
Document downloaded from:  

http://hdl.handle.net/10459.1/62701 

The final publication is available at:  

https://doi.org/10.1016/j.apenergy.2018.02.061 

Copyright  

cc-by-nc-nd, (c) Elsevier, 2018 

  Està subjecte a una llicència de Reconeixement-NoComercial-
SenseObraDerivada 4.0 de Creative Commons 

http://creativecommons.org/licenses/by-nc-nd/4.0/�
http://hdl.handle.net/10459.1/62701
https://doi.org/10.1016/j.apenergy.2018.02.061
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 

Use of partial load operating conditions for latent thermal energy 

storage management 

Jaume Gasia1, Alvaro de Gracia2, Gerard Peiró1, Simone Arena3, Giorgio Cau3, Luisa F. 

Cabeza1,* 

1 GREA Innovació Concurrent, INSPIRES Research Centre, University of Lleida, Pere de Cabrera s/n, 

25001, Lleida, Spain 
2 Departament d’Enginyeria Mecanica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 

Tarragona, Spain. 
3 Dept. of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 

09123, Cagliari, Italy 

*Corresponding author: Tel: +34.973.00.35.76. Email: lcabeza@diei.udl.cat

Abstract 

A proper management of thermal energy storage (TES) charging and discharging processes 

allows the final users to optimize the performance of TES systems. In this paper, an 

experimental research is carried out to study how the percentage of charge in a latent heat TES 

system (partial load operating conditions) influences the discharge process. Several charging 

and discharging processes were performed at a constant heat transfer fluid (HTF) mass flow rate 

of 0.5 kg/s and temperature of 155 ºC and 105 ºC, respectively. High density polyethylene 

(HDPE) with a total mass of 99.5 kg was used as phase change material (PCM) in a 0.154 m3 

storage tank based on the shell-and-tube heat exchanger concept. Five different percentages of 

charge have been studied: 63 %, 76 %, 86 %, 92 %, and 97 % (baseline test). Results showed 

that by modifying the percentage of charge, the time required for the charging process was 

reduced between 97.2 % and 68.8 % in comparison to the baseline case. However, the energy 

accumulated was only reduced a maximum of 35.1 % and a minimum of 5.2 %, while the heat 

transfer rates during the first 60 minutes of discharge were reduced a maximum of 45.8 % and a 

minimum of 6 %. Therefore, partially charging the TES system not lower than 85% of its 

maximum energy capacity becomes a good option if the final application accepts a maximum 

decrease of discharging heat transfer rates of 10% if compared to the fully charged system. 

Keywords: Thermal energy storage; Latent heat; Phase change material; Partial load; Thermal 

management.



2 

 

Nomenclature 

 

Cp Specific heat, J/kgꞏºC 

E Energy, J 

m Mass, kg 

 Mass flow rate, kg/s 

R Function which depends on the measured parameters 

t Time, s 

T Temperature, ºC 

w Uncertainties which are associated to the independent parameters 

W Estimated uncertainty in the final result, value-dependent 

x Independent measured parameters 

 

Greek symbols 

∆  Enthalpy variation (sensible and latent), kJ/kg 

∆  Temperature variation, ºC 

 

Subscripts 

i Instant 

in Inlet  

max Maximum 

n Control volume 

out Outlet  

pr Process  

 

Abbreviations 

DSC Differential scanning calorimeter 

HDPE High density polyethylene 

HTF  Heat transfer fluid 

HTR Heat transfer rate 

PCM Phase change material 

RAE Ratio of accumulated energy  

TES Thermal energy storage 

TGA  Thermogravimetry analysis 
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1 Introduction  

 

Storage technologies, such as thermal energy storage (TES) technologies, have become an 

indispensable component at any installation coupled to a renewable energy system since they 

help overcoming the dependence on the weather conditions and the mismatch between energy 

demands and supplies [1]. A TES cycling process consists of storing the energy when it is 

available or cheap, but not needed, to further release it when it is demanded and not available or 

more expensive, with the aim of increasing the efficiency of the thermal process. There are 

some energy supply sources which are known to be intermittent (i.e. solar energy and industrial 

waste heat recovery systems) which they might not give a continuous energy supply. 

Furthermore, if the energy source is able to provide a continuous heat supply, the periodicity of 

the charge can be adjusted depending on the final demand and the tank design, which is 

normally not optimized. All these conditions are known as partial load operating conditions and 

might lead to a TES material which is partially charged and, as a consequence, affect the TES 

discharging process, especially if the TES material is a phase change material (PCM).  

 

Some of the research work done to study the effect of partial load operating conditions was 

focused on numerically studying and optimizing the size of sensible cold storage systems for 

cooling purposes by comparing full storage and partial storage strategies to conventional 

systems [2-7]. According to Dincer [8], the full storage strategy shifts the entire peak cooling 

load to off-peak hours, while the partial load strategy is used to either level the load or limit the 

demand, since the cooling load is partially met by the cooling source and partially met by the 

storage system. Sebzali et al. [2] studied the effects of using partial and full loads strategies on 

the TES and chiller size, the reduction of electrical peak demand and the reduction of the energy 

consumption of a chiller for a clinic building in Kuwait. They found that full storage operation 

allows larger electrical peak reduction and chiller and storage capacities, while it presents the 

higher energy consumption. Rahman et al. [3] analysed partial and full TES storage scenarios in 

a subtropical climate building. Results showed that in both cases more than 50 % of the cooling 

electricity cost was saved when compared with the conventional system. Macphee and Dincer 

[4] studied the effect of partial and full storage strategies in the energy and exergy efficiencies 

of four different types of ice storage techniques for space cooling. They found that both 

efficiencies were always lower in partial storage systems. Hasnain et al. [5] showed that 

incorporating partial ice storage systems in Saudi Arabian office buildings reduced the peak 

electrical power demand and peak cooling load in the up to 20% and up to 40%, respectively. 

Similarly, Habeebullah [6] performed this analysis for a Saudi Arabian mosque. The author 

concluded that partial load operating strategies were not economically attractive if compared to 

full load or conventional systems. Boonnasa and Namprakai [7] performed an optimization of 
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the payback period for a full load and three different partial load scenarios. They found that 

partial load scenarios show good economic results as well as manageability and flexibility.  

 

On the other side, literature review showed that some research was also performed to study the 

influence of partial load operating conditions in latent heat TES systems [9-20]. It is known that 

when a PCM goes through consecutive melting and solidification processes, it might show 

specific effects such as hysteresis and/or subcooling. Hence, it might follow different enthalpy-

temperature curves for each process (Figure 1a). These effects bring new challenges when 

numerical models need to evaluate the transition between heating and cooling in TES systems 

working under partial load operating conditions, since the PCM might have not completely 

undergone phase change when the following process starts. Four methodologies were found in 

the literature defining how to address this transition. The first methodology, which was 

proposed by Bony and Citherlet [9], suggests switching from the heating to the cooling curves, 

or the other way around, with the same slope than the specific heat curve in the sensible region 

(points a-c-f in Figure 1b). The second methodology, which was proposed by Rose et al. [10], 

has the same principle than the first methodology but the transition takes place with no 

equivalent slope (points a-c’-f in Figure 1b). The third methodology, which was proposed by 

Chandrasekharan et al. [11], suggests staying at the same curve without considering the other 

curve (points a-d-f in Figure 1b). Finally, the fourth methodology was obtained in an 

experimental PCM-equipped wall by Delcroix [12]. He observed that the curve was placed 

between the cooling and heating curves at a distance and with a slope which depended on the 

TES system operating conditions (points a-b-e-f in Figure 1b). Palomba et al. [13] 

experimentally evaluated three short consecutive charging and discharging processes in a latent 

heat TES system for solar cooling purposes to study the effect of starting a new process without 

fully melting/solidifying the PCM. They observed that better results could be obtained with 

longer processes, mainly in the first discharge/charge. Chiu et al. [14] performed a techno-

economic optimization of a mobile-TES system in which one of the parameters was the storage 

level with varying charge/discharge time. Results showed in a monthly base the optimal charge 

and discharge storage level which provided the maximum economic benefits. Nithyanandam et 

al. [15] and Zhao et al. [16] numerically analysed the behaviour of packed bed TES systems 

(with and without encapsulated PCM) under partial load operating conditions in a concentrating 

solar power plant. Results showed that when the TES system repeatedly worked under partial 

load conditions, the PCM phase change rate might be limited and the effective storage capacity 

might be decreased with time. Bedecarrats et al. [17,18] experimentally and numerically 

investigated the effect of partially discharge a TES system on the following charging process. 

They observed that the charge mode was relatively shorter and that the subcooling effect 

practically disappeared. Avignon and Kummert [19] experimentally analysed the effect of 



 

partia

these

chang

scann

entha

with t

 

Figu

m

 

From

effect

the pr

the p

behav

scien

accou

opera

solidi

 

2 M

2.1 

 

The 

becau

[21]. 

the m

ally charging

 processes b

ge temperatu

ning calorim

alpy-tempera

the curves ob

ure 1. (a) Hys

modelling the

m the literatur

t of the parti

resent work 

percentage of

viour. The 

ntific commu

unt the greate

ation conditi

ifying proces

Material, e

 

Material 

PCM chose

use of its goo

DSC results

melting temp

g and discha

before the PC

ure and the d

meter (DSC) 

ature curves 

btained in th

(a) 

steresis and su

e transition bet

re review, it

ial load opera

is to contribu

f charge of 

results pres

unity which c

er level of co

ions play a v

sses.  

experiment

en for the p

od behaviou

s showed tha

erature (peak

arging a late

CM was com

degree of sub

analyses pe

of partially 

he complete p

ubcooling in a 

tween heating

was found t

ating conditi

ute to fill thi

a latent hea

ented in thi

can help to s

omplexity wh

very importa

tal setup an

present expe

ur in terms of

at the meltin

k) at 127 °C

5 

ent heat TES

mpletely melt

bcooling. Th

erformed by

melted/solid

phase change

 

PCM melting

g and cooling i

that little res

ions in a late

is gap by exp

at TES syste

is paper pro

support bette

hen dealing 

ant role in th

nd methodo

erimentation 

f health haza

ng process oc

C, and that th

S system. Th

ted or solidif

his effect wa

y Li et al. [

dified PCM 

e cycles.  

g and solidific

in a partially m

search has be

ent heat TES

perimentally 

em above 10

ovide releva

er sizing dec

with latent T

he heat tran

ology 

was high d

ard, thermal 

ccurred betw

he solidificat

hey observed

fied had an e

as also observ

20]. Results

were no lon

(b) 

ation process.

melted PCM. 

een conducte

system. The

studying and

00 ºC influen

ant experime

cisions, as w

TES units, as

sfer rates du

density poly

stability, an

ween 124 °C 

tion phase ch

d that interru

effect on the 

rved in differ

s showed th

nger in agre

. (b) Scenario

Based on [19

ed in studyin

erefore, the a

d quantifying

nces its disc

mental data t

well as to tak

s the geometr

uring the me

yethylene (H

nd cycling sta

and 134 °C

hange was r

upting 

phase 

rential 

at the 

ement 

 

s for 

]. 

ng the 

aim of 

g how 

charge 

to the 

ke into 

ry and 

elting-

HDPE) 

ability 

C, with 

ranged 



 

betwe

metho

follow

Figu

 

2.2 

 

The e

the U

system

the ch

The c

air-H

tank 

prism

inside

length

are d

which

remai

locate

outlet

tempe

Ninet

senso

centra

een 126 ºC a

odology use

wed the stand

ure 2. High de

Experimen

experimentat

University of 

m, and the s

harging proc

cooling syste

HTF heat exc

based on the

m shaped ves

e containing

h of 2.49 m 

distributed as

h surrounds 

ining 7% is

ed at the inle

t temperatur

erature sens

teen of these

ors in the co

al part (from

and 114 ºC, w

ed to obtain

dard present

(a) 

ensity polyeth

foll

ntal setup 

tion presente

Lleida, whic

storage syste

cess (i.e. sola

em, which si

changer. Fina

e shell-and-t

ssel (0.53 x 

g 49 tubes di

(Figure 3a). 

s shown in F

the tubes bu

s located in 

et and outlet 

re (THTF.IN an

sors were in

e sensors wer

orner part clo

m Tin.1 to Tin.6 

with the solid

n the enthalp

ed in the IEA

hylene enthalp

lowing the PC

ed in this pap

ch is integrat

m. The heat

ar field, wast

imulates the 

ally, the stor

ube heat exc

0.27 x 1.27

istributed in 

The capacity

Figure 1b: 79

ndle, 14% of

the corners.

of the HTF t

nd THTF.OUT i

nstalled in t

re located in

ose to the U

in Figure 3d
6 

dification tem

py-temperatu

A SHC Task 

 

py-temperature

CM standard m

per was carrie

ted by three m

ting system, 

te heat stream

energy cons

rage system 

changer conc

7 m), where 

square pitch

ty of the stor

9% of the P

f the PCM is

. Two Pt-10

tubes bundle

in Figure 3d

the storage 

n the main pa

U bend (from

d). Each temp

mperature (p

ure and spe

42 / ECES A

e (a) and spec

methodology [

ed out at the 

main parts: t

which simul

m...), consists

sumption, co

consists of a

cept. This de

the PCM is

h and bended

rage tank is 0

PCM is locat

s located in t

00 1/5 DIN 

, were used 

d) and thirty

tank to me

art (from TPC

m Tc.1 to Tc.6

perature sens

peak) at 119 º

cific heat-te

Annex 29 [22

(b) 

ific heat-temp

[22]. 

pilot plant fa

he heating sy

lates the ene

s of a 24 kW

nsists of a 2

a stainless st

esign consist

 located, wi

d in U-shape

0.154 m3 and

ted in the so

the central pa

class B tem

to measure t

-one Pt-100 

easure the P

CM.1 to TPCM.15

in Figure 3

sor was asso

ºC (Figure 2

emperature c

2]. 

perature curve

facility availa

ystem, the co

ergy source d

We electrical h

20 kWth cross

teel 304 L st

ts of a rectan

ith a tubes b

e, with an av

d 99.5 kg of 

o-called main

art, and final

mperature se

the HTF inle

 1/5 DIN cl

PCM temper

5 in Figure 3

3d), and six 

ociated to a c

). The 

curves 

es (b) 

able at 

ooling 

during 

heater. 

s flow 

torage 

ngular 

bundle 

verage 

 PCM 

n part, 

lly the 

ensors, 

et and 

lass B 

rature. 

c), six 

in the 

control 



 

volum

senso

walls

The H

flow r

the in

 

The t

which

3 m3/

surro

 

F

dist

 

 

2.3 

 

This 

the r

me, which is

or could be sta

s of the stora

HTF flow ra

rate sensors w

nformation at 

three above-

h distributes 

/h. The pipin

undings. 

Figure 3. TES 

tribution withi

HTF temp

Theory an

section pres

results and d

s defined as t

ated as repres

age tank and

ate was meas

were connect

a time interv

-explained sy

the HTF (sil

ng system is i

(a) 

(c) 

system used o

in the TES sys

perature senso

nd calculatio

ents the mai

discussion se

the theoretica

sentative. Six

d of the insu

ured using a

ted to a data a

val of 60 s. 

ystems are l

licon fluid S

insulated wit

of the experim

stem; (c) PCM

ors, and PCM t

on 

in equations

ection. The

7 

al volume of 

x additional P

ulation to eva

a FUJI FCX-

acquisition sy

linked throu

Syltherm 800

th rock wool

mental setup: (

M temperature

temperature s

used to desc

energy stor

PCM in whi

t-100 1/5 DI

aluate the he

-A2 V5 serie

ystem, which

ugh a stainle

0) within a flo

l in order to m

(a) Overview 

e sensors of th

sensors of the 

cribe the exp

red, or relea

ich the value 

IN class B wh

eat losses to 

es transmitter

h controls, me

ss steel 304

ow rate rang

minimize the

(b) 

(d) 

of the TES sy

e main part; (

corner and ce

perimental re

ased, by the 

of the tempe

where placed o

the surroun

r. Temperatur

easures and re

4 L piping s

ge between 0

e heat losses 

ystem; (b) PCM

(d) Inlet and o

entral parts. 

esults presen

PCM durin

erature 

on the 

dings. 

re and 

ecords 

ystem 

.3 and 

to the 

M 

utlet 

nted in 

ng the 



8 

 

charging or discharging process, respectively, is calculated as given in Eq. 1. Since HDPE 

presents hysteresis, the methodology used to study the enthalpy variation under partial load 

operating conditions followed the one proposed by Chandrasekharan et al. [11], who suggests 

staying at the same curve without considering the other curve.  

 

, ∆ , ,  

(1)

 

The heat transfer rate of the HTF during the charging or discharging process is calculated using 

Eq. 2:   

 

∆ .  

(2)

 

Finally, the ratio of accumulated energy (RAE), which is the amount of energy accumulated in 

the PCM at a certain time interval in front of the theoretical maximum energy that can be stored 

by the PCM is calculated using Eq. 3. The theoretical maximum energy stored was obtained by 

multiplying the enthalpy variation of the PCM, whose values were acquired from the DSC 

enthalpy-temperature curves, by the total amount of material used in this experimentation, as 

described in Eq. 1. In this case, the theoretical maximum energy accumulated by 99.5 kg of 

HDPE within the temperature range of 105 ºC and 155 ºC is 10.08 kWh. Similarly, the 

maximum energy stored by the metal parts of the TES system is 1.29 kWh, which is obtained by 

multiplying their mass by the specific heat of the stainless steel, and by the temperature 

difference between the initial state and the final state. 

 

.

.
 

(3)

 

2.4 Methodology 

 

The experimentation presented in this paper consisted of five different charging and discharging 

tests with the aim of evaluating the effect of partially charging the PCM (partial load operating 

conditions) on the discharging process (see Table 1). All the processes were carried out using 

the same parameters, and at least five repetitions of each one were performed to ensure 

repeatability. Table 1 shows the operating conditions of the partial load charging processes, 

evaluated by the RAE, and the time needed to reach them. In order to determine the time needed 
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to reach the evaluated ratios, a 24-hour charging process was carried out. The time needed to 

reach each RAE was used to control the processes at the pilot plant facility.   

 

Table 1. Operating conditions of the charging processes evaluated in this study 

Process RAE Time needed to reach this ratio 

Charge 1 97 ± 1% 1440 ± 5 min 

Charge 2 92 ± 1% 450 ± 3 min 

Charge 3 83 ± 1% 150 ± 1 min 

Charge 4 73 ± 1% 70 ± 1 min 

Charge 5 58 ± 1% 41 ± 1 min 

 

A summary of the flow rates and temperatures used in the experimentation is shown in Table 2. 

Due to the characteristics of the experimental facility, a homogenization process was required 

before starting each process, which lasted around 25 minutes for the charging process and 30 

minutes for the discharging process. The objective was to ensure a uniformity and homogeneity 

at both the PCM and HTF initial temperatures shown in Table 2. 

 

Table 2. Summary of the main parameters of the processes. 

Process 

HTF mass 

flow rate 

HTF inlet 

temperature 

PCM average 

initial temperature 

[kg/s] [ºC] [ºC] 

Charge 0.5 ± 0.01 155 ± 2 104 ± 1.5 

Discharge 0.5 ± 0.01 105 ± 2 
128.5 to 150 

(depending on the RAE) 

 

2.5 Uncertainty analysis 

 

This section aims to show the uncertainties of the different parameters and their impact in the 

results of the present study to determine their precision and general validity. The first step was 

to establish the uncertainties of the parameters which were measured during the experimentation 

and the uncertainties associated to the thermophysical properties of the HTF and PCM. These 

values are shown in Table 3. 

 

Table 3. Uncertainties of the different parameters involved in the analyses of the present study. 

Parameter Units Sensor Accuracy 

Temperature ºC Pt-100 1/5 DIN class B ± 0.3 
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Flow rate l/h FUJI FCX-A2 V5 series transmitter ± 23.7  

HTF specific heat kJ/kgꞏºC From ref. [23] ± 0.054 

HTF density kg/m3 From ref. [23] ± 25.16 

PCM mass kg Regular scale ± 0.5 

PCM volume m3 Storage tank designer ± 0.0024 

PCM enthalpy kJ/kg Sensors from Mettler Toledo DSC-822e ± 3 

 

Once the uncertainties of these parameters were known, the next step was to estimate the 

uncertainties of the HTF power and PCM accumulated energy, which were obtained as shown 

in Eq. 4 [24]. These uncertainties were calculated for each time interval registered. 

 

⋯

/

 (4) 

 

where WR is the estimated uncertainty in the final result, R is a function which depends on the 

measured parameters, xn are the independent measured parameters, and wx are the uncertainties 

which are associated to the independent parameters. 

 

Table 4 shows average uncertainty in HTF power and PCM accumulated energy of the different 

processes carried out. 

 

Table 4. Estimated uncertainties of the HTF power and PCM accumulated energy. 

  
Uncertainty of the  

HTF power [± kW] 

Uncertainty of the PCM  

accumulated energy [± kWh] 

R
A

E
 

97% 0.36 0.064 

92% 0.38 0.063 

83% 0.44 0.042 

73% 0.44 0.042 

58% 0.48 0.049 

 

 

3 Results and discussion 

 

3.1 Repeatability  
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Each charging and discharging process was repeated five times to demonstrate repeatability of 

the methodology and the experimental results. Figure 4 presents the temperature profiles of the 

HTF at the inlet and outlet of the TES system, and the temperature profiles of the PCM at three 

different locations (evaluated by the temperature sensors T.PCM.2, T.PCM.5, and T.PCM.14) 

during the charging and discharging processes for the case study referred to a RAE of 92%. 

Results from the repeatability tests show that the methodology adopted for the present 

experimentation produced repeatable values. Notice that only one case study is presented, 

however, the remaining four case studies also showed repeatability. Moreover, when the phase 

change temperature range is evaluated in both Figure 2 and Figure 4, slight differences can be 

observed. On one side, DSC results showed that melting was ranged between 124 ºC and 134 ºC 

while pilot plant results showed that melting occurred approximately between 127 ºC and 136 

ºC. On the other side, DSC results showed that solidification took place between 126 ºC and 114 

ºC, while pilot plant results showed that it was ranged between 127 ºC and 124 ºC. The reason 

for these differences was due to the different heating/cooling rates, different sample masses, 

which are known to have an influence on the PCM phase change behaviour [25]. 
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A more detailed profile time study is shown in Figure 6. This figure shows the time needed to 

increase 5% the value of the RAE during the charging process (notice that the primary and 

secondary y-axes are in a log-2 scale). It can be observed that for the first period (from 0% to 

55%) the time needed was five minutes or less. Specifically, it can be seen that the time to store 

the initial 5% of energy was slightly higher than the time needed to increase the following 5% 

until a RAE of 55%. The reason is due to two factors. On one hand, during the first six minutes 

of charge, the heat transfer gradually increases from 0 to its maximum, as seen in Figure 7, and 

as a consequence, the energy transferred in this period is lower. On the other hand, part of this 

energy is absorbed initially by the metal of the tubes bundle and afterwards by the PCM located 

around it in terms of sensible energy. After the first 5%, it takes between two and four minutes 

to increase 5% until the ratio of energy accumulated (RAE) is 55%. On the other hand, in the 

second period (from 55% to 70%) the required time was at least nine minutes. Finally, the time 

needed to increase 5% the RAE in the third period (from 70% to 97%) increased exponentially. 

As explained above, the main reason for this behaviour is that when the RAE achieved the value 

of 70% the PCM located at the main and central parts was already melted. Therefore, the 

biggest amount of energy from the HTF was focused on increasing the temperature and melting 

the PCM located at the corner part. The existing distance between the corners and the HTF 

tubes bundle, and the low thermal gradient between the PCM and the HTF induced low heat 

transfer rates and a reduction in the power of energy absorbed by the PCM. The existence of this 

non-linear profile from the RAE of 70% shows the potential of using partial load operating 

conditions when a fast charging process needs to be performed, mainly because of the heating 

source availability.  

 

If the different case studies are compared to the baseline case study (RAE 97%), different 

reductions on the energy accumulated at the end of the charging process and the time needed to 

reach these levels are observed. In the case study of RAE 92%, a reduction of 5.2% of the 

accumulated energy, which causes a time reduction of 68.8% on the charging period. This 

variation on the charging time is even increased in the other case studies. If the accumulated 

energy is reduced 14.4% (RAE 83%), 24.7% (RAE 73%), and 40.2% (RAE 58%), the period of 

time needed to reach these levels is reduced 89.6%, 95.1%, and 97.2%, respectively (Table 5).  

 

Focusing again on the temperature profiles shown in Figure 5, it can be seen that the baseline 

study case (cross mark) shows always higher temperature in the three different regions than the 

other case studies as a result of the higher amount of accumulated energy. Looking at the PCM 

distribution in the TES system, it can be seen that the average temperature of the PCM located 

in the main part at the end of the charging process, in comparison to the baseline case study, has 
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a temperature variation which goes from 12.8% in the case of RAE 58% (round mark) to a 

difference of only 0.4% in the case of RAE 92% (rhombus mark). Observing the PCM located 

in the central part, the temperature variation compared to the baseline study case goes from the 

19.8% in the case of RAE 58% to 3.5% in the case of RAE 92%. Finally, the PCM located in 

the corners of the TES system, shows a higher temperature variation, from 25.4% in the study 

case of RAE 58% to 6.5% in the case of RAE 92%. These results show that, if compared to the 

baseline study case, the PCM located at the main part presents a lower temperature variation 

than the PCM located in both the central and corner parts. The reason lies on the fact that this 

PCM surrounds the HTF tubes bundle and therefore it received first the heat released by the 

HTF and it increased faster its temperature. Moreover, Figure 5 shows that the PCM located in 

the corners of the TES system did not fully melt. This was mainly caused by a non-optimized 

design of the TES system, which creates dead zones. Hence, the effect of the heat losses was 

higher than the effect of the heat transfer from the HTF. 

 

Figure 7  presents the evolution of the HTF heat transfer rate during the charging process of the 

five study cases. These profiles are limited to 180 minutes for a better visualization. As 

expected, the heat transfer rates are practically the same for the different studies until they are 

stopped, and the slight variations are due to the small variations on the initial conditions and 

mass flow rates. These profiles show an exponential behaviour with significantly higher values 

during the first 10 minutes of process, when the heat is mainly transferred to the metal tubes 

bundle, and therefore rapidly increases its temperature, and when the thermal gradient between 

the HTF and the PCM is maximum. Afterwards, while the PCM increases its temperature, the 

values of the heat transfer exponentially decrease until minimum values. At this moment, the 

heat transfer is focused on increasing the temperature of the PCM located at the corners and the 

central part of the tank. 
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4 Conclusions 

 

The work presented in this paper studies how the fact of partially charging a latent heat TES 

system influences the discharging process (partial load operating conditions). Five different 

percentages of charge were studied and discussed, which were determined with a 24-hour 

charging process. The parameter ratio of accumulated energy (RAE) was defined to evaluate the 

partial load charging processes. This ratio defines the PCM accumulated energy at a certain time 

interval in front of the theoretical maximum energy stored by the PCM. The five case studies 

were RAE 97 %, RAE 92 %, RAE 83 %, RAE 73 %, and RAE 58 %, being the first one the 

baseline case. 

 

The experimental results showed that during the charging process, the evolution of the time 

according to the RAE presented three different profiles. From the beginning to a RAE of 55%, 

the profile of the time showed a linear evolution. After this value to a RAE of 70%, the time 

profile also showed a linear evolution but with a different slope. Finally, from the value of RAE 

of 70% up to the maximum achievable RAE (97%) the time profile showed a non-linear 

evolution. Moreover, it was observed that in comparisons to the baseline case, by reducing the 

RAE between 5.2% and 40.2%, the charging process time could be reduced between 68.8 % and 

97.2%. Therefore, in terms of time, working under partial load operating conditions is 

beneficial. However, during the discharging process partial load operating conditions penalize 

the heat transfer rate. Before the first hour of discharge, only the case studies of RAE 92% and 

83% showed heat transfer rates values which were 10% lower than the baseline case, and after 

the first hour all the case studies present a reduction on the heat transfer rates in comparison to 

the baseline case higher than 10%. Therefore, if the TES system works under partial load 

operating conditions during the charging process for a RAE higher than 83%, it is able to supply 

heat transfer rates during the first 60 min of the discharging process with variations lower than 

10% compared to the baseline case, but with significant time reductions in the charging process 

of more than 89%. 

 

Finally, it has to be pointed out that the results presented in this paper are strongly affected by 

the particular geometry of the system, which presents two dead zones (at the corners) that 

cannot be effectively used. Different geometries, with different distribution of tubes or different 

container shapes, could yield different results. 
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