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Abstract: 13 

The stability of deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON-3-glucoside) during 14 

the breadmaking process was studied. Some enzymes used in the bakery industry were added 15 

to determine the possible effect on these two mycotoxins. The level of DON in breads without 16 

added enzymes was reduced (17-21%). Similarly, cellulase, protease, lipase and glucose-17 

oxidase addition did not modify in general this reducing trend. Regarding xylanase and α-18 

amylase, their effect in DON content depended on the fermentation temperature, with 10-14% 19 

reduction at 45ºC, but a 13-23% increase at 30ºC. DON-3-glucoside had a reduction at the end 20 

of the fermentation, with a final reduction of 19-48% when no enzymes were used. However, 21 

the presence of xylanase, α-amylase, cellulase, and lipase resulted in a bread with a higher 22 

presence of DON-3-glucoside when the fermentation was at 30ºC. The results showed that 23 

wheat bran and flour may contain hidden DON that may be enzymatically released during the 24 

breadmaking process, when fermentation temperature is close to 30ºC.   25 
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1. Introduction 26 

Deoxynivalenol (DON), also known as vomitoxin, is one of the most regular contaminants in 27 

cereals (Cano-Sancho et al., 2011a), and it can be found at relatively high concentrations in 28 

wheat and wheat containing products (like bread and pasta) (Cano-Sancho et al., 2011a). In 29 

addition, they are considered the major source of human intake for DON (Cano-Sancho, Gauchi, 30 

Sanchis, Marín, & Ramos, 2011b). Although DON is not classifiable as to its carcinogenicity to 31 

humans by the International Agency for Research on Cancer (IARC, 1993), it has been linked 32 

with human gastroenteritis (Pestka, 2010).  33 

Contaminated wheat grains with DON may also contain deoxynivalenol-3-glucoside (DON-3-34 

glucoside), a plant metabolite from DON (Berthiller et al., 2009). The reported levels of DON-3-35 

glucoside are variable, however the ratio DON-3-glucoside/DON concentration is similar among 36 

the assays, from 10 to 30 % (Berthiller et al. 2009; Dall’Asta, Dall'Erta, Mantovani, Massi, & 37 

Galaverna, 2013). Moreover, Berthiller et al. (2011) showed that DON-3-glucoside can be 38 

hydrolysed to DON by several lactic acid bacteria that may be present in the intestine. Thus the 39 

FAO/WHO Expert Committee (JEFCA) considered DON-3-glucoside as an additional 40 

contributing factor of the total dietary exposure to DON (JEFCA, 2010).  41 

Due to the high presence of DON and DON-3-glucoside in raw wheat, it is important to study 42 

their stability during breadmaking process. Contradictory reports exist regarding the fate of DON 43 

during this process. First of all, the results on the fermentation effect on DON are contradictory; 44 

while some authors pointed out important reductions (Neira, Pacin, Martínez, Moltó, & Resnik, 45 

1997; Zachariasova, Vaclavikova, Lacina, Vaclavik, & Hajslova, 2012), other studies showed 46 

significant increase of DON after this step (Bergamini et al., 2010; Lancova et al., 2008; Vidal, 47 

Morales, Sanchis, Ramos, & Marín, 2014a). After baking, DON results are also contradictory 48 

and some authors observed DON reduction (Neira et al., 1997; Bergamini et al., 2010), 49 

whereas, other authors pointed out no changes or even an increase (Simsek, Burgess, 50 

Whitney, Gu, & Qian, 2012; Zachariasova et al., 2012). However, incoherencies may exist due 51 

to the fact that some studies were carried out at laboratory scale and others at industrial level 52 

(Bergamini et al., 2010). Moreover, Vidal, Sanchis, Ramos, & Marín (2015), using small size 53 

items, demonstrated that DON may be reduced only in the external part of loaves, due to the 54 
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reduced heat transmission, thus the size of the baked items may also explain the conflicting 55 

results reported for baking (Vidal et al. 2014a). Regarding DON-3-glucoside, the four existing 56 

publications show also contradictory results for the fermentation and the baking steps (Generotti 57 

et al., 2015; Suman, Manzitti, & Catellani, 2012; Vidal et al., 2014a; Vidal, Marín, Morales, 58 

Ramos, & Sanchis, 2014b; Zachariasova et al., 2012). Recently, Vidal et al. (2015) showed that 59 

DON-3-glucoside may be released under mild baking conditions of temperature/time (for 60 

instance 140 º for 35 minutes or 200 ºC for less than 10 minutes), but reduced under harsher 61 

baking conditions, i.e. longer time and higher temperatures.  62 

The increases in DON and DON-3-glucoside reported during breadmaking might be due to 63 

enzyme activity (Simsek et al., 2012; Vidal et al., 2014a). Enzymes may hydrolyse mycotoxin 64 

bounds with carbohydrates or other components related to the ingredients of the recipe 65 

formulations causing an increase of mycotoxin concentration at the end of the breadmaking 66 

process. For example, Zhou, Schwarz, He, Gillespie, & Horsley (2008) detected higher DON 67 

levels in barley samples after the treatment with protease, xylanase and cellulase, and so did 68 

Simsek et al. (2012) in wheat samples after xylanase treatment. Finally, Zachariasova et al. 69 

(2012) found that α-amylase caused no changes in DON-3-glucoside when malt samples were 70 

treated for more than six hours.  71 

Given that hydrolytic enzymes may affect DON release during breadmaking, the objective of the 72 

present work was to assess such effect for different enzymes (xylanase, α-amylase, cellulase, 73 

protease, lipase and glucose oxidase, usually used in breadmaking), on DON and DON-3-74 

glucoside fate during bran bread production. 75 

  76 

2. Materials and methods 77 

2.1. DON and DON-3-glucoside initial levels in flour and bran 78 

Flour and bran wheat were purchased in a flour mill in Lleida (Spain), and were analysed for 79 

natural DON and DON-3-glucoside contamination. The initial DON concentration in the flour 80 

was 251.51 ± 30.39 µg/kg (n = 3) and DON-3-glucoside was not detected, while in the bran, 81 
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DON and DON-3-glucoside concentrations were 2003.67 ± 72.39 and 578.57 ± 61.15 µg/kg (n = 82 

3), respectively. 83 

 2.2. Dough preparation and baking 84 

A flour + bran mix was prepared (200 g of bran/1000 g of flour) and used for the bread 85 

experiments. Therefore, the concentrations of DON and DON-3-glucoside were 650.63 ± 12.96 86 

and 137.13 ± 23.22 µg/kg (n = 6), respectively, in the mix of flour + bran.  87 

To each flour + bran mix (156 g), 2.3 g of salt, 4.7 g of sucrose, 4.7 g of lard and 6.2 g of 88 

commercial compressed yeast (Saccharomyces cerevisiae, Levanova, Lesaffre Ibérica, S.A., 89 

Spain) were added. The dough was obtained by adding 83 mL of water to the mixture. Different 90 

doughs were prepared, containing six different enzymes (xylanase, α-amylase, cellulase, 91 

protease, lipase and glucose oxidase) plus a control. The enzyme concentrations were adjusted 92 

following some breadmaking references: 1 U of xylanase/g flour (Oliveira, Telis-Romero, Da-93 

Silva, & Franco, 2014), 10 U of α-amylase/g flour (Kim, Maeda, & Morita, 2006), 35 mU of 94 

cellulase/g flour (Haros, Rosell, & Benedito, 2002), 10 U of protease/g flour (Harada, Lysenko, 95 

& Preston, 2000), 1 U of lipase/g flour (Moayedallaie, Mirzaei, & Paterson, 2010) and 10 U of 96 

glucose oxidase/g flour (Hanft & Koehler, 2006). Enzymes were added in powder. Moreover, 97 

second fermentation was carried out separately at 30 or 45 ºC. Thus, fourteen treatments were 98 

tested in the study, and the experiment was repeated three times. 99 

Dough was manually kneaded until held together with a non-sticky, smooth and satiny 100 

appearance and optimum handling properties. Rounded pieces weighing 250 g each were 101 

prepared. From this point, thermoprobes (Thermo Bouton, Proges Plus, France) were always 102 

used in the dough to record fermentation and baking temperatures; in particular, probes were 103 

placed in the centre of the loaf and close to the surface. Doughs were covered with a damp 104 

cloth and first fermentation was carried out at 30 ºC for 15 minutes. Then the pieces were 105 

placed in moulds, where the dough further fermented for 1 hour at 30 or 45 ºC. After the 106 

fermentation, a sample of 25 g was taken from each proofed dough; samples were lyophilized 107 

and stored at -20 ºC until mycotoxin analysis. The proofed doughs were then baked in an oven 108 

(Eurofred PE46SVR, Eurofred, Spain). Baking conditions were 180 ºC and 75 min. Such 109 



conditions were established on the basis of previous experiments to obtain suitable bread. After 110 

baking, a representative sample was taken, lyophilized and stored at -20 ºC until analysis.  111 

2.3. Chemicals, reagents and enzymes. 112 

Mycotoxin (DON and DON-3-glucoside) standards were supplied by Sigma (Sigma-Aldrich, 113 

Alcobendas, Spain). Acetonitrile, methanol and ethanol were purchased from J.T. Baker 114 

(Deventer, The Netherlands). All solvents were LC grade. 3, 5-Dinitrosalicylic acid (DNS) (≥ 98 115 

%), sodium azide (≥ 99.5 %), starch (from potato), o-dianisidine (peroxidase substrate), Triton 116 

X-100 (laboratory grade), copper (II) acetate (≥ 99.5 %), caseinate (from bovine milk) and 117 

trichloroacetic acid (≥ 99.0 %) were supplied by Sigma. Malic acid (≥ 99 %), 2,2,4-118 

Trimethylpentane (≥ 99.5 %) and acetic acid (100 %) were supplied from VWR Prolabo (Llinars 119 

del Vallès, Spain). Sodium hydroxide (≥ 99.5 %), sulphuric acid (≥ 96 %) and sodium chloride (≥ 120 

99.5 %) were supplied by Fisher Bioreagents (New Jersey, USA). Sodium and potassium 121 

tartrate (≥ 99 %) and Tris buffer (reagent grade) were supplied by Scharlau (Barcelona, Spain). 122 

Sodium carbonate (≥ 99.5 %) and Folin’s reagent were supplied by Panreac (Castellar del 123 

Valles, Spain). Filter paper (Whatman No. 1) was purchased from Whatman (Maidstone, UK). 124 

Immunoaffinity chromatography columns (IAC) for DON (DONPREP®) extracts clean-up were 125 

purchased from R-Biopharm (Rhone LTD Glasgow, UK). Pure water was obtained from a milli-Q 126 

apparatus (Millipore, Billerica, MA, USA). The six enzymes used in the study, xylanase (from 127 

Trichoderma longibrachiatum), α-amylase (Aspergillus oryzae), cellulase (Aspergillus niger), 128 

protease (Aspergillus oryzae), lipase (Aspergillus niger) and glucose oxidase (Aspergillus niger) 129 

were purchased from Sigma.  130 

2.4. Preparation of mycotoxin standard solutions 131 

DON standard solution was dissolved in ethanol at a concentration of 10.0 µg/mL and stored at 132 

4 ºC. The concentration in the stock solution was checked by UV spectrometry according to the 133 

AOAC Official methods of analysis. Working standards (2.5, 1.0, 0.5, 0.1 and 0.05 μg/mL) were 134 

prepared by appropriate dilution of known volumes of the stock solution with mobile phase and 135 

used to obtain calibration curves in the appropriated chromatographic system. DON-3-glucoside 136 

standard was dissolved in acetonitrile at a concentration of 10.0 µg/mL and stored at 4 ºC in a 137 



sealed vial until use. Working standards (1.0, 0.5, 0.1, 0.05 and 0.01 μg/mL) were prepared as 138 

for DON, as well as calibration curves.  139 

2.5. Enzyme activity quantification 140 

To quantify the enzymatic activity in each sample, a calibration curve was required. Moreover, a 141 

blank reference was required to set the spectrophotometer to zero absorbance. For each 142 

enzyme protocol, the following common steps were followed: 143 

• Preparation of the blank reagent (with neither substrate nor enzyme, only reagents). 144 

The blank reagent was used to set the spectrophotometer to zero absorbance.  145 

• Preparation of calibration samples: substrate with known added enzyme 146 

concentrations plus a zero sample with no added enzyme. Calibration curves were 147 

built both for fermented dough and for bread.  148 

 149 

2.5.1. Xylanase, α-amylase and cellulase activity  150 

The activity of the three enzymes was analysed following the reduction of DNS to 3-amino,5-151 

nitrosalicylic acid (ANS) by spectrophotometry at 540 nm (Miller, 1959). The extraction solution 152 

was the same for the three enzymes (250 mL of malic acid 0.2 M, 250 mL of sodium hydroxide 153 

0.35 M, 250 mL of sodium chloride 0.2 M and 250 mL of sodium azide 0.003 M, all of that was a 154 

1 L of extraction solution). DNS reagent was prepared with 1 g of DNS, 20 mL of sodium 155 

hydroxide 2 M, 10 mL of sodium and potassium tartrate 10.6 M and 70 mL of water.  156 

2.5.1.1. Xylanase activity 157 

Tubes with 3 g of fermented dough/bread samples were treated at 40 ºC for 20 minutes with 20 158 

mL extraction solution without shacking. 0.5 mL of the supernatant was added to 1.5 mL of the 159 

substrate (5 g of wheat fibre in 80 mL of water, boiled for 15 min with agitation, followed by 15 160 

minutes of agitation at room temperature; 10 mL of sodium acetate 1 M; brought to a volume of 161 

100 mL with water). The tubes were heated for 8 minutes at 50 ºC and 3 mL of DNS reagent 162 

were added at the end of the heating step. Subsequently, the tubes were placed for 5 minutes 163 

in boiling water. Then, after the 5 minutes in boiling water the tubes were cooled to room 164 



temperature in a water bath. Cooling to ambient temperature was made necessary by the effect 165 

of temperature on the absorbance of the coloured reaction product. After this the absorbance at 166 

540 nm was measured in the spectrometer. To build the calibration curves, xylanase calibration 167 

samples (5, 2.5, 1, 0.5, 0.1 and 0.05 U/g) were prepared with fermented dough/bread samples 168 

and used to obtain calibration curves (r2 were 0.75 and 0.99, for fermented dough and bread, 169 

respectively), following the same protocol for analysis as above.  170 

 171 

2.5.1.2. α-Amylase activity 172 

Tubes with 3 g of fermented dough/bread samples were treated at 40 ºC for 20 minutes with 20 173 

mL extraction solution without shacking. 0.5 mL of the supernatant was added to 1.5 mL of the 174 

substrate (1 g of starch in 20 mL of sodium hydroxide 1 M; 10 mL of sodium and potassium 175 

tartrate 10.6 M, and 70 mL of water). The tubes were kept at 25 ºC for 3 minutes, and then 1 mL 176 

of DNS reagent was added. The tubes were boiled for 5 minutes in boiling water. Then, after the 177 

5 minutes in boiling water, the tubes were cooled to room temperature in a water bath, then 10 178 

mL of water were added. Finally, the absorbance was measured in the spectrometer at 540 nm. 179 

α-amylase calibration samples (50, 10, 5, 1, 0.5 and 0.05 U/g) were prepared with fermented 180 

dough/bread samples and used to obtain calibration curves (r2 were 0.86 and 0.96, for 181 

fermented dough and bread, respectively), following the same protocol for analysis as above. 182 

2.5.1.3. Cellulase activity 183 

Tubes with 3 g of fermented dough/bread samples were treated at 40 ºC for 20 minutes with 20 184 

mL extraction solution without shacking. 0.5 mL of the supernatant was added to 0.25 g of filter 185 

paper (Whatman no 1). The tubes were kept at 50 ºC for 60 minutes, and then 3 mL of DNS 186 

reagent was added. The tubes were boiled for 5 minutes in boiling water. Then, after the 5 187 

minutes in boiling water, the tubes were cooled down to room temperature. The absorbance 188 

was measured in the spectrometer at 540 nm. Cellulase calibration samples (50, 10, 5, 2.5, 1, 189 

0.5 and 0.1 mU/g) were prepared with fermented dough/bread samples and used to obtain 190 

calibration curves (r2 were 0.81 and 0.94, for fermented dough and bread, respectively), 191 

following the same protocol for analysis as above. 192 

2.5.2. Protease activity 193 



The assay followed the method described by Ladd and Butler (1971). Briefly, 2 g of fermented 194 

dough/bread samples were weighted in a tube and blended with 5 mL of caseinate solution (10 195 

mg/mL) in 0.1 M Tris-buffer pH 8.1. The tubes were heated for 60 minutes at 50 ºC without 196 

shacking. Then, 1 mL of trichloroacetic acid 1.0 M was added. The mix was centrifuged and 2 197 

mL of the supernatant were mixed with 3 mL of sodium carbonate 1.4 M and 1 mL Folin’s 198 

reagent 1.3 M. After waiting for 10 minutes at 25 ºC, the sample was measured 199 

spectrophotometrically at 700 nm. Protease calibration samples (15, 10, 7.5, 5, 2.5 and 1 U/g) 200 

were prepared with fermented dough/bread samples and used to obtain calibration curves (r2 201 

were 0.95 and 0.84, for fermented dough and bread, respectively), following the same protocol 202 

for analysis as above. 203 

2.5.3. Lipase activity 204 

The method described by Duncombe (1963) was followed to measure the lipase activity in the 205 

samples. 0.5 g of fermented dough/bread samples were weighted and mixed with 0.3 mL of 206 

olive oil and 0.5 mL of Tris-HCl solution (100 mL of Tris-HCl 0.05 M with 1 mL of Triton-X, pH = 207 

7.5). The samples were incubated for 60 minutes at 37 ºC without shacking. 0.1 mL of HCl 1 M 208 

and 5 mL of isooctane were added to each sample. Then, the samples were placed in boiling 209 

water for 5 minutes. 2.5 mL of copper reagent (copper acetate 0.28 M, pH = 6.1) were added. It 210 

was then centrifuged for a few minutes to separate the phases, and the upper layer was taken 211 

for measurement. Lipase activity was measured with the spectrophotometer at 540 nm. Lipase 212 

calibration samples (2.5, 1.5, 1, 0.5 and 0.1 U/g) were prepared with fermented dough/bread 213 

samples and used to obtain calibration curves (r2 were 0.96 and 0.99, for fermented dough and 214 

bread, respectively), following the same protocol for analysis as above 215 

2.5.4. Glucose-oxidase activity 216 

To measure the glucose-oxidase activity, we followed the method described by Bergmeyer, 217 

Gawehn, & Grassl (1974). 3 g of fermented dough/bread samples were placed in a tube and 5 218 

mL of extraction solution (20 mL of sodium acetate 8.3 M and 2.5 mL of acetic acid in water, up 219 

to 1 L) plus 2.5 mL of glucose 1 M were added.  The mix was kept at 30 ºC for 5 minutes 220 

without shacking, then, 1 mL of o-dianisidine was added. The samples were kept at 30 ºC for 5 221 

more minutes, and then 4 mL of the supernatant were mixed with 2 mL of sulphuric acid (9 M). 222 



The samples were measured at 540 nm with a spectrophotometer. Glucose-oxidase calibration 223 

samples (15, 10, 5, 2.5,1 and 0.5 U/g) were prepared with fermented dough/bread samples and 224 

used to obtain calibration curves (r2 were 0.74 and 0.79, for fermented dough and bread, 225 

respectively), following the same protocol for analysis as above. 226 

2.6. Mycotoxins extraction, detection and quantification.  227 

DON and DON-3-glucoside were extracted from 5 g of lyophilised ground sample (IKA® A11B 228 

basic analytical mill, IKA-Werke GmbH & Co. KG, Germany) with 30 mL of distilled water by 229 

magnetically stirring for 10 min. Then the sample was centrifuged for 8 min at 1780 g. The 230 

supernatant was filtered through a glass microfiber filter. Five milliliters of filtered sample were 231 

loaded on the DONPREP® IAC column and the column washed with 10 mL of distilled water. 232 

DON and DON-3-glucoside were eluted by applying 1.5 mL of methanol grade HPLC (with three 233 

backflushing steps) and 1.5 mL of milli-Q water, consecutively. Zachariasova et al. (2012) 234 

confirmed the good cross-reactivity of DON-3-glucoside with the IAC DONPREP® columns (99-235 

102 % recovery for DON and DON-3-glucoside when less than 500 ng of these toxins were 236 

loaded). The purified extracts were dried under nitrogen stream at 40 ºC. Each dried sample 237 

was resuspended with 0.5 mL of the mobile phase solution (water:acetonitrile:methanol, 92:4:4). 238 

DON and DON-3-glucoside were determined in a HPLC Waters 2695® system, with an 239 

analytical column Waters Spherisorb® 5 µm ODS2, 4.6 x 250 mm, and coupled with a 240 

UV/Visible dual λ absorbance Detector Waters 2487. Absorption wavelength was set at 220 nm. 241 

The HPLC mobile phase flow rate was 0.6 mL/min, the injection volume was 100 μL, the column 242 

temperature was 40 ºC and the retention times for DON and DON-3-glucoside were 20 and 23 243 

min, respectively. 244 

2.6.1. Methods performance  245 

The analytical methods for DON and DON-3-glucoside were assessed for linearity, precision 246 

and recovery. Standard curves were generated by linear regression of peak areas against 247 

concentrations (r2 were 0.99 and 0.96, for DON and DON-3-glucoside, respectively). Precision 248 

was established by determining DON and DON-3-glucoside levels in flour and DON in bread 249 

samples at least by triplicate, in those samples fortified in order to calculate the recovery rates. 250 



Recovery was not tested in dough, as it was considered to be similar in composition to both 251 

flour and bread. The limit of detection (LOD) was considered to be three fold the signal of blank 252 

noise, and the limit of quantification (LOQ) was calculated as 3 x LOD. Method performance 253 

characteristics for DON and DON-3-glucoside are summarized in Table 1. 254 

2.7. Statistics 255 

The results are given in dry weight basis. A Multifactorial ANOVA was applied to detect 256 

significant differences in enzyme activity due to the treatments. Also a Multifactorial ANOVA 257 

was applied to assess the significance of sample traits in the observed mycotoxin concentration 258 

levels as well as in the calculated percentages of increase/reduction.  259 

  260 

3. Results and discussion 261 

3.1. Impact of enzyme addition on DON presence  262 

3.1.1. Fate of DON in bread with non-added enzymes 263 

Wheat flour naturally contains several technologically important enzymes such as amylases, 264 

proteases, lipoxygenase, polyphenol oxidase and peroxidase. Although these enzymes are 265 

inactive during storage of grain and flour, when water is added they become active and play a 266 

significant role in determining the functional attributes of flour (Rani, Prasada Rao, Leelavathi, 267 

Haridas, & Rao, 2001). 268 

 269 

The unkneaded mix of the ingredients contained 594.24 ± 11.84 µg/kg of DON while the mean 270 

concentration in the fermented doughs was 562.05 ± 16.91 and 460.43 ± 24.01 µg/kg, at 30 and 271 

45 ºC of fermentation temperature, respectively (Table 2); both reductions (5 and 23 %) being 272 

significant, as well as the difference between them (p < 0.05). Similarly to what was observed 273 

here, the reduction of DON during fermentation has been observed among the existent 274 

literature on DON fate during breadmaking. For instance, Neira et al. (1997) observed a 21.6 % 275 

of reduction. Other studies reported lower DON concentration in fermented dough than in the 276 
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initial flour, but this may also be due to dilution by the recipe (Lancova et al., 2008). On the 277 

other hand, an increase of DON at the end of fermentation has been observed in other studies 278 

(Bergamini et al., 2010; Lancova et al, 2008; Vidal et al., 2014b). It can be noted that in some 279 

cases when enzymes (especially α-amylase) were added in the recipes, DON increase was 280 

detected. Simsek et al. (2012) detected up to 99 % DON increase after fermentation using α-281 

amylase, and Suman et al. (2012) had an increase up to 14 % using non specified enzymes. 282 

Moreover, Vidal et al. (2014a) using flour improvers with non specified enzymes detected a 283 

DON increase during the fermentation of 30 %. Moreover, sourdough use also led to increased 284 

DON content during fermentation (Vidal et al. 2014b). In summary, those works in which either 285 

malt flour or other enzymes were added reported a DON increase (Simsek et al., 2012, Suman 286 

et al., 2012; Vidal et al., 2014a), while in the absence of added enzymes a reduction in DON 287 

content seems to occur (Neira et la., 1997). Thus enzyme presence may be determinant for 288 

DON fate during fermentation. The increase of DON during fermentation has been associated to 289 

bound DON release from the wheat matrix catalysed by enzymes (Simsek et al., 2012; Vidal et 290 

al., 2014a).  291 

 292 

Moreover, in the present study, DON reduction was higher at 45 than at 30 ºC fermentation 293 

temperature (p < 0.05). However, few authors have dealt with fermentation temperature. Samar 294 

et al. (2001) assayed different temperatures of fermentation (from 30 to 50 ºC). They obtained 295 

increasing DON reduction with increasing temperature (from 0 to 56 %), the highest reduction 296 

being at the highest temperature (50 ºC) with the longest time tested (60 min), confirming our 297 

results. Also, Generotti et al. (2015) assayed different fermentation temperatures (from 26 to 46 298 

ºC) and they observed a reduction effect in DON stability due to fermentation temperature. Thus 299 

fermenting at high temperature could be a good alternative to reduce DON content in bread, if 300 

bread quality is not affected. Although proofing temperature can be as high as 54 ºC (Pyler, 301 

1973), most authors agree in the range of 27-46 ºC for optimum bread production (Freilich, 302 

1949; Hui, Corke, De Leyn, Nip, & Cross, 2007). Fermentation temperature around 30 ºC 303 

results in good taste balance due to a good production of lactic acid. On the other hand, 304 

fermentation above 40 ºC can cause a reduced lactic acid production and tasteless breads, but 305 



the higher fermentation temperature can also lead to better baking volume (Dobraszyk, 306 

Smewing, Albertini, Maesmans, & Schofield, 2003).  307 

Regarding baking, the bread fermented at 30 ºC had a final concentration of 495.82 ± 27.10 308 

µg/kg which meant a significant reduction of 12 % during the baking step (p < 0.05). The final 309 

DON concentration of the bread fermented at 45 ºC was 466.58 ± 11.58 µg/kg (not significantly 310 

different from fermented dough). Thus, DON reduction in baking depended on fermentation 311 

temperature (p < 0.05). Considering the whole breadmaking process, the DON concentration in 312 

bread was similar regardless of the fermentation temperature (mean reduction from beginning 313 

to end ca. 19 %). The reduction in DON during baking was consistent with most previous 314 

studies which reported reduction at temperature over 170 ºC, as long as baking time was longer 315 

than 45 min (Vidal et al., 2014a). The present results agree with the response surface model for 316 

DON reduction in bread baking made by Vidal et al. (2014a). No effect of baking was observed 317 

in bread fermented at 45 ºC, this could be caused by the lower initial DON concentration in this 318 

case; DON reduction during baking has been shown to be higher at higher initial toxin 319 

concentration and not significant at low initial DON concentration (Vidal et al. 2014a, 2015). 320 

DON reduction may result in thermodegradation products (norDONs A-F and DON lactones), 321 

which are less toxic than DON itself. The losses that cannot be ascribed to the formation of 322 

degradation products are most likely caused by pyrolysis or polymerization reactions (Bretz, 323 

Beyer, Cramer, Knecht, & Humpf, 2006). Still, some existing studies reported in some cases no 324 

DON reduction or even a slight increase during baking which could be attributed to extended 325 

enzyme activity at the early stages of baking (Bergamini et al. 2010; Simsek et al., 2012; Suman 326 

et al., 2012).  327 

 328 

3.1.2. Fate of DON in bread with added enzymes  329 

Xylanases are hydrolytic enzymes, which randomly cleave the β-1,4 backbone of plant cell wall 330 

xylans. Xylanases are of great value in baking as they have been found to improve the bread 331 

volume, crumb structure and reduce stickiness. In our case, xylanase activity increased during 332 

fermentation with xylanase addition, however, the activity of the existing flour xylanase at 45 ºC 333 

was still higher than the activity at 30 ºC with added xylanase (p < 0.05) (Table 3). Xylanase 334 



addition had only a significant effect in DON variation during fermentation when it occurred at 45 335 

ºC (p < 0.05, despite the increase in activity was not significant), where the final DON 336 

concentration in the fermented dough was 530.63 ± 8.15 µg/kg (a 15 % increase, Table 2); 337 

however, this level was still lower than before fermentation. The detected different behaviour of 338 

DON at 45 ºC may be linked to the optimum temperature for xylanase activity (45 ºC for 339 

xylanase produced by T. longibrachiatum; Chen, Chen, & Lin, 1997) was reached. The baking 340 

step produced a DON increase of 35 % in the xylanase -containing dough fermented at 30 ºC (p 341 

< 0.05) and the final concentration in the bread was 732.33 ± 28.28 µg/kg. The baking step did 342 

not produce any significant change in the DON concentration when the fermentation was at 45 343 

ºC, but still the final bread with xylanase had a higher DON concentration (508.65 ± 16.26 344 

µg/kg) than the control bread (p < 0.05), due to the increase during fermentation. In summary, 345 

DON increased with the presence of xylanase during the fermentation at 45 ºC and in the 346 

baking step when the fermentation was at 30 ºC. This may be linked with the moment when the 347 

optimum temperature for xylanase activity as we commented above. In the dough fermented at 348 

30 ºC the major xylanase activity probably occurred in the early stages of baking, before 349 

enzyme inactivation over 55 ºC (Irfan, & Syed, 2012). Thus, xylanase added breads contained 350 

higher levels of DON at the end of breadmaking process than control ones regardless of the 351 

fermentation temperature (p < 0.05), however, only when fermenting at 30 ºC the concentration 352 

in the bread was higher than in the initial mix of ingredients. Similarly, Simsek et al. (2012) 353 

reported an increase of DON (13 %) in xylanase-treated wheat at 50 ºC for 18 hours. Zhou et al. 354 

(2008) found a trend to DON increase after treatment of barley grains with xylanase/cellulase (5 355 

hours at 50 ºC). Xylanases cause the hydrolysis of cell wall material (arabinoxylan) in the dough 356 

resulting in a release of DON bound to the polysaccharides of cereal cell walls.  357 

 358 

α-amylase is an enzyme that hydrolyses alpha bonds of large, alpha-linked polysaccharides, 359 

such as starch. In our case, α-amylase activity was not detected in the fermented doughs were 360 

the enzyme was not externally added, and the activity was similar in amylase-added doughs 361 

fermented at 30 than at 45 ºC, while some residual activity was still detected in the resulting 362 

breads (Table 3). Different studies showed the high thermo stability of α-amylase, for instance 363 

Raviyan, Tang, & Rasco (2003) showed the stability of α-amylase above 75 ºC; inside the bread 364 
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during baking the temperature is always below 100 ºC. The tested α-amylase produced an 365 

increase of DON concentration during the fermentation at 30 ºC, with a final concentration in the 366 

fermented dough of 656.26 ± 11.58 µg/kg (Table 2, 10 % increase compared to unkneaded mix, 367 

p < 0.05). Baking produced no reduction of DON in breads previously fermented at 30 ºC 368 

(670.35 ± 5.32 µg/kg).  On the other hand, the baking step caused a DON increase (20 %) in 369 

the breads fermented at 45 ºC, and the final DON concentration in bread was 534.56 ± 15.37 370 

µg/kg. Thus breads with added α-amylase contained higher DON concentration than the 371 

controls (p < 0.05), even in the bread fermented at 30 ºC the concentration was higher than in 372 

the initial ingredient mix. The more marked effect on DON at 30 ºC was related with the activity 373 

of the α-amylase from A. oryzae (Evstatieva, Nikolova, Ilieva, Getov, & Savov, 2010). α-amylase 374 

is one of the most used enzymes in the breadmaking process, and our results at 30 ºC 375 

demonstrated that the release of DON described in previous studies may be caused by its use. 376 

Moreover, in the literature, the longer the fermentation time with α-amylase the higher the 377 

increase in DON reported. For instance, Simsek et al. (2012) reported an increase in DON 378 

concentration at the end of the fermentation (180 minutes at 30 ºC) near to 100 %, Bergamini et 379 

al. (2010) about 38 % (85 minutes at 40 ºC) and Suman et al. (2012) about 10-14 % in biscuits 380 

(4 minutes at 30 ºC). The results then suggest that α-amylase has an impact in DON balance 381 

during breadmaking process, as it may be released from forms bound to starch.  382 

Cellulase added to bread hydrolyses non-starch polysaccharides leading to an improvement of 383 

the rheological properties of dough, bread loaf volume and crumb firmness. Very low activity 384 

was detected in doughs without added cellulose, while the detected activity in cellulose added 385 

doughs was higher when fermentation was at 45 than at 30 ºC. No cellulase activity was 386 

detected in any of the breads (Table 3). No effect of cellulase addition was observed when 387 

fermentation was carried out at 30 ºC (Table 2). Cellulase addition, however, caused changes in 388 

the DON concentration when the fermentation was at 45 ºC (p < 0.05) with a DON 389 

concentration of 752.17 ± 39.10 µg/kg (63 % higher than in the control) in the fermented dough, 390 

and 559.61 ± 106.54 µg/kg in the final bread. In this case, the higher DON reduction during 391 

baking found in breads fermented at 45 ºC could be caused by the higher DON concentration 392 

found at the end of the fermentation, as commented before. Thus the final bread in this case 393 

contained a level not significantly different from that in the unkneaded mix. The optimum 394 



temperature of cellulase produced by A. niger is close to 45 ºC (Coral et al., 2002), this would 395 

explain the difference between temperatures. An increase of DON was observed as the result of 396 

the activity of a xylan/cellulase mix in barley samples (5 hours at 50 ºC) (Zhou et al. 2008). This 397 

indicates that DON may be bound to cell wall cellulose of cereals. 398 

Too much protease activity would break up the gluten, destroying the network that forms during 399 

kneading. A little bit, however, softens the dough and makes it more workable. In addition 400 

proteases affect bread flavour. Protease activity results in single amino acids when the last 401 

peptide bond of the protein chain is broken. These amino acids can participate in the flavour 402 

and browning reactions that occur in the crust during baking. No protease activity was detected 403 

in our samples, except for fermented dough at 45 ºC (Table 3). This was consistent with DON 404 

results, where protease added samples did only differ from the controls in DON concentration in 405 

fermented doughs at 45ºC (Table 2). The optimum temperature for protease activity is at 60 ºC 406 

(Yin et al., 2013), and the highest protease activity was after fermentation at 45 ºC. No protease 407 

effect was detected by Simsek et al. (2012) when treating whole wheat grain; this was probably 408 

to the location of great part of proteins in the endosperm, which was poorly accessible in their 409 

experiment (Veraverbeke, & Delcour, 2002). As for the cellulase case, no differences were 410 

found in the final loaves compared to the control, as the increase observed in DON during the 411 

fermentation was compensated by the decrease occurring during baking. 412 

Lipases are particularly effective in retarding bread staling. Lipase activity was quite similar in 413 

control and lipase added doughs, while no activity was detected in breads (Table 3). The use of 414 

lipase in the fermentation did not produce any effect on DON concentration. After baking, DON 415 

concentration slightly increased (p < 0.05). A low interaction of DON with the lipid fraction of 416 

bread ingredients can be hypothesised.    417 

Glucose oxidase catalyses the oxidation of β-D-glucose to glucono-δ-lactone and the 418 

concomitant reduction of molecular oxygen to hydrogen peroxide. Its use results in stronger and 419 

more elastic doughs with a dry surface. Glucose oxidase activity was only detected in those 420 

doughs where the enzyme was intentionally added, and both fermented at 30 and 45 ºC (Table 421 

3). However, no impact on DON was observed at 30 ºC (Table 2), while at 45 ºC it led to the 422 

highest DON concentration (821.49 ± 25.58 µg/kg, 38 % increase) in a fermented dough, 423 
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although it dropped to  551.30 ± 3.71 µg/kg due to baking, but still higher than the control (p < 424 

0.05). This point could be linked with DON-3-glucoside presence, as discussed later. The 425 

optimum temperature of glucose oxidase is around 35-40 ºC (Bhatti, Madeeha, Asgher, & 426 

Batool, 2006) and certain activity was detected in the fermented dough at both 30 and 45 ºC. 427 

 428 

It must be highlighted that the enzyme activities presented here for the fermented dough were 429 

determined at the end of the fermentation step, thus the values presented in table 3 are not 430 

indicative of the levels of activity which may have occurred previously during fermentation or 431 

later in the early stages of baking. 432 

 433 

In summary, the presence of some enzymes (α-amylase, cellulase, protease and glucose 434 

oxidase) led to certain release of DON during fermentation, whereas xylanase produced a lower 435 

DON reduction during fermentation. However, it depended on fermentation temperature. At 30 436 

ºC, only presence of α-amylase caused a higher DON content after the kneading + fermentation 437 

process comparing with the DON content in the unkneaded mix. The increase in DON content 438 

detected in xylanase and α-amilase added breads fermented at 30 ºC after baking, represents 439 

the main concern, because their DON content was higher than in the initial unkneaded mix. On 440 

the other hand, fermentation at 45 ºC led to DON content increase respect to the initial 441 

unkneaded mix when using cellulase, protease and glucose oxidase at the end of the 442 

fermentation. The DON content in xylanase added fermented dough was higher than the control 443 

fermented dough but lower than the initial unkneaded mix. For 45 ºC fermented doughs baking 444 

led to lower levels of DON, thus resulting in general in breads which were not significantly 445 

different from the controls, except for xylanase, α-amylase and glucose oxidase treated breads, 446 

but the three enzyme additions did not cause a higher DON content in the final bread than the 447 

DON content in the unkneaded mix.  448 

To sum up, only xylanase and α-amylase added breads fermented at 30 ºC resulted in a higher 449 

presence of DON in the final product than DON content in the flour mix. In these two particular 450 

cases an additional risk should be considered. Thus the ability of some enzymes to release 451 

bound DON from the flour during the breadmaking process was proven. Few studies have dealt 452 
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with food processing enzymes and mycotoxin behaviour, but they suggested this hypothesis 453 

(Lancova, et al., 2008; Simsek et al., 2012; Zhou et al., 2006).  454 

 455 

3.2. Impact of enzyme addition in DON-3-glucoside presence 456 

DON-3-glucoside concentration (in dry basis) in the unkneaded mix was 125.18 ± 27.62 µg/kg, 457 

and at the end of the fermentation without added enzymes had decreased to <LOQ (30 µg/kg), 458 

regardless of the fermentation temperature (unlike what happened with DON). In the baking 459 

step, DON-3-glucoside concentration was restored to 100.79 ± 16.98 µg/kg and 65.05 ± 38.88 460 

µg/kg (Table 4). The detected reduction of DON-3-glucoside after dough proofing without 461 

enzymes agrees with previous studies (Kostelanska et al., 2011). 462 

When enzymes were added to the dough a clear decrease in DON-3-glucoside during 463 

fermentation was also observed, regardless of the temperature level. Despite DON-3-glucoside 464 

reduction at the end of fermentation, xylanase and protease at 30 ºC and cellulase and lipase at 465 

45 ºC led to a lower reduction than control fermented doughs (Table 4). On the other hand, the 466 

exception to DON-3-glucoside reduction at the end of fermentation was for glucose oxidase 467 

activity, which led to a significant increase in DON-3-glucoside at both temperatures (359.71 ± 468 

59.27 µg/kg at 30 ºC).The presence of glucose oxidase caused an important increase of DON-469 

3-glucoside in the fermented dough compared with the initial mix.  470 

The enzyme effects during baking were more noticeable (Table 4), mostly in those doughs 471 

which had been fermented at 30 ºC. Xylanase, α-amilase, cellulase and lipase led to significant 472 

DON-3-glucoside increase, the outcome of these enzymes in the baking increase caused a 473 

higher DON-3-glucoside content in final breads than in the initial mix. Glucose oxidase added 474 

breads showed a significant decrease in concentration compared to fermented dough and 475 

unkneaded mix, as well as compared to control breads. However, in the doughs fermented at 476 

45 ºC baking had no significant effect (p < 0.05), and the resulting breads did not differ from the 477 

control ones.  478 

The use of enzymes as improvers in some past studies caused increase of DON-3-glucoside in 479 

the fermentation step; however the exact enzymes were not described (Kostelanska et al. 2011; 480 



Vidal et al., 2014a, 2014b). Simsek et al. (2012) used only α-amylase and they had a reduction 481 

of DON-3-glucoside at the end of the fermentation at 30 ºC (5 %) (as in the present case).  482 

The increment of DON-3-glucoside after baking agrees with previous studies in wheat products 483 

(Vaclavikova et al., 2013; Vidal et al., 2014b, 2015), however some studies showed a reduction 484 

of DON-3-glucoside after baking (Kostelanska et al., 2011; Simsek et al., 2012). Vidal et al. 485 

(2015) showed DON-3-glucoside has a different behaviour in thermal treatments as a function 486 

of size of the product, temperature and time. The mild baking conditions tested in this assay 487 

(especially due to the big size of the product) caused an increase of DON-3-glucoside during 488 

the baking step, while harsher treatments would have led to DON-3-glucoside reduction. Our 489 

results showed the high impact of enzymes in the DON-3-glucoside release during baking in 490 

those breads fermented at 30 ºC with added xylanase, amylase, cellulase, protease and lipase. 491 

DON-3-glucoside could be bound to flour components and be released in the baking step. In 492 

general, no significant correlation was found between DON-3-glucoside increase and DON 493 

decrease or viceversa, only in those breads which had been fermented a 45 ºC there was a 494 

slight inverse relationship between both. Similarly, Kostelanska et al. (2011) considered the 495 

behaviour of the two mycotoxins was not linked because in their case the DON level remained 496 

intact; they pointed out a possible splitting of glycosidic bonds between DON-3-glucoside and 497 

cell polysaccharides could occur. This agrees with our observation of high increase of DON-3-498 

glucoside in baking when especially xylanase and cellulase were present in the matrix. More 499 

studies to understand the relation between DON and DON-3-glucoside are necessary to obtain 500 

a full knowledge between the parent and conjugated mycotoxin in the food processes. Finally, 501 

the increase of DON-3-glucoside during the baking steps is of concern because, although DON-502 

3-glucoside is far less active as protein biosynthesis inhibitor than DON (Poppenberger et al., 503 

2003), DON-3-glucoside likely will be cleaved in the gastrointestinal tract due to chemical 504 

hydrolases or, more important, microbial activity in the intestine as shown in vivo in swine and in 505 

vitro using human intestinal microbiota (Berthiller et al., 2011), thus its presence is important for 506 

food safety. 507 

In conclusion, DON concentration could be lower in the breadmaking process if no enzymes 508 

were added. For example, while non-enzyme added flour shows a certain decrease in DON 509 

concentration during breadmaking (fermentation at 30ºC), the presence of xylanase and α-510 



amylase can cause an increase of DON at the end of the breadmaking process compared with 511 

the initial DON concentration in the initial mix. Besides the different optimum temperature levels  512 

for the tested enzymes, this may also imply that DON is more likely to be bound to starch and 513 

arabinoxylans, than to other polysaccharides, fat and protein. Moreover, if the fermentation is 514 

made at 45 ºC the presence of glucose-oxidase may also cause an increase of DON in the final 515 

bread respect to the initial DON concentration. The presence of xylanase, α-amylase, cellulase 516 

and lipase resulted in a bread with a higher presence of DON-3-glucoside when the 517 

fermentation was at 30 ºC compared with the initial mycotoxin concentration. 518 
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Table 1. Method performances for DON and DON-3-glucoside determination in flour and bread.  

Mycotoxin Product LODa  (μg·kg-1) LOQb (μg·kg-1) n Spiking level (μg·kg-1) Recovery c (%) RSDrd(%) 

DON 

Bread 60 180 

5 

5 

5 

100 

500 

1000 

100.01±16.27 

98.84±9.01 

102.33±5.26 

16 

9 

5 

Flour 60 180 3 300 123.26±30.29 41 

   3 500 87.36±8.58 7 

DON-3-glucoside Bread 15 30     

Flour 15 30 5 

5 

5 

50 

250 

500 

80.01±9.59 

79.71±4.84 

66.71±11.19 

12 

6 

18 

a LOD = Limit of detection. 

b LOQ = Limit of quantification. 

c Mean value ± standard deviation. 

d RSDr = relative standard deviation.  

 

 



 

 

 

Table 2. Mean DON concentration (µg/kg) ± SD in fermented doughs and breads, and percentage of reduction in the fermentation compared with the initial 
mix (594.24±11.84), reduction in the baking step (%) and complete increase (%) in the final product compared with the initial mix (594.24±11.84) for each 
type of treatment. 

* There are significant differences compared with the same matrix sample without enzymes and at the same fermentation temperature (p < 0.05).  

 

 

 

 

 

 

 

 

Temperature of 
fermentation (°C) 

30 45 

 Fermented dough Reduction in 
fermentation (%) Bread Reduction in baking 

(%) 
Complete reduction 

(%) Fermented dough Reduction in 
fermentation (%) Bread Reduction in baking 

(%) 
Complete reduction 

(%) 
No enzymes 562.05 ± 16.91 5.41 495.82 ± 27.10 11.78 16.56 460.43 ± 24.01 22.52 466.58 ± 11.58 -1.33 21.48 

Xylanase 542.37 ± 60.91 8.73 732.33 ± 28.28* -35.02 -23.24 530.63 ± 8.15* 10.70 508.65 ± 16.26* 4.14 14.40 
α-Amylase 656.26 ± 11.58* -10.44 670.35 ± 5.32* -2.14 -12.81 447.29 ± 75.40 24.73 534.56 ± 15.37* -19.51 10.04 
Cellulase 576.40 ± 91.84 3.00 483.93 ± 67.13 16.04 18.56 752.17 ± 39.10* -26.57 559.61 ± 106.54 25.60 5.83 
Protease 595.88 ± 7.38 0.27 430.82 ± 122.57 27.70 27.50 803.95 ± 23.89* -35.29 410.75 ± 42.49 48.91 30.88 

Lipase 486.61 ± 48.45 18.11 521.97 ± 49.41 -7.27 12.16 570.20 ± 120.84 4.04 645.65 ± 81.64 -13.23 -8.65 
Glucose oxidase 525.25 ± 59.01 11.61 567.58 ± 159.60 -8.06 4.49 821.49 ± 25.58* -38.24 551.30 ± 3.71* 32.89 7.23 



 

 

 

Table 3. Mean enzyme activity (units) ± SD in fermented doughs and breads. 

* There are significant differences compared with the sample without added enzymes at the same fermentation temperature level (p < 0.05).  

 

 

 

 

 

 

Temperature of fermentation (˚C) 30 45 
 Fermented dough Bread Fermented dough Bread 

 No enzyme added With enzyme added No enzyme added With enzyme added No enzyme added With enzyme added No enzyme added With enzyme added 
Xylanase (U/g) 0.16 ± 0.06 0.35 ± 0.01* <0.05 <0.05 0.51 ± 0.09 0.62 ± 0.03 <0.05 <0.05 

α-Amylase (U/g) <0.05 34.1 ± 22.17* <0.05 3.89 ± 0.51* <0.05 21.09 ± 17.18* <0.05 2.97 ± 0.31* 

Cellulase (mU/g) <0.1 7.16 ± 0.63* <0.1 <0.1 0.80 ± 0.75 9.01 ± 0.52* <0.1 <0.1 

Protease (U/g) <1 <1 <1 <1 <1 3.94 ± 1.94* <1 <1 

Lipase (U/g) 0.25 ± 0.02 0.31 ± 0.03* <0.1 <0.1 0.27 ± 0.03 0.35 ± 0.09 <0.1 <0.1 

Glucose oxidase (U/g) <0.5 8.76 ± 1.30* <0.5 <0.5 <0.5 5.58 ± 3.10* <0.5 <0.5 



 

 

 

 

Table 4. Mean DON-3-glucoside concentration (µg/kg) ± SD in fermented dough and breads. The DON-3-glucoside concentration in the initial mix was 125.18 
± 27.62 µg/kg. 

 

 

 

 

 

* There are significant differences compared with the sample without enzymes submitted to the same temperature (p<0.05).  

 

 

Temperature of fermentation (˚C) 30 45 
 Fermented dough Bread Fermented dough Bread 

No enzymes <LOQ 100.79 ± 16.98 <LOQ 65.05 ± 38.88 
Xylanase 61.65 ± 28.26 562.80 ± 64.85* <LOQ <LOQ 

α-Amylase <LOQ 568.23 ± 131.14* <LOQ <LOQ 
Cellulase <LOQ 628.76 ± 289.55* 30.08 ± 0.13 35.97 ± 10.35 
Protease 36.72 ± 5.16 1834.79 ± 1472.22 <LOQ 126.08 ± 40.96 

Lipase <LOQ 275.41 ± 18.94* 45.04 ± 8.70 <LOQ 
Glucose oxidase 359.71 ± 59.27* 55.63 ± 11.57* 50.86 ± 0.49* 76.25 ± 9.99 


