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Abstract 
 

LiDAR sensors are widely used in many areas and, in recent years, that includes agricultural tasks. 

In this work, a self-developed mobile terrestrial laser scanner based on a 2D light detection and 

ranging (LiDAR) sensor was used to scan an intensive olive orchard, and different algorithms were 

developed to estimate canopy volume. Canopy volume estimations derived from LiDAR sensor 

readings were compared to conventional estimations used in fruticulture/horticulture research and the 

results prove that they are equivalent with coefficients of correlation ranging from r=0.56 to r=0.82 

depending on the algorithms used. Additionally, tools related to analysis of point cloud data from the 

LiDAR-based system are proposed to extract further geometrical and structural information from tree 

row crop canopies to be offered to farmers and technical advisors as digital raster maps. Having high 

spatial resolution information on canopy geometry (i.e. height, width and volume) and on canopy 

structure (i.e. light penetrability, leafiness and porosity) may result in better orchard management 

decisions. Easily obtainable, reliable information on canopy geometry and structure may favour the 

development of decision support systems either for irrigation, fertilization or canopy management, as 

well as for variable rate application of agricultural inputs in the framework of precision 

fruticulture/horticulture. 

 

Keywords: LiDAR, canopy modelling, crop mapping, olive orchard, mobile terrestrial laser scanner, 

Precision Fruticulture. 

 

 

Introduction 
 

Knowledge of the geometry (i.e. size, volume, shape) and structure (i.e. leaf area index, leaf density, 

wood structure and volume) characteristics of tree plantations is gaining importance in advanced fruit 

growing/fruticulture, especially when implementing precision agriculture techniques. This is due to 

the strong relationship between these characteristics and the use of water, nutrients and light by plants 

(Lee and Ehsani 2009) and their productivity and quality (Arnó et al. 2013; Rufat et al. 2014). 

Moreover, the main activities involved in tree crop management, such as: i) irrigation, ii) fertilization, 

iii) crop protection and iv) canopy management, could be carried out in a more selective and accurate 

manner if these canopy properties are taken into account (Rosell and Sanz 2012). Thus, knowledge 

of tree row crop characteristics should improve farm management, making it more efficient and 

sustainable. Because of the high complexity of tree crops, the measurement of canopy characteristics 
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is usually done manually, and therefore, has been limited to a few simple parameters for commercial 

purposes (i.e. height and width). However, more complex parameters have been restricted to research 

because of difficulty in estimation and/or the costly procedures required (i.e. LAI and canopy 

permeability). Additionally, manual measurements are usually inaccurate and time consuming. 

Hence, it is not commercially feasible to perform measurement series of orchards for management 

purposes. For that, it is necessary to have robust and affordable electronic sensors and data processing 

systems to use in commercial fruit crop management.  

 

The most used instrumental techniques to characterize tree canopies include digital photography, 

photogrammetry, stereoscopy and LiDAR (light detection and ranging) as described in Rosell and 

Sanz (2012) and in Li et al. (2014). The first three share the use of digital cameras, which benefit 

from belonging to a segment of consumer products and are economically accessible. LiDAR systems 

are based on a laser source that emits light pulses which impact the object of interest. By measuring 

the time elapsed between the light pulse emission and the return of the backscattered light (time-of-

flight) or by phase shift, the device determines the distance to the object. In recent years, several 

studies have used mobile terrestrial laser scanners (MTLS) based on 2D LiDAR sensors to 

characterise tree crops in agricultural environments (Sanz-Cortiella et al. 2011; Walklate et al. 2002). 

Subsequently, these systems were used to obtain relevant data from the canopy such as volume and 

shape (Auat Cheein et al. 2015; Miranda-Fuentes et al. 2015; Rosell et al. 2009a), LAI (Arnó et al. 

2013; Rosell et al. 2009b) and woody structures (Méndez et al. 2014; Wang et al. 2014). In this 

context, Rosell et al. (2009a and 2009b) showed the existence of strong correlations between 3D 

models generated by an MTLS and manually-obtained canopy volume, leaf area and LAI 

measurements. Other research has also demonstrated the capacity of LiDAR systems to determine 

the geometry and structure of tree crops and the potential advantages of using this information in 

relevant agricultural tasks, such as precise pesticide and fertilizer applications and irrigation (Gil et 

al. 2014; Gongal et al. 2015). Canopy volume and LAI have been computed on a real-time basis by 

estimating the cross-sectional areas of the tree rows and sliced canopy volumes to subsequently 

correlate them with manual LAI measurements (Escolà et al. 2007; Pallejà et al. 2010). Canopy foliar 

density has been estimated for citrus with a canopy boundary-smoothing algorithm (Wei and Salyani 

2005) and for comparing occupied and free canopy volumes (Chen et al. 2013). Moorthy et al. (2011) 

used a stationary terrestrial laser scanner to obtain olive tree canopy structure and foliage parameters. 

However, the use of stationary laser scanners is not pragmatic when large areas are to be scanned. 

One of the main limitations of LiDAR-based systems is their inability to measure inside the crowns, 

due to the interaction between the laser beam and the outermost vegetative elements. The recent 

introduction of terrestrial multi-return laser scanners may improve the performance of current sensors 

in tree crop characterization. Other authors have used time-of-flight cameras and structured light 

sensors, which enable the acquisition of depth images and 3D point clouds of plants, for several 

agricultural purposes (Chéné et al. 2012; Nock et al. 2013; Rosell-Polo et al. 2015). However, these 

sensors are still not ready to be used in a feasible way in commercial orchards since they need to be 

either further developed, stationary, or to take multiple shots of the scene from different angles to 

obtain useful data.  

 

More recently, unmanned aerial vehicles (UAV) have been used in olive orchards to derive 3D point 

clouds from digital images using photo-reconstruction methods. Good results were achieved for 

isolated trees (Díaz-Varela et al. 2015; Torres-Sánchez et al. 2015; Zarco-Tejada et al. 2014) and in 

hedgerows (Díaz-Varela et al. 2015; Torres-Sánchez et al. 2015). The monitored parameters were 

canopy height, canopy projected area and canopy volume. 

 

In view of this background, the objective of the present work was to characterize the canopy of an 

intensive olive orchard in hedgerows from data generated by a self-developed MTLS. Canopy volume 

estimates derived from LiDAR readings were compared to conventional estimates used in fruticulture 
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research under the hypothesis that MTLS can produce equivalent estimates but in a more automated, 

repeatable and objective way. Apart from the development of the algorithms required for data 

processing, the effects of some factors on the canopy volume estimations are discussed. Part of the 

results was presented at the 10th European Conference on Precision Agriculture (Escolà et al. 2015). 

Additionally, some extra tools related to point cloud analysis are proposed to extract further 

geometrical and structural information from tree row crop canopies. Such tools may be used by 

researchers in their trials, but also by farmers and technical advisors to take better management 

decisions in the framework of precision fruticulture/horticulture. 

 

 

Materials and methods 
 

Experimental olive orchard 

The measurements were carried out on an irrigated, super-intensive commercial 10-year-old olive 

orchard (Olea Europaea cv. Arbequina) that produces high-quality oil. The orchard was located in 

Torres de Segre, Catalonia, Spain (X = 296850 m, Y = 4599700 m, UTM 31N/ETRS89). Planting 

and training systems were designed so that the harvesting was completely mechanized, with machines 

similar to grape harvesters (Figure 2). The orchard had an area of 2.5 ha and consisted of 16 NE–SW 

oriented rows 4.5 m apart, with a tree spacing of 2.2 m (approx. 1010 trees ha-1). However, the area 

of the sub-plot characterized with the MTLS was 1 ha, with row lengths ranging from 125 to 190 m. 

The maximum tree height and width were approximately 3.75 m and 2 m, respectively.  

 

A long-term study was conducted in the orchard to test the response of trees to different irrigation 

and fertilization strategies. The trial was conducted during the years 2012 and 2013, and consisted of 

combining and replicating five irrigation treatments with three nitrogen (N) doses and two potassium 

(K) doses, in 56 randomly distributed blocks. Each block consisted of six trees, but only some of the 

four central trees were monitored. Tree growth was monitored in the control trees by observing the 

following: 1) average per tree visual canopy volume estimation of two central trees (VCV IRTA); 2) 

per tree lateral canopy area derived from image analysis of one central tree (FL); 3) per tree combined 

canopy volume (VCM IRTA) computed by multiplying FL values by a representative tape-measured 

canopy width. For this purpose, a single-lens reflex digital camera (Nikon D5100, Nikon, Japan; with 

Tamron SP AF 10-24 mm F/3,5-4,5 Di II LD ASL IF, Tamron, Japan) and specific software 

(Photoshop CS6, Adobe Systems, USA; ImageJ, NIH, USA) were used, following the methodology 

proposed in Lordan et al. (2015). The blocks were monitored at three different development stages: 

1) springtime, at the beginning of the season, just after pruning; 2) summertime, at the beginning of 

pit hardening; 3) wintertime, at the end of the season after harvesting. 

 

Mobile terrestrial laser scanner 

The MTLS developed to characterize tree canopies integrated a 2D LiDAR sensor and a GNSS1200+ 

(Leica Geosystems AG, Heerbrugg, Switzerland) RTK-GNSS system (a real-time kinematics global 

navigation satellite system receiving GPS and Glonass constellation signals). Both were connected to 

a rugged laptop suitable for work in field conditions. The acquisition system used a self-developed 

LabVIEW (National Instruments, Austin, USA) program which merges and stores the receiver co-

ordinates and LiDAR data. The sensor used was a UTM30-LX-EW time-of-flight LiDAR 

(HOKUYO, Osaka, Japan) which has a range of 30 m. The sensor performs 40 scans per second (40 

Hz). To simplify, it was considered that each scan provided measurements contained in a vertical 

plane perpendicular to the travel direction, approximately perpendicular to the tree rows. It has multi-

return capabilities and provides up to three distance measurements corresponding to partial impacts 

on different objects for the same emitted laser pulse. After processing each received return signal, the 

sensor determines the distance at which the object impacted by the incident light pulse is located. The 

scanning window was set to 270º with an angular resolution of 0.25º. The measurements were given 
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in polar co-ordinates, i.e. angle and distance of each measurement, taking the centre of the LiDAR 

sensor as the origin of the co-ordinates. The output was a set of 1081 first return signals per scan and 

a number of second and third return signals per scan, whenever they existed. The sensor was attached 

to a mast below the RTK-GNSS rover receiver antenna, so that the absolute co-ordinates of the sensor 

were recorded continuously. The 90º blind sector was pointing upwards so that 540 laser beams were 

aimed at the right-hand side of the sensor, 540 were aimed at the left-hand side, and the central beam 

was perpendicular to the ground. Some of the beams impacted the ground, others impacted several 

adjacent rows, and some did not impact anything (Figure 1).  

 

 
Fig. 1 Diagram of the mobile terrestrial laser scanner and its components 

 

Experimental Orchard scanning 

During orchard scanning, the system was mounted on an all-terrain vehicle in order to move it along 

the hedgerow alleyways of the orchard, at a height of 2 m above the ground, as shown in Figure 2. 

That height was experimentally set in a way to properly detect the top and bottom branches of the 

hedgerow. The travel speed was approx. 4 km h-1, leading to a distance between two consecutive 

scans of approximately 27 mm. Each single scan consisted of impacts of the laser beam on several 

adjacent rows on both sides and on the ground. The crop was scanned with the MTLS at three different 

dates during the 2013/2014 season, as close as possible to the conventional monitoring of the crop. 

The first scan was performed after pruning (19/4/2013), the second in summer (15/7/2013), and the 

third at the end of the season (10/3/2014). 
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Fig. 2 View of an alleyway of the orchard (left). MTLS attached to the vehicle (right) 

 

 

Tools for geometric canopy characterization 

The points were transferred and stored in relative polar co-ordinates with the origin at the centre of 

the sensor. The data were then post-processed. The first step in data processing was to transfer the 

receiver antenna absolute ETRS89 UTM co-ordinates to the LiDAR sensor. As the position of the 

sensor was the origin of the polar measurements, each of the measured points was georeferenced in 

absolute rectangular co-ordinates with an accuracy of approximately 0.05 m (from specifications: 

approximately 0.03 m from sensor accuracy and approximately 0.02 m from the RTK-GNSS 

receiver). For each scanned alleyway, a point cloud consisting of approximately between 6 and 7.5 

million points from the adjacent tree rows and from the ground was obtained. Finally, merging the 

point clouds from the 17 alleyways, a 3D point cloud of the whole orchard was obtained. Point cloud 

data management was done with self-developed algorithms while point cloud visualization and some 

specific computation were performed with CloudCompare (CloudCompare [GPL software] v2.6.1 

2015). Subsequently, the 3D point cloud was classified into canopy and ground points. Points located 

at a height less than 0.3 m above the ground were discarded. The remaining points were classified 

into different files, one for each tree row. The row point clouds were created according to four 

different methods (Mi): 

 

- M1: each row containing first return points obtained from two adjacent alleyways. 

- M2: each row containing first return points obtained from four adjacent alleyways. 

- M3: each row containing first and second return points obtained from two adjacent 

alleyways. 

- M4: each row containing first and second return points from four adjacent alleyways. 

 

Third return data were not considered reliable and were discarded.  

 

Canopy height information extraction 

Some of the laser beams impacted the ground. The average Z co-ordinate of those points was 

calculated to minimize the effect of plants, although the alleyways had little ground vegetation. The 

average value was set as the reference ground co-ordinate for each scan. The height above ground of 

all points classified as part of the canopy was calculated by subtracting the ground Z reference co-

ordinate from their actual Z co-ordinate on a per scan basis. Subsequently, the points of each row 
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created according to the four different methods were classified into sections (also called slices) of 0.1 

m length along the rows, according to the distance of each point to the beginning of its row. The result 

of this operation was a set of vertical prisms 0.1 m wide (slices) containing subsets of the point cloud 

of each row. For each 0.1 m slice, the maximum height was computed and stored together with the X 

and Y co-ordinates of the prism centroid. Descriptive statistics were applied to extract information 

about the canopy height (Figure 3). 

 

Extraction of canopy width information 

For each vertical slice along the rows, points were subsequently grouped every 0.1 m in the vertical 

plane, confining them to new horizontal rectangular prisms of 0.1 × 0.1 × prism_width m along the 

canopy rows all over the orchard. The actual prism width was computed as the distance between the 

two most distant points in the cross-section plane of the row. Each slice contained several canopy 

width estimations at 0.1 m vertical intervals. For each 0.1 m row section, the average width of all 

contained widths was computed and stored together with the X and Y co-ordinates of the section 

centroid. Additionally, all widths contained in each slice were also stored together with the X and Y 

co-ordinates of the horizontal prism centroid. Descriptive statistics were applied to extract 

information about the canopy width (Figure 3). 

 

 
Fig. 3 Diagram with different views a point cloud representing a tree row section. (a) Top view of the 

row showing one of the 0.1 m vertical prisms (b) Side view of the row showing one of the 0.1 m 

vertical prism and its 0.1 x 0.1 m horizontal prisms. (c) Perspective view of the row with one vertical 

prism containing several horizontal prisms. White circles represent the maximum height point within 

the vertical prims, grey circles represent the prims centroids and solid points represent the two more 

outer points in each horizontal prism. 

 

Canopy volume information extraction 

The horizontal prism volumes were computed as 0.1 × 0.1 × prism_width, expressed in m3. The 

volume of each 0.1 m vertical slice was computed as the sum of the volumes of the prisms contained. 

Each volume slice was assigned to the X and Y centroid co-ordinates. The canopy volume was 

computed for all row point clouds created according to the four different methods at the three different 

scanning dates. Once the canopy height, width and volume were computed on a per 0.1 m basis, data 

could be grouped to obtain values on a per 1 m basis or on a per tree basis (that is, considering 2.2 m 

sections of the row). Descriptive statistics were applied to extract information about the canopy 

volume, and raster maps were created to represent the spatial distributions of the canopy volume. 
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Effect of the method on the creation of row point clouds 

The canopy volumes at full development stage computed according to the four different methods 

were compared. The data were analysed with JMP® 12 Pro (SAS Institute Inc., Cary, USA), 

comparing the canopy volume means for each method with the Tukey-Kramer HSD test. 

 

Comparison of MTLS and conventional canopy volume estimation methodologies 

The canopy volume slices calculated every 0.1 m along the rows (using the four different methods) 

were assigned to each of the 56 trial blocks using ArcGIS for Desktop 10.3 (ESRI, Redlands, USA). 

Specifically, two volumes were calculated in a way similar to that of monitoring tree growth: 

 

- VCV LiDAR Mi: corresponds to the volume of a section of 2.2 m computed as the average 

of two central trees (a section of 4.4 m) of each study block for methods 1 to 4. 

- VCM LiDAR Mi: corresponds to the volume of a single central tree (a section of 2.2 m) 

of each study block for methods 1 to 4. 

 

Canopy volumes of the blocks estimated visually (VCV IRTA), by image analysis (VCM IRTA), and 

by laser scanning (VCV LiDAR Mi and VCM LiDAR Mi) were compared using the matrix of 

correlation coefficients and comparing the volume means with the Tukey-Kramer HSD test.  

 

Effect of wind on the canopy volume estimation 

In addition to the three scans to compare the LiDAR-derived results with the conventional methods 

to estimate canopy volume, the orchard was scanned in wintertime during a windy day to assess the 

effect of wind on the canopy volume estimation. The windy day had an average of 4.03 km h-1 wind 

speed during the scanning period (from 11 h to 13 h), while the calm day had an average of 1.46 km 

h-1 wind speed during the same scanning period. Canopy volumes computed every 0.1 m for all rows 

were analysed with JMP® 12 Pro, comparing the canopy volume means with the Tukey-Kramer HSD 

test. 

 

Map generation 

One of the best ways to present and analyse the results of the distribution of variables within the 

orchard is using digital maps. In this work, the variographic analysis and mapping of volumes were 

performed using the extension Geostatistical Analyst of ArcGIS for Desktop 10.3. The interpolation 

was performed with ordinary Kriging or Gaussian process regression according to the semi-variogram 

models fitted in each case. The model selection criterion was the minimization of the root mean square 

errors. Canopy height, width and volume raster maps were created for each date to represent the 

spatial and temporal variability. Furthermore, difference raster maps were generated in order to 

analyse the growth of the vegetation in terms of canopy volume between dates. 

 

Tools for canopy structure characterization 

Canopy structure has to do with the distribution of leaves to optimize sunlight capture. Two different 

tools to monitor canopy structure, relating the laser beam impacts on the canopy and canopy density 

are presented. The results are connected to concepts such as canopy permeability, porosity or even 

penetrability. 

 

Laser beam penetrability and light extinction 

In general, sunlight plays a key role in regulating photosynthesis, leaf development and the 

distribution of fruit production zones within the canopy. Therefore, researchers and agronomists are 

very interested in having tools to understand how light interacts with the canopy. An analysis of a 

light beam penetrating a crop canopy can be approximated by a Poisson model as described in 

Equation 1 (Walklate 1989): 
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𝑃(𝑥) = 𝑒𝑥𝑝(−𝑎𝑥)  (1) 

 

where P(x) is the probability of light beam penetration, x is the distance along the light beam towards 

the interior of the canopy, and a is usually considered to be the foliar density responsible for the 

extinction of the light beam through the canopy. 

 

A specific method was developed to test the exponential laser beam extinction as it passes through 

the canopy of the olive tree. Given a row section defined from one tree trunk to the next tree trunk 

(2.2 m length), vertical prisms 0.1 m wide and parallel to the row axis were defined across the canopy. 

The method consisted of counting the number of impacts contained in each prism to analyse the laser 

beam penetration into the canopy. For this purpose, only the sensor readings from a single side of the 

row were considered. Cropping the point cloud and classifying and counting the points were 

performed with the program CloudCompare 2.6.1. The Poisson law can be checked by fitting the data 

to an exponential model (Equation 2), 

 

𝑁 = 𝐴 ∙ 𝑒𝑥𝑝(𝐾𝑑)  (2) 

 

where N is the number of impacts of the point cloud, d is the horizontal distance measured into the 

canopy, K is the extinction coefficient, and A is the second model parameter. The fit of the model was 

performed using JMP® 12 Pro. The agricultural interest of such models is to assess how sunlight 

penetrates the canopy according to the extinction coefficient obtained. 

 

Laser beam interception and canopy leafiness and porosity 

The laser beams aimed at both sides turned into intercept points on the ground of the present alleyway, 

on close adjacent canopies, on the ground of adjacent alleyways and on far adjacent canopies (for 

beams going through the close adjacent canopies) and non-returning beams. The designed algorithm 

consisted of classifying the points and computing two ratios: 1) the leafiness ratio (LR), as the ratio 

between the intercepted beams (bi) on the right and left close adjacent canopies and the potentially 

intercepted beams (bp) for each side of the scan, and 2) the porosity ratio (PR) as the complementary 

value to 1. The ratios were computed on a single scan basis and range from 0 to 1. The potentially 

intercepted beams were computed for each scan and side of the sensor, considering the number of 

laser beams emitted at a 0.25º angular resolution (a) between the lowest intercepted beam (bpl) and 

the highest intercepted beam (bph) as expressed in Equation 3.  

 

𝐿𝑅 =
𝑏𝑖

𝑏𝑝
=

𝑏𝑖
(𝑏𝑝ℎ−𝑏𝑝𝑙)

𝑎

= 1 − 𝑃𝑅 (3) 

 

The result of the algorithm was a value for each ratio for each side of the sensor assigned to a point 

located 0.5 m away from the row axis in the intersection between the scanning plane and the ground. 

Finally, raster maps were constructed to represent the spatial distribution of the canopy leafiness and 

porosity ratios. 

 

 

Results and discussion 
 

3D orchard point cloud 

The 3D georeferenced point cloud of the olive orchard obtained in March 2014 is shown in Figure 4. 

There were a total of 16 rows. The number of points in the rows ranged from 4 to 6 million points, 

depending on the row length. The global point clouds obtained at the three different dates had more 

than 80 million first return points and more than 8 million second return points each (including canopy 
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and ground impacts). That is an average point density of about 8,800 points m-2. That is from 22 to 

2,200 times denser than the values reported by Díaz-Varela et al. (2015) and Zarco-Tejada et al. 

(2014), and from 2 to 25 times denser than values reported by (Torres-Sánchez et al. 2015) from their 

UAVs. 

 
Fig. 4 Three-dimensional georeferenced point cloud of 1 ha olive orchard scanned in March 2014. 

Colours in tree rows represent tree height. Ground points are represented in grey scale according to 

their Z co-ordinate 

 

 

Canopy geometric information 

Results related to the canopy geometric information extraction are focused on the full development 

stage (10 March 2014) with point clouds created according to Method 1. Results for different stages 

and methods may be different, but the proposed tools and interpretation of the results may be 

equivalent. 

 

Canopy height 

The complete point cloud of sixteen scanned rows was classified into approximately 25,750 slices 

0.1 m wide, each with its own maximum point height. Figure 5a shows a histogram and box plot of 

the height population. Table 1 shows statistical parameters describing the population. As the orchard 

is machine harvested, the farmer controls the height of the canopy to fit the harvester. This is why the 

height population distribution is concentrated around 3.16 m, and the coefficient of variation is not 

very high (12.91%). Canopy height information is very important for farmers, since in some 

countries, dosages of pesticides are based on this parameter. Height information provided in this way 

is much more accurate and representative than heights obtained using current farm and research 

methods. 
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Fig. 5 Histograms and box plots at full development stage (March 2014) of (a) maximum canopy 

height on a 0.1 m slice basis, (b) unit canopy width on a 0.1 × 0.1 m prism basis, (c) averaged canopy 

width on a 0.1-m slice basis, and (d) canopy volume on a 0.1 m slice basis  

 

 

Table 1 Descriptive statistics of maximum canopy height, canopy width and canopy volume 

populations on a 0.1 m slice basis and unit canopy width on a 0.1 × 0.1 m prism basis at full 

development stage (March 2014)  

Descriptive  

statistics 

Maximum canopy 

height (m) 

Unit canopy 

width (m) 

Averaged canopy 

width (m) 

Canopy 

volume (m3) 

Mean 3.160 0.890 0.845 0.249 

Standard Deviation 0.408 0.420 0.225 0.081 

Mean upper CI 95% 3.165 0.891 0.848 0.250 

Mean lower CI 95% 3.155 0.889 0.842 0.248 

Coefficient of variation 12.91% 47.12% 26.58% 32.64% 

Minimum 0.308 0.050 0.000 0.000 

Maximum 4.440 3.482 2.261 0.769 

Median 3.187 0.895 0.855 0.251 

Mode 3.200 0.855 0.784 0.257 

 

 

Canopy width 

The preliminary result of the algorithm designed to estimate canopy widths was a set of unit widths 

of crosswise 0.1 × 0.1 m prisms within the vertical canopy slices and along the rows. Figure 5b shows 

the histogram and box plot of the unit canopy width population and Table 1 shows the statistical 

parameters. The coefficient of variation shows that unit canopy widths are much more variable than 

canopy height, as they are not as controlled by the farmer as canopy height and consist of many more 

observations. 

 

When analysing the values by 0.1 m heights, a representative canopy cross section of the orchard can 

be sketched (Fig. 6). From 0.4 to 2.8 m, the mean, median and mode values are similar but mode 

values differ at lower and upper heights. This happens because, at those heights, the canopy is not as 

uniform as it is at medium heights. The canopy shape is also an important parameter when setting up 
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the air outlets of orchard sprayers, and could be of interest when planning and assessing the result of 

pruning operations. 

 

 
Fig. 6 Representative canopy cross section of the orchard at full development stage (March 2014) 

expressed with mean, median, and mode canopy width values 

 

Averaging the unit widths of vertical canopy slices provides the average canopy width and standard 

deviation on a 0.1 m basis along the rows. Figure 5c shows the histogram and box plot of the average 

canopy width population, and Table 1 shows its statistical parameters. Although averaged, the canopy 

width still presents a higher coefficient of variation than canopy height at the full development stage. 

It is important to keep in mind that tree rows are not perfectly regular hedgerows and the trunk areas 

have wider cross sections. 

 

Canopy volume 

Finally, once the canopy height and width were obtained, the canopy volume on a per slice basis was 

computed. Canopy volume is directly related to the health and vigour of plants, and hence is an 

indirect way to estimate them. Figure 5d shows the histogram and box plot of the average canopy 

volume population, and Table 1 shows its statistical parameters. 

 

Raster maps 

Besides knowing the canopy parameter distributions and their descriptive statistics, it is very 

important to know the continuous spatial distribution of structural parameters within the orchards. In 

agriculture, the best way for farmers and technical advisors to see this is by means of digital maps. 

Figure 7 shows the spatial distribution of canopy height, width and volume at full development stage, 

grouping the data on a 1 m basis (i.e. 10 slices). Spatial variability in this orchard changed due to 

intentionally introduced differences in management of irrigation and fertilization based on research 
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trials. However, in commercial farms, the variability may be induced by soil heterogeneity, pests and 

diseases or even by management operations, among other factors. Once provided with such 

information, farmers and technical advisors should look into the orchard to understand what is 

happening and decide on the most suitable management operations. 

 

 
 Fig. 7 Raster maps representing the spatial distribution of canopy height (left), canopy width 

(centre), and canopy volume (right) on a 1-m basis at full development stage 

 

Whenever canopy volume maps are available for different dates, there is the opportunity to create 

growth maps. Growth maps were computed by subtracting canopy volume values from maps at two 

different dates. Figure 8 shows the spatial distribution of canopy volume at two different dates on a 

1-m basis and the canopy growth between them, highlighting spatial variability in growth rates. 

Although this is an artificially generated variability, the same procedure could be used in commercial 

orchards to monitor canopy growth and detect areas with low growth rates. Negative growth rates in 

Figure 8 may have two causes. 1) Low growth rates together with inaccuracies of the system may 

produces close-to-zero negative volume growth, and 2) mechanized harvesting before March 2014 

might have somehow altered the canopy (broken branches and canopy compression).  
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Fig. 8 Canopy volume raster maps for two dates on a 1-m basis and their difference, representing 

autumn canopy growth (right) 

 

 

Effect of the method to create the row point clouds 

The different methods used to create the tree row point clouds from sensor data to compute canopy 

volume produced significantly different results, as seen in Table 2. Sensor readings obtained from 

two adjacent alleyways (i.e. Method 1 and Method 3) resulted in significantly lower canopy volumes 

than using data from four adjacent alleyways (i.e. Method 2 and Method 4). This may be explained 

by the different point of view of the sensor when scanning at 2.1 m from the row axis or when 

scanning the same row from 6.3 m. Additionally, although the manufacturer does not provide 

information on the beam cross section, it is to be expected to increase with distance, decreasing the 

ability of the system to detect gaps within the canopy. Another point is that distance to the target 

reduces vertical sampling resolution since the LiDAR sensor emits the beams in a radial way. That 

could also introduce differences in the canopy volume estimations.  Moreover, using only the first 

return beams to compute the canopy volume (i.e. Method 1 and Method 2) produced significantly 

lower canopy volume values than when the second return beams were also used (i.e. Method 3 and 

Method 4). However, differences were smaller between Method 1 and Method 3, resulting in 

equivalent results for March 2014, when the canopy was bigger. 

 

Table 2 Canopy volume mean comparison on a 0.1-m basis according to row point cloud creation 

method 

Row point  

cloud creation method 

April 2013 July 2013 March 2014 

Mean canopy volume 

(m3) 

Mean canopy volume 

(m3) 

Mean canopy volume 

(m3) 

M1 0.194a 0.229a 0.250a 

M2 0.218c 0.236c 0.257b 

M3 0.197b 0.232b 0.252a 

M4 0.248d 0.246d 0.273c 

Mean values with different letters in columns are significantly different (Tukey-Kramer HSD, α = 0.05) 

  

 

Comparison between MTLS and conventional canopy volume estimation methodologies 

When comparing all the canopy volumes (all dates and blocks), a strong correlation (r=0.906) was 

found between the visual and semi-manual canopy volume estimations (VCV IRTA and VCM IRTA, 

respectively). Strong correlations (Table 2) were also found between them and their equivalent MTLS 

estimates (VCV LiDAR and VCM LiDAR), according to the four different methods used to create 

the row point clouds (Table 3). The correlations were estimated by restricted maximum likelihood 

(REML) method and all correlation coefficients have p-values <0.0001. In comparing the canopy 

volume mean values (Table 4), it is seen that the visual estimation of canopy volumes (VCV IRTA) 

produced larger values than other methods. Additionally, the use of image analysis together with a 

manual estimation of canopy width to estimate canopy volumes (VCM IRTA) was equivalent to most 

of the estimation methods except for visual estimations (VCV IRTA) and for Method 4 applied to 

one tree (VCM L M4). The inclusion of second return measurements in close adjacent rows (Method 

3) results in the canopy volume means being closer to the reference value (VCM IRTA). From the 

results shown in Table 2 and Table 4, it may be recommended to only use first return data from close 

adjacent alleyways (Method 1) when creating the row point clouds owing to its simplicity. Although 

canopy volumes estimated from Method 1 and Method 3 can be considered equivalent (Table 4), in 

stages with low vegetation considering the second return data from close adjacent alleyways may be 

of interest since Method 1 and Method 3 produce slightly different results (Table 2). 
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Table 3 Matrix of correlation coefficients between canopy volumes for all blocks and dates on a per 

tree basis.  

 
VCM 

IRTA 

VCM 

L M1 

VCM 

L M2 

VCM 

L M3 

VCM 

L M4 

VCV 

IRTA 

VCV 

L M1 

VCV 

L M2 

VCV 

L M3 

VCV 

L M4 

VCM IRTA1 1.000          

VCM L M12 0.797 1.000         

VCM L M22 0.710 0.976 1.000        

VCM L M32 0.796 0.999 0.978 1.000       

VCM L M42 0.558 0.882 0.953 0.889 1.000      

VCV IRTA3 0.906 0.822 0.771 0.824 0.659 1.000     

VCV L M14 0.802 0.955 0.923 0.954 0.820 0.825 1.000    

VCV L M24 0.720 0.935 0.943 0.936 0.886 0.776 0.979 1.000   

VCV L M34 0.800 0.953 0.923 0.953 0.826 0.826 0.999 0.982 1.000  

VCV L M44 0.568 0.839 0.896 0.845 0.935 0.669 0.876 0.947 0.885 1.000 
1 VCM IRTA: canopy volume estimated by image analysis and a manual canopy width for one tree of the block 
2 VCM L Mi: canopy volume obtained with the MTLS according to the different methods for one tree of the block 
3 VCV IRTA: canopy volume estimated visually as an average of two trees of the block 
4 VCV L Mi: canopy volume obtained with the MTLS according to the different methods for two trees of the block 

The correlations were estimated by restricted maximum likelihood method and all have p-values <0.0001. 

 

 

Table 4 Canopy volume mean comparison for all blocks and dates on a per tree (2.2 m section) basis, 

expressed in m3 

VCV 

IRTA 

VCM 

L M4 

VCV  

L M4 

VCM  

L M2 

VCV  

L M2 

VCM 

IRTA 

VCM  

L M3 

VCV  

L M3 

VCM  

L M1 

VCV  

L M1 

6.88a 5.89b 5.85b,c 5.42b,c,d 5.40b,c,d 5.33c,d 5.23d 5.21d 5.18d 5.17d 
Values with different letters are significantly different (Tukey-Kramer HSD, α = 0.05) 

 

 

Effect of wind on the canopy volume estimation 

Canopy volume slices were computed from point clouds created from MTLS data obtained on a 

windy and a calm day occurring soon after, using the four methods. Overall means were compared 

according to the wind condition factor (i.e. windy and calm), and significant differences were found, 

around 0.001 m3. When comparing all means according to the wind condition and the method factors, 

no significant difference was found between windy and calm conditions for each method (Table 5). 

However, when individual means from each method were compared, only M3 presented significant 

differences between windy and calm canopy volumes, around 0.002 m3. This indicates that a 4 km h-

1 wind does not introduce much inaccuracy when estimating canopy volume with MTLS, although in 

the field, leaves and branches were clearly swinging. That is very useful information in deciding 

whether to continue scanning or postpone operations when a light breeze starts blowing once scanning 

has already begun. 
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Table 5 Canopy volume mean comparison in calm and windy (approx. 4 km h-1) conditions on a 0.1-

m basis according to the row point cloud creation method  

Factors Mean 

canopy 

volume 

(m3) 

Standard 

Deviation 

(m3) 

Minimum  

(m3) 

Maximum  

(m3) 

Coefficient 

of variation 

(%) 

Median  

(m3) 

M1 windy 0.254a 0.076 0.000 0.571 30.05 0.254 

M1 calm 0.253a 0.079 0.000 0.581 31.16 0.253 

M2 windy 0.261c 0.077 0.000 0.575 29.53 0.260 

M2 calm 0.260c 0.079 0.000 0.581 30.45 0.260 

M3 windy 0.257b 0.077 0.000 0.727 30.04 0.256 

M3 calm 0.254a,b 0.079 0.000 0.583 31.07 0.254 

M4 windy 0.276d 0.078 0.000 0.749 28.43 0.275 

M4 calm 0.276d 0.080 0.000 0.589 29.13 0.275 

Mean values with different letters in columns are significantly different (Tukey-Kramer HSD, α = 0.05) 

 

 

Tools for structural canopy characterization 

 

Laser beam penetrability and light extinction 

Figure 9a shows the distribution of the number of impacts as the laser beam penetrates the canopy 

from one side of the row. Initially, the number of impacts increased as the beams penetrated the 

canopy, reached a peak and then decreased rapidly towards the inside of the canopy. At first sight, 

the Poisson law does not conform to this type of distribution. However, it was possible to adjust the 

data to the Gaussian model described in Equation 4: 

 

𝑁 = 𝐴 ∙ 𝑒𝑥𝑝 [−(0.5 ∙ (
𝑑−𝐵

𝐶
)
2

)]  (4) 

 

where N is the number of impacts, d is the horizontal distance into the canopy, A is the height of the 

curve’s peak, B is the position of the peak centre, and C (standard deviation) determines the width of 

the ‘bell’. In this case, the model fit was very satisfactory (R2 = 0.973; RMSE = 183), and allowed for 

a possible interpretation of the behaviour of sunlight in this crop. In the first section, the sunlight 

could easily penetrate the canopy up to a distance of approximately 0.8 m (B = 0.785 m). Beyond this 

point into the canopy, light would have greater difficulty penetrating, which would explain why the 

flower and fruit production zones were concentrated within this 0.8–1.0 m layer of the outer part of 

the canopy. Figure 9b shows how the information supplied by the laser sensor (MTLS) can be 

interpreted in terms of lighting conditions for the canopy. Moreover, the Poisson law was still valid 

when only impacts belonging to the interior of the canopy were considered in Equation 2 (Fig. 9b) in 

accordance with previous research (Arnó et al. 2013; Walklate 1989). The goodness of fit (R2 = 0.988; 

RMSE = 115) was better than with the Gaussian model, and light extinction was corroborated by a 

negative coefficient (K = -0.041). Comparison of the extinction coefficients can be used to evaluate 

the effect of different pruning systems or different irrigation schemes on canopy structure and, 

consequently, on the lighting conditions. In short, agronomists will have new information that may 

be useful for improving farm management. This algorithm is not intended to be run on a real-time 

basis. This allows the user to focus on representative hedgerow sections of variable lengths rather 

than single scans as in Chen et al. (2013) and Wei and Salyani (2005).  
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Fig. 9 (a) Gaussian distribution model of impacts as the laser beams penetrate the canopy from the 

scanning alleyway to the canopy interior (arrow), and (b) exponential modelling of the impacts 

inside the canopy 

 

 

Laser beam interception and canopy leafiness and porosity 

Laser beam interception depends not only on the canopy structure but also on the laser beam angle of 

incidence on the canopy. Such angle of incidence depends on the scanning side of the row and the 

sensor height (i.e. distance to the ground), since the MTLS mounts a radial LiDAR. The former is the 

reason why Figure 10 (left) shows differences in canopy row sides. Figure 10 (right) shows the spatial 

distribution of leafiness in the orchard at the full development stage (March 2014). Canopy leafiness 

information complements the information provided by the canopy volume map, since it provides 

information about what is inside the computed volumes. This is very relevant, since the canopy 

volumes are mainly filled with leaves, which are responsible for energy transformation in trees. 

Additionally, canopy leafiness is the opposite of canopy porosity, which is related to light penetration, 

canopy aeration to avoid fungal diseases and retention of sprayed foliar-absorbed plant protection 

products. Obtaining information on the canopy structure may lead to better farm management 

decisions. This algorithm may be run on a real-time basis, since it does not require much processing 

power or time, and is based on a per scan computation. Nevertheless, it takes into account more 

information than Wei and Salyani (2005), as they smoothed the canopy profile of each scan but 

discounted the beams going through the hedgerow.  
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Fig. 10 Canopy leafiness ratio values (left) and leafiness raster map (right) at full development stage 

 

 

Accuracy of the system, implementation and other considerations 

As the tools presented in this work are based on point cloud analysis, the only error source to be 

considered from the ones highlighted in Pallejà et al. (2010) is the LiDAR sensor orientation. Errors 

related to the sensor position and trajectory are overcome when using an RTK-GNSS receiver to 

locate the sensor. The results presented in this work are from data of a preliminary version of the 

MTLS. That version did not include any inertial measurement unit or stabilizer for the LiDAR sensor. 

Hence, sensor data may be affected by uneven ground. However, canopy volume estimations derived 

from MTLS data were consistent with those estimated on a semi-manual basis by horticultural 

researchers. The question is: Are the reference volumes accurate enough to be considered as ground-

truth to be compared with much higher resolution measurements such as the MTLS data? The answer 

could be another question: How can canopy volume in the field be measured with high resolution and 

high accuracy? Nevertheless, the objective of this work was to compare the estimations obtained 

using conventional methods to assess canopy volume in research trials with LiDAR-based 

estimations.  

 

The MTLS is being improved, and further trials are being done to improve the overall accuracy of 

the system. However, the data process and tools developed in this work would run regardless of the 

data source, although the results would be more accurate with more accurate georeferenced point 

clouds. 

 

From a commercial implementation point of view, the developed MTLS is being designed with 

consideration for use on its own, attached to a tractor while the farmer performs other orchard 

operations such as mowing or spraying. Once driven around the whole orchard, the farmer could take 

it to the office, download the stored raw data, and run the associated process software to obtain the 

descriptive statistics and raster maps. Farmer associations and/or co-operatives could own such a 

system and use it in turn so that no single farmer has to bear all the cost. The cost of the MTLS 

components has been decreasing recently, and the capabilities are being enhanced, so it is not 

irrational to consider ownership of an MTLS on a per farm basis. However, a balance has to be found 

between highly accurate but very expensive systems and affordable ones with lower specifications. 

Further trials are planned in order to determine the accuracy and resolution requirements for 

agricultural uses of MTLS. 

 

MTLS and the associated data processing are a potential solution to help farmers make better 

management decisions. The possibility of easily obtaining reliable information on the canopy 

geometry and structure may favour the development of decision support systems either for irrigation, 

fertilization, or canopy management, as well as for variable rate application of agricultural inputs in 

the framework of precision fruticulture/horticulture.  

 

Other alternatives to create point clouds, such as mounting consumer-grade RGB cameras or accurate 

LiDAR systems on UAVs are also of interest. Many questions arise when comparing them to MTLS, 

apart from the obvious ones related to work capacity. (1) Point densities in MTLS clouds may be 

greater than those obtained from UAVs (Díaz-Varela et al. 2015; Torres-Sánchez et al. 2015; Zarco-

Tejada et al. 2014). However, it is unclear which densities would be optimal. Some approaches and 

recommendations have been published for forestry applications, but to the best of the authors’ 

knowledge, none have been proposed for agriculture. Point cloud densities may be even higher for 

stationary terrestrial laser scanners, and point clouds may be fused with RGB information as described 

in Moorthy et al. (2011) but this type of instrument are much more expensive than the MTLS 

developed. (2) Penetration into the canopy seems to be shallower in digital surface models derived 

https://doi.org/10.1007/s11119-016-9474-5


This is a post-peer-review, pre-copyedit version of the article published in the Springer journal PRECISION 

AGRICULTURE (2017) 18:111–132. The final authenticated version is available online at 

https://doi.org/10.1007/s11119-016-9474-5. 
 

18 

 

from photo-reconstruction, while many laser beams may go through the canopy when using MTLS. 

Canopy penetration is a key point for extracting information on canopy porosity. (3) What is the best 

point of view to characterize the canopy? Sideways in a radial manner such as in MTLS or from a 

nadir view as in UAVs? A comparison of MTLS and UAV-derived agricultural canopy 

characterizations would be of interest, since technological progress leads to automated operation and 

data processing, but users will still have to choose the appropriate working parameters to extract 

accurate and reliable canopy information.  

 

 

Conclusions 
 

The MTLS and tools developed in this study have proved to be a good solution to rapidly and 

objectively obtain geometric and structural parameters from tree row crop canopies and their spatial 

distribution within the orchards. MTLS-derived high spatial resolution information about the canopy 

height, width and volume for the whole orchard is much more accurate than trying to find 

representative values estimated using a tape or more sophisticated methods, such as those currently 

being used by farmers and researchers.  

 

Most canopy volume results derived from the self-developed mobile terrestrial laser scanner 

measurements were equivalent to the semi-manual estimations (by image analysis and manual canopy 

width measurement) performed in fruticulture/horticulture research trials. That makes MTLS a good 

alternative to current research methods for canopy volume estimations. 

 

The method used to create the tree row point clouds affects the computed canopy parameters in a 

minor degree. Owing to its simplicity, it may be recommended to only use first return data from close 

adjacent alleyways (Method 1) to create the row point clouds. Regarding the wind, although it is not 

recommended to scan orchards in windy conditions, breezes up to 4 km h-1 do not alter canopy volume 

estimations significantly, and would allow completion of scanning operations. 

 

Besides canopy volume, the proposed tools to estimate geometrical (i.e. canopy height, width and 

growth) and structural parameters (i.e. canopy light penetrability and canopy leafiness and porosity) 

provide interesting high resolution information for monitoring the canopy. Such information cannot 

be feasibly gathered manually with sufficient spatial and temporal resolution in commercial farms. 

Additionally, digital raster maps are also a good tool to present and analyse the spatial variability of 

the extracted parameters. Further work needs to be done in order to validate these tools. 
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