingstuffs for calves and lambs 

0.02 
 

0.005 
0.01 

Complete feedstuffs for pigs and poultry (except young animals) 0.02 
Other complete feedingstuffs 0.01 
Complementary feedingstuffs for cattle, sheep and goats (except 
complementary feedstuffs for dairy animals, calves and lambs) 

0.02 

Complementary feedingstuffs for pigs and poultry (except young 
animals) 

0.02 

Other complementary feedingstuffs 0.005 
*relative to a feedingstuff with a moisture content of 12 % 
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Table 3.  

Mycotoxins Feedstuffs Guidance value 
in mg/kg* 

 Feed materials: cereals and cereal products 0.25 
OTA Complete and complementary feedstuffs 

- For pigs 
- For poultry 

 
0.05 
0.1 

 Feed materials: 
- cereals and cereal products, with the exception of maize 

by-products 
- maize by-products 

 
8 
 

12 
DON Complementary and complete feedstuffs with the exception of:  

- Complementary and complete feedstuffs for pigs  
- Complementary and complete feedstuffs for calves (<  4 

months), lambs and kids 

5 
             0.9 
              2 

 Feed materials: maize and maize by-products  60 
FB1, FB2 Complementary and complete feedstuffs for:   

- pigs, horses (Equidae), rabbits and pet animals  
- fish  
- poultry, calves (< 4 months), lambs and kids  
- adults ruminants (> 4 months) and mink  

 

 
5 

10 
20 
50 

 Feed materials:  
- cereals and cereal products, with the exception of maize 

by-products  
-  maize by-products  

 
2 
 

3 
ZEN Complementary and complete feedstuffs:  

 for piglets and gilts (young sows)  
 for sows and fattening pigs  
 for dairy cattle, sheep (including lambs) and goats 

(including kids) 

 
0.1 
0.25 
0.5 

 
 
T-2, HT-2  
 
 

Cereal products for feed and compound feed: 
- oat milling products 
- other cereal products 
- compound feed (with the exception of feed for cats) 

 
0.25 
0.5 
2 

Deoxynivalenol (DON), T-2 toxin (T-2), HT-2 toxin (HT-2), Zearalenone (ZEN), Ochratoxin A (OTA), 
Fumonisin B1 (FB1), Fumonisin B2 (FB2). 

*relative to a feedingstuff with a moisture content of 12 % 
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Table 4.  

Species Feed Mycotoxins and 
concentrations (mg/kg)  

Adsorbents  
(% added to 
contaminated feed) 

 Duration of  
the study 

Effect of the addition of the AA to 
the co- contaminated diets 

References 
 

Broilers Corn-soybean 
meal 

AFB1 (0.01 mg/kg) + 
OTA (0.1 mg/kg) +  ZEN  
(1 mg/kg) 

Bentonite  
(1%) 

 42 days Maintained optimum broiler 
performance. 

Pappas et al., 2014 

  Contaminated 
corn 

AFB1 (2.5 mg/kg) + FB1 
(200 mg/kg)  

Sodium bentonite  
(0.3%) 

 50 days Protective effects on gross hepatic 
changes induced by AFB1. 

Miazzo et al., 2005 

 Naturally 
contaminated 
maize 

AFB1 (0.45 mg/kg) + 
OTA (0.06 mg/kg) +  T-2 
(0.23 mg/kg) 

A: EGM (0.05%), 
B: HSCAS (0.2%), 
A+B: EGM+HSCAS 
(0.1%) 

 42 days A: decreased yellowness in breast 
muscle but no effect on BW and FI 
B: partially recovered nutrient 
retention but no effect on BW and FI. 
A+B: recovered FI, BW and nutrient 
retention. 

Liu et al., 2011 

 Naturally 
contaminated 
maize 

AFB1 (0.168 mg/kg) +  
OTA (0.0084 mg/kg) +  
ZEN (0.053 mg/kg) + T-2 
(0.032 mg/kg) 

EGM (0.05%)  35 days Increased performance and serum 
levels of urea nitrogen and decreased 
the activity of γ-glutamyl transferase. 
Counteracted the toxic effects 
produced by mycotoxins present in 
diet, by alleviating growth depression 
and reducing organ weights. 

Aravind et al., 2003 

 Naturally 
contaminated 
grains 

DON (9.7 mg/kg) + ZEN 
(0.8 mg/kg) + FA (21.6 
mg/kg)  

EGM (0.2%)  56 days No effect on feed consumption, WG, 
and feed efficiency but counteracted 
most of the blood parameter alteration 
and reduced breast muscle redness. 

Swamy et al., 2002 

 Naturally 
contaminated 
corn  

AFB1 (0.4273 mg/kg) + 
DON (0.20631 mg/kg) +  
OTA (0.0022 mg/kg) 

EGM “Mycosorb®” 
(0.05, 0.1%) 

 49 days At 0.05 %, improved the decreased 
BW gain and FI. At 0.1%, additionally 
ameliorated the negative impact of 
mycotoxins on feed conversion ratio. 

Mohaghegh et al., 
2017 

 Naturally 
contaminated  

AFB1 (102.08 mg/kg) + 
ZEN (281.9 mg/kg) + 

YCW (2%)  42 days Significantly improved the relative 
weight of the liver, spleen, bursa of 

Li et al., 2012 
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corn FB1 (5,874.3 mg/kg) + 
DON (2,038.9 mg/kg) 

Fabricius, and thymus; increased anti-
Newcastle disease titers; positive 
protection effect on the splenic mRNA 
expression of IL-1β, IL-6, and IFN-γ 
tested. 

 Naturally 
contaminated 
corn 

DON (12.6 mg/kg) + 
ZEN + 15- Ac- DON 
(lesser amounts) 

GM polymer (0.2%)  12 weeks Prevented the decrease of eggshell, and 
antibody titers against infectious 
bronchitis virus. 

Yegani et al., 2006 

Pigs Naturally 
contaminated 
grains (mostly 
corn) 

DON (5.5 mg/kg) + FA 
(26.8 mg/kg) + ZEN (0.4 
mg/kg) + 15-Ac-DON 
(0.3 mg/kg) 

GM polymer (0.2%)  21 days Prevented some toxin-induced 
metabolic changes. 

Swamy et al., 2003 

 Contaminated 
wheat 

DON (2.1-3.2 mg/kg) +  
ZEN (0.06-0.25 mg/kg) 

Apple pomace (8%)  5 weeks Alleviated the negative effects of DON 
on growth. 

Gutzwiller et al., 
2007 

 Naturally 
contaminated 
maize 

DON (8.6 mg/kg) + ZEN 
(1.2 mg/kg) 

Modified 
aluminosilicate (0.4%) 

 36 days No protective effects were observed Doll et al., 2005 

 Contaminated 
diets for sows 

DON  (0.14-0.31 mg/kg) 
+  ZEN (0.16-1.55 mg/kg) 

Clinoptilolite-Zeolite 
(2%) 

 Duration of a 
complete sow’s 
reproductive cycle 

Beneficial effect on sow's reproductive 
performance and protection against the 
detrimental consequences of 
zearalenone toxicosis. 

Kryiakys et al., 
2002 

 Naturally 
contaminated 
corn 

DON (4.8 mg/kg) + ZEN 
(0.3 mg/kg) 

A: YCW (2%); B: 
Yeast fermentation 
additive (2%) 

 42 days A: reduced oxidative stress and 
internal damage; B: improved the 
growth performance of pigs by 
increasing FI and WG  

Weaver et al.,   
2014 

 Naturally 
contaminated 
corn and barley  

AFB1 (0.15 mg/kg) +  
DON (1.1 mg/kg) 

A: Montmorillonite 
(2%); B: sodium 
bentonite, sepiolite, 
yeast (1.5%); C: 
diatomaceous earth, 
yeast culture (1.1%) 

 42 days A, B: reduced effects caused by 
mycotoxins on the immune system and 
the liver, and improved growth. 
C: reduced liver damage 

Weaver et al., 2013 

Cattle Naturally 
contaminated 
corn 

DON (10.27 mg/kg) +  
15-Ac-DON (1.27 mg/kg) 
+  ZEN (1.84 mg/kg) 

Modified YCW (1%)         84 days Mycotoxin levels assayed did not 
produce negative effects on calves, so 
effects of the binder could not be 
proven 

Martin et al., 2010 
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Aflatoxin B1 (AFB1), Deoxynivalenol (DON), T-2 toxin (T-2), Fusaric acid (FA), Zearalenone (ZEN), Ochratoxin A (OTA), Fumonisin B1 (FB1), 15-acetyldeoxynivalenol (15-Ac-DON), 
3-acetyldeoxynivalenol (3-Ac-DON), Nivalenol (NIV), Esterified Glucomannan (EGM), Hydrated Sodium Calcium Aluminosilicate (HSCAS), Glucomannan polymer (GM), Yeast Cell 
Wall (YCW), Body Weight (BW), Feed Intake (FI), Weight Gain (WG). 
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