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Abstract

This paper presents a comprehensive review of all correlations and experimental studies
available in the literature to determine the heat transfer coefficient of supercritical CO,flowing
in heat exchangers. The different applications in which it is used are also reviewed and
discussed. The correlations obtained from extensive experimental measurements are presented
for different geometries (horizontal, vertical and inclined tubes, closed-loop circular pipes, and
mini-channels) and dimensions. The review shows that there is a lack of a unique universal

correlation for each geometry, suggesting the need for more work in this area.
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Nomenclature
C, specific heat at constant pressure [J/kg-K]
0 average specific heat at constant pressure [J/kg-K]
D Inner diameter [m]
f friction factor [-]
G mass flux [kg/m’-s]
Gr Grasshof number [-]
g gravity acceleration [m?/s]
h specific enthalpy [J/kg]




thermal conductivity [W/m-K]

L tube length [m]

Nu Nusselt number [-]

p Pressure [Pa]

Pr Prandtl number [-]

Pr average Prandtl number [-]

q heat flux from tube wall to fluid [W/m?’]

Re Reynolds number [-]
channel relative roughness
Temperature [K]

Greek symbols

o heat transfer coefficient [W/m”-K]

p thermal expansion coefficient [1/K]

A Increment

& channel roughness [m]

H dynamic viscosity [Pa-s]

P density [kg/m’]

Subscripts

ac Acceleration

b at fluid bulk temperature

exp experimental

f at film temperature

in Inlet

Iso Isothermal

Out Outlet

Pc at pseudo-critical temperature

Pred Predicted

W at inner wall temperature




1. Introduction

Supercritical fluid is a fluid state where it is held at or above its critical temperature and critical
pressure. Carbon dioxide behaves as a supercritical fluid above its critical temperature (304.25
K) and critical pressure (72.9 atm or 7.39 MPa), expanding to fill its container like a gas but
with a density like that of a liquid (Figure 1). When fluids and gases are heated above their
critical temperature and compressed above their critical pressure they enter a supercritical phase
where some properties, such as solvent power, can be dramatically changed. Figure 2 shows in

images how CO, goes through different phases from behaving as a sub-critical fluid to a

supercritical fluid.
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Figure 1. Supercritical CO2 p-T diagram [1]
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Figure 2. Transition of CO, through various phases. (a) sub-critical; (b)-(g) transition through critical
point; (h) supercritical fluid; (i) between supercritical fluid and superheated vapour; (j) superheated

vapour; (k) compressed fluid; and (1) between compressed fluid and supercritical fluid [2].

Okamoto et al. [3] in 2003 successfully visualized the variation of scCO, under forced
convective heat transfer using schlieren and shadowgraph techniques as research towards the
precise characterization of supercritical fluid behaviour. For example, Figure 3 presents scCO2
imaging by infrared laser and its translation to an instantaneous vector map and the average

velocity distributions.
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Figure 3. scCO, imaging [3]: (a) image captured by infrared laser and high-speed camera; (b)
instantaneous vector map; (c) averaged velocity distributions.
Supercritical CO, is becoming an important commercial and industrial solvent due to its role in
chemical extraction in addition to its low toxicity and being environmental friendly solvent. The
relatively low temperature of the process and the stability of CO, also allow most compounds to
be extracted with little damage or denaturing. In addition, the solubility of many extracted
compounds in CO, varies with pressure, permitting selective extractions. scCO, has been used
for fluid extraction in areas such as food science, pharmaceuticals, chemical residues, biofuels,

and polymers [4].

The aim of this review is to summarize the literature on the use of scCO, as a heat transfer fluid

(HTF), however its wider application of extraction will also be summarized in this review.

2. Applications of supercritical CO,

A short summary of supercritical CO, applications is presented here. Supercritical carbon
dioxide (scCO,) offers an acceptable combination of pressure and temperature to achieve
supercritical conditions. scCO, is not a good solvent for most materials, which are scCO,-
phobic. However, both silicone and fluoro-products may be regarded as CO,-philic and,
therefore, potentially more soluble; such products are used in magnetic media production, one

of the first applications of scCO; studied [5].

Another application investigated was supercritical extraction in petroleum refining and
petrochemistry [6]. According to this publication, the advantages of carbon dioxide as solvent
include: non-explosiveness and incombustibility; chemical inertness; absence of toxic wastes;
sufficiently low critical parameters (pressure and temperature); low polarity; availability and

low cost; high extraction rate due to high diffusing power.



The food industry is always looking for the best separation technology to obtain natural
compounds of high purity, healthy products of excellent quality with several industrial
applications. The conventional extraction process for those compounds has some limitations
regarding the solvent toxicity, flammability and wastefulness. Supercritical carbon dioxide is
ideal for the food processing industry because of its non-flammable, non-toxic, non-polluting
and recoverable characteristics [7,8]. Examples of applications in the food industry are
extraction of cholesterol and other lipids from egg yolk; milk fat fractioning; extraction of lipids
and cholesterol from meat and meat products; from fish; extraction of natural colourings from
several foodstuffs (such as carrots, leaf protein concentrates, sweet potatoes, tomato paste waste
and tomato skin, and rape grape skin); extraction, refining and fractioning of oils and vegetable
fats; extraction and fractioning of natural flavourings; extraction of antioxidants; decaffeinating

of coffee and tea; extraction of hop; and the alcoholisation of drinks.

scCOs, is also used in separation processes [9]. For example, Semenova and Ohya [10] studied
the fractionation of SC CO2/ethanol and scCO2/iso-octane mixtures using an asymmetric
Kapton membrane. The investigators concluded that CO, transfer across was predominantly by
convection rather than diffusion. At approximately the same time, Hsu and Tan [11] proposed
the use of reverse osmosis membranes to fractionate water/ethanol mixtures in the presence of
scCO,. Under these conditions ethanol extraction is improved from 20 to 70%. The authors

attributed the improved rejection to the formation of CO, and ethanol clusters.

The high volatility and low polarity of scCO, make it an interesting solvent partner with non-
volatile and fairly polar ionic liquids (ILs) [12]. The different miscibility of scCO, and ILs lead
to two-phase systems that have found application in several areas. The success of this two-phase
system is based on solubility of scCO, in the IL, which is controlled by pressure, but insolubility
of the IL in scCO,. The solubility of scCO, in ILs also facilitates mass transfer processes by

decreasing their viscosity.

scCO, has also been applied in fluid extraction in biotechnology [13]. Although scCO, is
unfriendly, or even toxic, for some living cells and precludes direct fermentation in dense CO,,
it does not rule out other useful applications for in situ extraction of inhibitory fermentation
products and fractional extraction of biomass constituents. In this application, the response of
microorganisms to high pressure and temperature must be considered to assess possibility and
effectiveness, as well as the economic aspects of the proposed processes. Similarly, growth of
microalgae using CO, enriched air for biodiesel production in scCO, was studied, and it was
found that the conversion of biodiesel produced from microalgae lipids was 35% higher than

that achieved using lamb fat in a similar system [14].
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Song et al. [15] recognized in 2006 that even though CO, is a greenhouse gas, it is much more
environmentally benign than many of the existing solvents used in industries. Environment-
friendly and energy-efficient processes can be designed by using CO, for separation, chemical
reaction and materials synthesis based on the unique physical or chemical properties of CO,.
For example, supercritical CO, can be used either as a solvent for separation or as a medium for

chemical reaction, or as both solvent and reactant.

scCO; has been also used in extrusion processes, for example in polymer foaming [16]. scCO,
is soluble in molten polymers and acts as plasticizer and the dissolution of scCO, in polymers
leads to a decrease its viscosity. Therefore, extrusion processes would benefit from the use of
scCO, since the rationale of extrusion processes is to formulate, texture and shape molten
polymers by forcing them through a die. Applications using scCO, in extrusion processes are
foodstuffs (i.e. breakfast cereals and snack foods); foaming of polymers (i.e. polystyrene and
polycarbonate); composites (such as clay-polymer nanocomposites); biopolymers and
pharmaceutical applications (dispersion to a molecular level of a pharmaceutical ingredient in a

polymeric matrix).

Supercritical CO, is considered as a promising alternative to volatile organic solvents currently
used in certain industrial processes and products, however, the poor solubilizing power of CO,
towards polar substances remains a significant barrier to applications. Employing effective
surfactants which generate stable dispersions and water/CO, microemulsions is accepted as one
way to improve the physico-chemical properties of CO, [17]. With compatible surfactants being
developed, the applications of CO, as a green and easy to process solvent have received
intensive interest. Studied applications in this field are synthesis of nanoparticles in w/c

microemulsions and ionic liquid in scCO, microemulsions.

scCO, also has many unique properties and thus has great potential for advanced, green
materials processing [1]. Applications cited are scCO, processing of 3D aerogels and of
coatings; exfoliation and intercalation of layered materials (such as graphite, BN, MoS, and
WS,), even improving mechanical properties of the exfoliated of the layered material (silicate in
a PET matrix); processing of powder materials for different applications (i.e. impregnating

nanoparticles to support materials or preparation of hollow inorganic spheres).

A newer application is the used of scCO, as heat transfer fluid (HTF) in power cycles and CSP
[18,19,20,21], solar collectors [22], or in carbon capture and storage (CCS) [23,24].The scCO,
thermodynamic cycle was initially considered as a good substitute to the steam Rankine cycle in

advanced nuclear reactors [25]. Its use was proposed for solar power applications [26] and fossil
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fuel power applications [27]. To overcome the upper temperature limits of the ORC systems,
Manente and Lazzaretto [19] proposed a new biomass to electricity conversion system, which is
based on an externally fired supercritical CO, power cycle (scCO, cycle). The potential benefits
in terms of system efficiency arise from the achievement of higher maximum cycle
temperatures (around 550 °C) due to the elimination of the heat transfer medium (thermal oil)
that is made possible by the direct heat transfer between the CO, as a working fluid in the power
cycle and the combustion gases. Another advantage is the higher thermal efficiency of the
closed Brayton cycle using scCO, compared to the Rankine cycle in this temperature range.
Moreover, to improve the safety of the heat transport system of nuclear reactors and the cycle
performances of their thermodynamic cycle, the supercritical gas Brayton cycle has been
adopted as an alternative to the subcritical gas Brayton cycle [20]. In the supercritical gas
Brayton cycle, the lowest cycle temperature and pressure, which are the inlet conditions of the
main compressor, are located above but close to the critical point of the coolant. Thus, the
working fluid behaves more like a liquid than a gas through the main compressor, resulting in

significantly reduced compressor work, and consequently an increased cycle efficiency [28].

3. scCO, properties

The use of scCO, in cooling and power cycles requires a proper determination of the cooling
heat transfer processes, which is an unsolved issue. As shown in Figure 4, the thermophysical
properties of CO, change dramatically with temperature and pressure in the supercritical region
[2,29,30]. For a given pressure, thermal conductivity, dynamic viscosity and density are
strongly decreased with the increase in temperature. Moreover, the isobaric heat capacity
presents a peak at critical point and pseudocritical temperatures which is reduced as the pressure
increases. These heat capacity sharp peaks are similar to the ones obtained in phase change
processes of mixtures used for thermal energy storage purposes [31,32], however, the dramatic
decrease of density limits the potential of the sCO, to be used as storage media. These variations
of the fluid make its heat transfer performance different from conventional fluids, especially in
the determination of the convective heat transfer coefficient from a heat transfer surface, and the

steady state supercritical natural circulation flows [33,34].
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Figure 4. Properties of CO, vs temperature at different supercritical pressures: (a) heat capacity [35], (b)

density [36], (c) thermal conductivity [38], and (d) dynamic viscosity [39].

4. Heat transfer improvement using supercritical CO,

Many experimental data can be found in the literature, which led to empirical correlation for in-

tube heat transfer of supercritical CO, [37]. In this chapter, the heat transfer characteristics of

fluids at supercritical pressures and temperature will be introduced and the generated empirical

correlations will be given. The experimental investigations will be presented for the cases of:

horizontal tubes, vertical tubes, vertical packed bed tubes, vertical annulus, tube-in-tube, vertical

natural circulation loop (NCL), channel configurations, micro-porous media, and some other

configurations.

4.1. Heat transfer characteristics at supercritical pressures



The convection heat transfer of supercritical fluids in internal flow presents three major heat-
transfer regimes [40]: normal, improved and deteriorated heat transfer. The deteriorated heat
transfer usually appears at higher heat fluxes and lower mass fluxes and can be reduced
significantly by increasing the level of turbulence [41]. The variations of the convective heat
transfer are due to the dramatic variations of the thermophysical properties in radial direction,

which lead to pseudo-boiling and pseudo-film boiling phenomena [42, 43].

The pseudo-boiling occurs when a supercritical fluid with a bulk temperature below its
pseudocritical temperature (high density fluid) is heated from a surface, which results in a
situation where some layers close to the wall are above pseudo-critical temperature. The low
density fluid leaves the surface in the form of bubbles, improving the heat transfer regime. On
the other hand, the pseudo-film boiling consists of a low density fluid preventing the contact to
the surface of the high density fluid (bulk), limiting the heat transfer (deteriorated heat transfer

regime).

Moreover, the variation of the thermophysical properties affects strongly the momentum and
energy exchange and buoyant force change in the heat flux direction [44]. For instance, at a
cooling surface, when there is a layer at pseudocritical temperature (between wall and bulk
temperature), specific heat goes through a peak value with an increase in thermal conductivity

which leads to a region of improved heat transfer [45].

According to Machida et al. [30], supercritical fluids have a larger compressibility and density
compared to those of a gas which leads to unusual behaviour in their hydrodynamic and heat
transfer properties. The transport phenomena of supercritical fluids has been reported by Carles
[46], who describes hydrodynamic and heat transfer mechanisms in terms of fluid relaxation,
which is how the condition of a fluid changes according to perturbations in temperature,
pressure or density. Among the mechanisms for relaxation of a supercritical fluid there is the
piston effect, which is a thermal wave that moves through a compressible fluid causing
expansion and compression of the hydrodynamic boundary layer (Figure 5). The piston effect
plays a major role in the heat transfer of a supercritical fluid. Temperature perturbations are
strongly affected by the piston effect; density perturbations are strongly affected by convection

or diffusion effects; pressure perturbations are strongly affected by acoustical effects.
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Figure 5. Qualitative description of the piston effect (grey scale represents temperature) [46].

The time scales for each of these phenomena is important. Diffusional and convectional
relaxations have longer time-scales than the piston effect. Thus, density and temperature
equilibration processes are usually decoupled for fluids in the supercritical region [46]. Zappoli
et al. [47] proposed the piston effect as a major heat transport mechanism for supercritical fluids

based on a one-dimensional Navier—Stokes equation and the van der Waals equation of state.
4.2. Nusselt correlations

The empirical correlations found in the literature were developed to take into account the great
variations of the thermo physical properties under supercritical pressures, especially when bulk
and wall temperature are significantly different (thermal gradient in the perpendicular direction

of the flow) [49].

The first correlation that took into account this phenomenon was presented by Bringer and

Smith [48], developed for vertical inner flows (Eq.1), considering Tx=Tb in case M< 0
Tw _Tb

and Tx=Tw if not.

Nu, =0.0375Re>" Pr’* (Eq.1)
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Krasnoshchekov et al. [50] (Eq.2-4) in 1969, developed a correlation for single horizontal tubes
which was valid for a range of 9-10*< Re, <3.2-:10°. This correlation was tested against the
experimental data from Tanaka et al. [51] showing over-predictions around the pseudo-critical
region. Within this context, Baskov et al. [52] developed in 1977 a correlation that reduced
these over-predictions by 25% (Eq. 5) for the experimental range of 9.5-10"<Re,<6.44-10°.
Moreover, Petrov and Popov [53] also reduces these over-predictions providing a correlation
depending on the heat flux and mass flux, as shown in Eq. 6, which was valid for
3.1:10°<Re,<8-10°, 1.4-10'<Re,<7.9-10°, and 29<q/G<350 J/kg. In addition, Fang et al. [54]
extended the valid range of the previous correlation to 3000<Re,<10°, 0<q/G<350 J/kg (Eq. 7-

10).
Nuw = Nuiso,w[pWJ {CPJ
Po ) \ Com (Eq. 2)

where Nu, , Was calculated as in Petukhov and Kirillov [55]

Krasnoshchekov et al. [49] correlation:

— h, —h,,
Cp=2—*
To =T (Eq. 3)
_ k
Cou (Eq. 4)
where the coefficients n, B and k depend on pressure, as shown
in Table 1.
Table 1. n, B and s constants for Krasnoshchekov et al. [50] equation.
Pressure | 8 10 12
(MPa)
n 0.38 |0.68 |0.8
B 0.75 1097 |1
k 0.18 1004 |0
n _ m
C
Baskov et al. [52] correlation: NU,, = NUiSO,W(pr (CpJ (Eq. 5)
w p.w

it T,/T,, <1 m=14,n=0.15

The constants N and m are given in Table 2.
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Table 2. n and m constants for Baskov et al. [45] equation.

C,/Cpy>1 ¢, /¢, <1
P (MPa) | 8 10 |12 |38 10 12
N 0.15 [0.1 |0 0.15 [ 0.1 0
M 1.2 1.6 | 1.6 [ 0.45 |0.45 | 045
Petrov and Popov [53] correlation: Nu,, = Nu,, W[l —0.0012)[%J (Eq. 6)
' c
p,w

0.66-410* 3 when °* <1
G c

n= _Pw
0.9-410"* 3 when-* > 1
G o
F on: Nu. =Nu_[1-00019 | >
ang [54] correlation: NU, = Uy w } Gl (Eq. 7)
p.w
f
( 4 )(Reb—IOOO)Prb (Eq. 8)

Nu,,, =

A+12.7\/%(Prb%—lj

16 -1.5 %2
12 16
fog (Ifej +|]2.457n BT ! - +[37§e30j (Eq. 9)
Thel +02784
A 1+710°Re,,when  Re, <10° (Eq. 10)
1.07, when  Re, >10°

Moreover, Pitla et al. [56] used an average value of Nusselt number (Eq. 11), evalutated at wall
and bulk temperature using the correlation from Petukhov and Kirillov [57]. On the other hand,
Yoon et al. [58] provided in 2003 a correlation (Eq. 12,13) based on pseudo-critical
temperature, approach that was also used by Son and Park [59] (Eq. 14) and extended in 2010
by Oh and Son [60] for case of lower temperatures at the inlet (Eq. 15,16).

Pitla et al. [56] correlation: Nu = (NuW;Nubjt‘N (Eq. 11)
b
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Nu, = 0.14Re’® Pr2%, when T% >1
pc

Yoon et al. [58] correlation: (Eq. 12)

1.6
Nub:O.Ol3RebPrb°‘°5(pp°} ,when T% <1 (Eq.13)
Py pe

Son and Park [59] correlation:  Nu, = Rel™ Pr,?'”(”"”] | ,when T/Tpc >1 (Eq. 14)

C

p.w

16 34
C
Nu, =Rel® Pr'*| 2o | | 222 | when T% <1
Pu Cow pe

=35
c
Oh and Son [60] correlation: NU, =0.023Re;” Pry S[Cpbj ,when -% >1 (Eq. 15)
pc

p,w

w Cp,w

46

Nu, = 0.023Re(* Prtf'z(pbjm(cp’b] ,when T/Tpc <1 (Eq. 16)
In recent years, several others correlations have been developed as function of ratios of
thermophysical properties evaluated at wall and bulk temperature such as the ones reported by
Jackson [61] (Eq. 17,18) for vertical tubes without buoyancy effects, Dang and Hibara [62] (Eq.
19) for horizontal tubes, Huai and Koyama [63] (Eq. 20), and Kuang et al. [64] (Eq. 21), last
two focused on micro-channels. Moreover, similar approach has been used for the determination
of Nusselt number in micro-fin tubes, as the one proposed by Lee et al. [65] (Eq. 22,23), or by
Gupta et al. [66] (Eq. 24) for upward flows in tubes, or by Preda et al. [67] for horizontal and
vertical tubes (Eq. 25), and recently by Saltanov et al. [68] (Eq. 26).

03/ — \N
Jackson [61] correlation: Nu, = 0.0183 Re’* Pr’? [PWJ [ij (Eq. 17)
P

0.4 when T, <T,<T, or 12T, <T, <T,

T
n= 0.4+02/ " —1| when T, <T, <T, (Eq. 18)

pc

T T
0.4 + 0.2(W—1}[1—5(b—1]] when T <T, <127, or T, <T,
T T

pc pc

Dang and Hibara [62] correlation: Same as Gnielinski, where Prandtl number is defined as:
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Conkty /Ky, When ¢, >cp (Eq. 19)
Pr=<c,u,/k, When c,, >¢cp & /y > H

kb kf
co iy /Ky, when ¢, 2¢p & %<’“f K,
—1.4652/ — 0.0832
Huai and Koyama [63] correlation: NU = 0.022186Re"® Pr‘”( Pr ] L (Eq. 20)
Pu p,w
0367 ,—\0.4
Kuang et al. [64] correlation: Ny = 0.001546Re"** Proe53| Pu S (Eq. 21)
p c,

c 02
Lee et al. [65] correlation: Nu = Re* Pro.z{cp,nj when T, /T, >1 (Eq. 22)

p.w

c -3

Nu = Re!™ Pr“"{”] when T,/T, <1 (Eq. 23)
c
p.w
-0.222 0.836 -0.754
Gupta et al. [66] correlation Ny = 0.0038Re"* Prx"”(ﬂw ] (/’wj (kwj (Eq. 24)
Hy Pb K,
0.53 0.46 —0.43
Preda et al. [67] correlation Nu =0.0015Re." Prﬁ%[ﬂwj (pwj (kw] (Eq. 25)
Hy Py K,
0.374
Saltanov et al. [68] correlation Ny = ,0164Re?* Prg-l%(pw] (Eq. 26)
)

The effect of buoyancy has been found critical in the prediction of heat transfer coefficient.
Therefore, Liao And Zhao [69] presented in 2002 a correlation (Eq. 27) to determine the Nusselt
number of mini and micro channels as function not only of thermophysical properties evaluated
at wall and bulk temperature but also on Grashof number (Eq. 28). Kim et al. [70] used similar
approach for its application in vertical narrow annulus (Eq. 29-31), Simoes [71] for Kenics

static mixer (Eq. 32), and Bruch et al. [72] for a vertical U-bend (Eq. 33).

Reb pw c

p,w

0.437 0.411
Liao and Zhao [69] correlation: Nu, =0.128 Reef prv‘a-{G';j(pbj {Cp] (Eq. 27)

where Grashof number, defined as:

o= 9P =p,)p,D’
- 2
Hy
Kim et al. [70] correlation: Nu, = Nu_ -f(B) (Eq. 29)

(Eq. 28)
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(0.8+610°B)™  when B<710°
0.261+3.068B""  when 710" <B<710" (Eq. 30)
f(B)=1 1.47-6.710°B when 7107 <B<10"°
08 when 10°<B<107
0.1423B*"  when 107 <B

Gr
B= ' (Eq. 31)
Reﬁ'7 Pr”’
0224 7 — \0.362 0.07
Simdes et al. [71] correlation:  ny = 0,558 Re?* Prém(/?wj S (Grb j (Eq. 32)
P Cop Reﬁ
G 0.4
Bruch et al. [72] correlation: ~ Nu = Nu.1 S(E’J (Eq. 33)
Re,

where, NUg. is the Nusselt number for pure force convection,

calculated using the correlation proposed by Jackson (Eq. 17).
In 2012, Lin et al. [73] reviewed the existing correlations for Nusselt number of sCO, cooled in
horizontal tubes, concluding that correlations provide higher accuracy when the heat flux is
lower and hence buoyance is weaker. On the other hand, for cases where the buoyancy effect is
stronger, all correlations fail in determining the heat transfer coefficient accurately.

4.3. Experimental investigations

Many researchers have pursued experimental investigations to determine the heat transfer

properties of scCO2. A summary of those studies are presented in Table 3.
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Table 3. Summary of experimental studies and their main findings.

Reference Geometry Boundaries Pressure Main findings
Walisch et al. [74] 10 mm di tube 30-180°C 1-500 bar - Heat transfer is affected by great variation of density and heat
- Horizontal capacity for every studiedgeometry
- Vertical - The influence of density in Nusselt number, is dependent on
- Inclined Reynolds
Liao and Zhao [70] Horizontal mini/micro 20-110°C 74-120 bar - Up to Reynolds of 1-10°Buoyancy effect was still significant, even
circular tubes (diameters though fluid was in forced motion
0.5,0.7,1.1,1.4,1.55, and - Comparison against previous correlations showing significant
2.16 mm) deviations
- New correlation was developed
Horizontal tube, diameter 20-124°C 94- 134 bar | - Spike in the heat transfer coefficient in the pseudocritical region
Pitla et al. [56] of 6.35 mm - New correlation was developed
Yoon et al. [59] Horizontal tube, diameter of | 30-65°C 75-88 bar - Heat transfer coefficient increases near critical region
7.73 mm -The increment of pressure near the pseudocritical temperature,
decreases the heat transfer coefficient
- Comparison against previous correlations showing significant
deviations
- Two new correlations were developed, modifying the one proposed
by Baskov [52] and the one proposed by Dittus-Boelter [74].
Dand and Hihara [63] | Horizontal tube (diameters | 30-70°C 80-100 bar - Pressure drop and heat transfer coefficient increases with mass flux.
1,2 ,4, and 6 mm) - New correlation was developed based on the Gnielinski equation [75]
Son and Park [60] Horizontal tube, diameter of | 25-100°C 75-100 bar - Pressure drop during cooling process decreases as inlet pressure
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9.53 mm

increases
- Comparison against previous correlations showing significant
deviations

- New correlation was developed

Oh and Son [61] Horizontal tube (diameter 30-100 °C 75-100 bar - Smaller inner tube diameter showed higher heat transfer coefficient
4.55 and 7.75 mm) - Comparison against previous correlations showing significant

deviations
- New correlation was developed

Niu et al. [45] and Horizontal tube, diameter of | 30-100 °C 78-104 bar - Tests were performed to investigate the characteristics of sCO2 in a

Zhang et al. [77] 18.4 mm solar collector in a solar energy powered Rankine cycle system (SRCS)
- Apart from the variation of heat transfer around the critical point, it
was measured that heat transfer can be enhanced significantly, by
increasing the mass flow rate, reducing input heat flux and inlet
pressure.

Tanimizu and Sadr Horizontal tube, diameter of | 16-64 kW/m’ 75-90 bar - Wall temperature distribution shows a non-uniform variation

[78] 8.7 mm due to severe fluid property change
- Enhancement and deterioration of heat transfer coefficient was
detected near the pseudocritical temperature

Jiant et al. [79] Vertical tube, diameter 0.27 | 96-550 kW/m” 86 bar - For Reynolds number higher than 4-10” the buoyancy and flow

mm, upward and downward

flows

acceleration effects are significant both at low and high heat fluxes and
upward and downward flows.
- k- € turbulence model provides the best results when Reynolds

number is relatively high and heat flux is not very high
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Jiang et al. [80] Vertical tube, diameter 2 4.5-13.7 kW/m* 88 -120 bar | - The velocity distribution across the tubes developes as an M-shape
mm, upward and downward when increaseing the heat flux, due to variation of physical properties
flows and buoyancy.

- For upward flow the transition between laminar and turbulent flow is
identified and heat transfer is enhanced by the stron buoyancy. A clear
dependance on the heat flux is observed in the heat transfer coefficient.
-For downward flow the buoyancy enhanced the heat transfer
coefficients along the entire tube, while for upward flow

the buoyancy enhanced the heat transfer coefficients only

in the latter part of the tube.

Mokry et al. [81] Vertical tube, diameter 8 20-150 °C 76-88 bar - Deteriorated heat transfer was observed within the entrance region
mm, upward flow and near the middle of the test section

- New correlation was developed

Jiang et al. [82] Vertical micro tube, 165-731 kW/m® 88 bar - The differences of Nusselt numbers between the upward and
diameter 0.0992 mm, downward flows were small, which indicates that the
upward and downward buoyancy has little effect on the heat transfer in micro tubes
flows - The local heat transfer increases continuously at low heat fluxes.

- At higher heat fluxes, a non-linearity is observed in the heat transfer
coefficient

Liet al. [83] Vertical tube, diameter 2 25-40°C 78-95 bar - A deterioration and recovery of the local heat transfer is found for

mm, upward and

downward flows

upwards and downwards flows for high Reynolds number (Re>9000)
and high heat fluxes
- Comparison against previous correlations showing significant

deviations, especially when buoyancy is significant
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- New correlation was developed

Kim and Kim [84]

Vertical tube, diameter 4.5

mm, upward flow

29-115°C

75-103 bar

- The wall temperature is strongly influenced by wall heat flux and
mass flux

- The effect of flow acceleration and buoyancy on the Nusselt number
is quantified

- New correlation was developed and compared against experimental

data from literature

Kim and Kim [85]

Vertical tube, diameter 4.5

mm, upward flow

29-115°C

75-103 bar

- Flow acceleration and variation of the specific heat in the boundary

layer influence drastically the heat transfer

- A two layer (viscous sub-layer and buffer layer) heat transfer model
has been developed to quantify the heat transfer of supercritical fluids
- The developed two layer model provides an accuracy of +

30%

Jiang et al. [86]

Vertical tube, inner
diameter 4 mm, with porous
media (particle diameter of
0.2-0.28 mm). Upward

flow.

30-70°C

95 bar

- When inlet temperature is higher than pseudocritical temperature, the
heat transfer coefficient is lower than in the case where inlet
temperature is lower than pseudocritical

- At super-critical pressures, heat transfer coefficient is not always
higher for larger mass flow rates

- Heat transfer coefficients in porous tubes with low heat fluxes are
much less than those with higher heat fluxes, which differs from the
heat transfer in empty mini-tubes

- In reduced heat flux conditions, heat transfer coefficient in porous

tube is three times than that in the empty tube
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Jiang et al. [87] Vertical tube, inner 30-70°C 95 bar - Supercritical Flow resistance in a porous tube is higher than the one
diameter 4 mm, with porous predicted by the Aerov and Tojec correlation [88]
media (particle diameter of - Two new correlations to predict friction factor in upward and
0.2-0.28 mm). Upward and downward flow are presented
downward flow. - The variation of heat capacity and buoyancy influences the
convection heat transfer
in the porous media
Jiang et al. [89] Vertical tube, inner 30-70°C 95 bar - In case inlet temperature is higher than pseudocritical temperature,
diameter 4 mm, with porous the local heat transfer coefficient decrease uniformly through the
media (particle diameter of porous vertical tube
0.2-0.28 mm). Upward and - In case inlet temperature is below the pseudocritical temperature, the
downward flow. local heat transfer coefficient have a maximum value when the fluid
bulk temperature is near critical point
- Effective thermal conductivity plays an important role in the
convective heat transfer coefficient
Cho et al. [90] Vertical annular channel, 50-130 kW/m* 81.2 bar - The predicted heat transfer coefficient for the annular
with inner diameter of 8 channel is larger than that for the tube
mm and outer of 10 mm - Three different turbulence models were compared against
experimental data. SST k- € and ABD (low Reynolds Abid) models
are better than RNG k- € model for the annular case.
Simoes et al. [91] Kenics static mixer, 10-50 °C 80-210 bar - Static mixer provided heat fluxes one order of magnitude higher than

diameter of 4.623 mm, 21
helical mixing elements

with length-to-diameter

the ones obtained in tube-in-tube heat exchangers

- A correlation of Nusselt number was developed.
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ratio of 1.7

Kim et al. [70] Vertical annular channel, Up to 150 kW/m* | 77-82 bar - At low mass flux, a deterioration of the heat transfer is found when
with inner diameter of 8 heat flux is higher than 50 kW/m?
mm and outer of 10 mm. - At higher mass flux, the deterioration of the heat transfer is lower and
Upward flow. occurs at higher heat flux (150 kW/m?)
- A correlation of Nusselt number was developed.
Bruch et al. [73] Vertical tube, inner 15-70°C 75-120 bar - Heat transfer coefficient is maximum for a bulk temperature close to
diameter 6 mm. Upward the pseudo-critical temperature
and downward flow (U- - An increase of mass flux in upward flow leads to an increase of heat
bend) transfer coefficient.
- In downward flows, there is a limit value of the mass flow rate below
which a reduction leads to an enhancement of the heat transfer
coefficient
- Specific correlations were developed for upward and downward
flows, with accuracy of 15% and 30%, respectively
Tokanai et al. [92] Closed-loop circular pipe, 50-80°C 80-110 bar - An empirical correlation was proposed for describing the heat transfer
inner diameters of 1.76, coefficient of sCO2 in a natural convection circulation system.
4.35, or 10.1 mm.
Chen et al. [93] Closed-loop circular pipe, 20-80°C 60-150 bar - The heating wall temperature has a greater effect on the Reynolds
inner diameter 8 mm. number in cooling pipe
Archana et al.[94] Closed natural circular 25 -40°C 85-95 bar - 1D [95] based on empirical correlation and 2D [96] based on CFD

loop, inner diameter of

13.88 mm.

numerical models were compared against experimental data.

- Accuracy of 2D model is superior as it accounts for the developing
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flow effects.

Huai et al. [97] Multi-port mini channels. 22-53°C 75-100 bar - The pressure drop increases drastically with increasing the
10 circular channels with temperature in the region near the pseudocritical temperature
inner diameter of 1.31 mm - Enhanced and deteriorated heat transfer coefficient were also
measured near the critical region
- A new correlation was developed
Yun et al. [98] Multi-port squared mini 20-25 kW/m® 84-104 bar - The effect of oil on heat transfer coefficient of sCO, was tested in
channels. 10 circular mini channels configuration
channels with hydraulic - Significant degradation of average heat transfer coefficients were
diameter of 1 mm observed (20.4% with oil concentration 4 wt.%)
- The degradation ratio of the heat transfer coefficient increases
with increase of mass flux
Lee et al. [69] Micro fin tube with an inner | 17-100°C 80-100 bar - The cooling heat transfer coefficient of the micro-fin tube increased

diameter of 4.6 mm

by 12-39 % more than that of the smooth tube
- Comparison against previous correlations showing significant
deviations

- New correlation was developed
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5. Conclusions

scCO, is an interesting fluid for many applications, but the sharp variations of its
thermophysical properties around the critical region lead to a unique heat transfer behaviour.
Thus, standard heat transfer correlations cannot be used for the analysis of such systems.
Therefore this review presents a summary of the applications where scCO, is being used or
studied today, including chemical extraction in food science, pharmaceuticals, chemical
residues, etc., extraction in petroleum refining and petrochemistry, separation processes in the
food industry, in biotechnology, in extraction processes, and finally, as heat transfer fluid in

power generation.

This review presents a comprehensive summary of all correlations available in literature to
determine the heat transfer coefficient of scCO,. Several authors have developed empirical
correlations for specific geometries. Moreover, each of the correlations is developed for a given
range of temperature, pressure, heat flux, and flow characteristics. Therefore, there is still a lack

of a unique universal correlation applicable for a given geometry.

Finally, a summary of the experimental studies and their main findings available in the literature
is shown. The used geometries are horizontal, vertical and inclined tubes, closed-loop circular

pipes, and mini-channels with different dimensions and surface characteristics.
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