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Abstract 

In southern Europe, the intensive use of 2,4-D (2,4-dichlorophenoxyacetic acid) and 

tribenuron-methyl in cereal crop systems has resulted in the evolution of resistant (R) 

corn poppy (Papaver rhoeas L.) biotypes. Experiments were conducted to elucidate (1) 

the resistance response to these two herbicides, (2) the cross-resistant pattern to other 

synthetic auxins and (3) the physiological basis of the auxin resistance in two R (F-

R213 and D-R703) populations. R plants were resistant to both 2,4-D and tribenuron-

methyl (F-R213) or just to 2,4-D (D-R703) and both R populations were also resistant 

to dicamba and aminopyralid. Results from absorption and translocation experiment 

revealed that R plants translocated less [
14

C]-2,4-D than S plants at all evaluation times. 

There was between four and eight-fold greater ethylene production in S plants treated 

with 2,4-D, than in R plants. Overall, these results suggest that reduced 2,4-D 

translocation is the resistance mechanism in synthetic auxins R corn poppy populations 

and this likely leads to less ethylene production and greater survival in R plants. 

Keywords: Auxinic herbicide, cross resistance, ethylene production, herbicide 

resistance, radioactivity, translocation. 

 

 

 

 

 

1. Introduction 
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Agricultural weeds cause major crop losses by competing for nutrients, water or light. 

Even though non-chemical methods have been used for controlling weeds, herbicides 

are considered the most effective means of weed control [1]. 2,4-D (2,4-

dichlorophenoxyacetic acid), an auxinic herbicide, was commercially released in 1946 

becoming the first successful selective herbicide to specifically target dicotyledonous 

weeds. 2,4-D still remains as one of the most commonly used herbicides in the world as 

a consequence of its low cost, selectivity, efficacy and wide spectrum of weed control 

[2]. The auxinic herbicide family (group O according to the Herbicide Resistance 

Action Committee, HRAC; and group 4 according to the Weed Science Society of 

America, WSSA) contains four chemical groups, including pyridine-carboxylic acids 

(i.e. aminopyralid), quinolinecarboxylic acids (i.e. quinclorac), benzoic acids (i.e. 

dicamba), and phenoxy-carboxylic acids (i.e. 2,4-D). 

After 60 years of widespread and repeated usage, few examples of resistance to this 

mode of action have been reported. Generally, the selection of synthetic auxin resistant 

biotypes requires more generations than for other modes of action herbicides, 

particularly acetolactate synthase (ALS) and acetyl-coenzyme A carboxylase (ACCase) 

inhibitors [3]. Several reasons have been proposed to explain this phenomenon, 

including low mutation rates, fitness penalties and redundancy in auxin receptors within 

the plant [2,4]. Nowadays, there are 32 auxinic herbicide resistance species, 15 of those 

being resistant to 2,4-D [5]. The precise mode of action for these herbicides, and 

consequently, the resistance mechanisms in weeds are, however, still poorly understood 

[2,6]. Nonetheless, new discoveries including nuclear auxin receptors (F-box proteins), 

influx and efflux carriers and plasma membrane bound receptors have provided basic 

clues as to the molecular mode of action of these herbicides [6–10]. 
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The characterization of resistance mechanisms has been investigated in few auxinic 

herbicide-resistant weeds. Differential absorption, translocation, or metabolism were not 

the basis for resistance in the majority of the assessed species [11–15]. Only in a few 

weeds these non-target-site mechanisms (NTSM) have been related with the resistance 

response [3,16,17]. Additionally, it has been reported that the application of auxinic 

herbicides stimulates ethylene biosynthesis in sensitive, but not in resistant plants 

[13,15,18]. This unregulated auxin response and the resulting hyperaccumulation of 

ethylene, abscisic acid (ABA) and reactive oxygen species (ROS) in auxinic herbicide 

sensitive plants may be involved in the induction of tissue damage and cell death after 

synthetic auxins application [19]. 

Corn poppy (Papaver rhoeas L.) is a major weed of cereal crops in Southern Europe 

[20]. Its extended germination period, high seed production, and seed bank persistence 

makes it especially difficult to manage. It has been estimated that corn poppy can 

decrease wheat yields up to 32% [21]. Moreover, the increase in both monoculture 

farming and overuse of 2,4-D (since the 60s) followed by tribenuron-methyl application 

(early 80s) have selected ALS and/or 2,4-D herbicide-resistant biotypes. The 

International Survey of Herbicide Resistant Weeds records ALS inhibiting herbicide-

resistant biotypes of corn poppy in ten different European countries. Furthermore, 2,4-D 

resistant biotypes have been detected in Italy [5]. While it is well known that resistance 

to ALS inhibitors in corn poppy is caused by a single point mutation in the ALS gene 

(target-site mechanisms, TSM) [20,22–24], no studies have attempted to understand the 

resistance mechanisms to synthetic auxins in this species. A better understanding of the 

2,4-D resistant mechanisms in corn poppy may also improve resistance management by 

better defining herbicide use patterns to delay or avoid resistance to this mode of action 

[4]. 
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This study was thus conducted in order to (1) determine the herbicide rate causing 50% 

mortality (GR50) and the resistance index (RI) of resistant (R) and a susceptible (S) 

populations to 2,4-D and tribenuron-methyl, (2) characterize the cross-resistance 

response of R and S plants to other synthetic auxins chemical groups used in cereals 

systems, (3) compare the physical (contact angle) and physiological features (absorption 

and translocation of  [
14

C]-2,4-D) between R and S plants and (4) to examine the ability 

of 2,4-D to induce ethylene biosynthesis in R and S corn poppy plants.  

2. Material and Methods 

2.1. Plant material 

Before winter cereal harvest, mature capsules form at least twenty different corn poppy 

plants were collected in two fields where failure of corn poppy control with ALS 

inhibitors and/or 2,4-D had been reported. F-R213 population, suspected to be multiple 

resistant, was collected from a field located in Baldomar, north of Spain (41º54’39.0”N 

and 1º00’21.2”W) in 2013. D-R703 population, with suspected resistance to 2,4-D, was 

collected from a field located in Almacelles (41°43’39.6”N and 0°27’29.5”E) in 2003. 

Two susceptible populations (H-S013 and S-S012) were included in this study. H-S013 

was obtained from a seed dealer (Herbiseed, Twyford, UK) in 2008, and S-S012 was 

collected in 2012 from a cereal field in Almenar (41º47’30.5”N and 0°27’29.5”E) where 

no resistance problems had been reported. Corn poppy seeds were sterilized in a 30% 

hypochlorite solution. Sterilized seeds were sown in Petri dishes with 1.4% agar 

supplemented with 0.2% KNO3 and 0.02% gibberellin GA3. Seeds were placed in a 

growth chamber at 20/10 °C day/night, 16 h photoperiod under 350 µmol 

photosynthetic photon-flux density m
-2

 s
-1

. After 14 days, seedlings were transplanted in 

7 x 7 x 7 cm plastic pots filled with the following soil mixture: silty loam soil 40% 
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(w/v), sand 30% (w/v), peat 30% (w/v). Pots were placed in a greenhouse in Lleida, 

north-eastern Spain (41° 37’N, 0° 38’W) and were watered regularly to field capacity. 

2.2. Dose-response experiments 

Five seedlings were sown per pot and after establishing, were thinned to three per pot. 

At the six leaf stage (5-6 cm), all populations were tested with tribenuron-methyl and 

2,4-D. Tribenuron-methyl (Granstar 50 SX, DuPont, 50%) was applied at 0, 4.6, 9.3, 

18.7 (field dose), 37.5, 75, 150, 600 and 1200 g a.i.·ha
−1

 to R plants and at 0, 0.25, 0.5, 

1.1, 2.3, 4.6, 9.3, and 18.7 g a.i.·ha
−1

 to S plants. 2,4-D (Esteron 60, Dow AgroSciences, 

60%) was applied at 0, 75, 150, 300, 600 (field dose), 1200 and 4800 g a.i.·ha
−1

 to R 

populations and at 0, 9.3, 18.75, 37.5, 75, 150, 300 and 600 g a.i.·ha
−1

 to S plants. Non-

treated plants were used as controls. A total of four replicates (three plants per pot) were 

included at each dose. Herbicides were applied using a precision bench sprayer 

delivering 200 L·ha
−1

, at a pressure of 215 kPa. Four weeks after treatment, plants were 

harvested (above ground) and the dry weight (65 °C for 48 h) was measured.  

2.3. Cross-resistance patterns of synthetic auxins 

Both R populations (D-R703 and F-R213) and H-S013 plants were sprayed with 

dicamba (Benzoic acid) and aminopyralid (Pyridine-carboxylic acid) in order to study 

the effects of other synthetic auxins. Dicamba (Banvel D, Syngenta, 48%) and 

aminopyralid (Dow AgroSciences, 3.9%) were sprayed at their field rates (144 and 9.9 g 

a.i.·ha
−1

, respectively) as well as two times their field rates. Five replicates (three plants 

per pot) and five control pots (non-treated plants) were included at each dose. 

Applications and evaluations were done as described above. 

2.4. [
14

C]-2,4-D uptake and translocation experiments 
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Ring labeled [
14

C]-2,4-D with specific activity of 1576 MBq·mmol
-1

 was provided by 

Dow AgroSciences (Dow AgroSciences, Indianapolis, USA). Seedlings from H-S013 

and both R populations at six true leaves of development (5-6 cm), were treated with 

four droplets of 0.5 μL (2 μL per plant) of radio labeled herbicide solution containing 

[
14

C]-2,4-D and commercial 2,4-D mixed to a final herbicide concentration of 3 g·L
-1

 

(equivalent to a 600 g a.i.·ha
-1

 delivered at 200 L·ha
-1

 spraying volume). Every plant 

received a total activity of 18.4 MBq mmol
-1

. Five plants from each population were 

harvested at 12, 24, 48, and 96 h after treatment (HAT). Unabsorbed herbicide was 

rinsed from the treated leaves using 2 ml of an acetone/water (1:1 v/v) solution. The 

rinse solution was mixed with 15 mL of scintillation fluid (Ultima Gold
TM

, Perkin-

Elmer, Packard Bioscience BV). Washes were analyzed by liquid scintillation 

spectrometry (LSS) (Beckman LS 6000 TA scintillation counter; Beckman Instruments, 

CA, USA). Plants were separated into three parts; treated leaf, shoot and root, each of 

which was dried at 70 °C for 48 h and combusted in a sample oxidizer (OX 500; R. J. 

Harvey Instrument, Tappan, NY, USA). The trapped [
14

C]-CO2 was determined by 

LSS. Foliar absorption (%) was calculated as: (radioactivity recovered from plant parts) 

⁄ (total radioactivity recovered) x 100. Translocation (%) was calculated as: (total 

radioactivity in treated leaf, shoot or root) ⁄ (total radioactivity in all tissues) x 100.  

To assess translocation of 2,4-D, two treated plants for H-S013, D-R703 and F-R213 

populations were removed from pots 48 HAT. Roots were rinsed and whole plants were 

dried (65 °C for 48 h) and pressed against a 25 by 12.5–cm phosphor storage film 

(PerkinElmer Life and Analytical Sciences, Shelton, CT) for 6 h, and scanned using a 

phosphor imager (Cyclone, Perkin-Elmer, Packard Bioscience BV). 

2.5. Contact angle and microroughness assays 



8 
 

To assess any effects of leaf surface on herbicide deposition, 2,4-D was applied as one 

drop of 0.5 µL in the adaxial surface of the fourth leaf. Immediately after, individual 

droplets were photographed using a laboratory-built device consisting of a dissection 

microscope (Leica MZ6; Leica Microsystems Ltd., Heerbrugg, Switzerland) plus a 

high-definition digital camera with macro objective (Leica Dililux 4.6; Leica Camera 

AG, D35606 Solms, Germany). Thirty drops for each population (from different plants) 

were photographed and contact angle of the drops were analyzed using image 

processing software (Image J 1.31v; US National Institutes of Health, Bethesda, MD, 

USA). The same procedure was followed for the microroughness determination, where 

an acetone/water (1:1 v/v) solution was used instead of the herbicide.  

2.6. Ehylene production 

Experiments were conducted to evaluate the amount of ethylene produced by R (F-

R213 and D-R703) and S (H-S013 and S-S012) plants in response to 2,4-D treatment. 

Two seedlings were sown in a 145 ml pot (BeltaLab, Barcelon, Spain) and once 

established, were reduced to one per pot. Plants were sprayed, as described above, with 

commercial 2,4-D at 0, 150, 300 and 600 g a.i.·ha
−1

. Treatments were replicated six 

times. Prior to each treatment, the soil mixture was covered with a layer of perlite to 

avoid deposition of the herbicide on the substrate. Immediately following treatments, 

the pots were closed with a specific hermetic top and the two holes beneath the pot were 

sealed with vaseline and Parafilm. Ethylene was measured by withdrawing a 1 ml gas 

sample from the head-space with a syringe and injecting it into a gas chromatograph 

(GC; Agilent Technologies 6890, Wilmington, Germany) equipped with an alumina 

column F1 80/100  (2m x 1/8 x 2.1, Teknokroma, Barcelona, Spain) and a flame 

ionization detector (FID) [25]. This experiment was repeated twice; in October 2014 

and again in February 2015 (the later only with S-S012 as a S population). 
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2.7. Statistical analysis 

Data from dose-response experiments were analyzed using a non-linear regression 

model (1). The herbicide rate required for 50% growth reduction of plants (GR50) was 

calculated with the use of a four parameter logistic curve of the type: 

    
     

                         
                                             (1) 

 

where c = the lower limit, d = the upper limit and b = the slope at the GR50. In this 

regression equation, the herbicide rate (g a.i.·ha
-1

) was the independent variable (x) and 

the plants’ dry weight expressed as percentage of the untreated control was the 

dependent variable (y). The resistance index (RI) was computed as GR50(R)/GR50(S). 

Data from [
14

C]-2,4-D uptake and translocation experiments were subjected to analysis 

of variance (ANOVA). The requirement of homogeneity of variance was checked by 

visual inspection of the residual plots and residuals were analyzed using Shapiro–Wilk 

Test. Where variances were not homogeneous, Generalized linear models (GLM) were 

used. The binomial distribution (Logit-link) was used in all GLM, because this 

distribution resulted in normally distributed residues. Population means were compared 

using a post-hoc Tukey´s pairwise procedure at P = 0.05. Data from the cross resistant 

experiment (efficacy) and ethylene production assay (µLC2H4·g
-1

·h
-1

) were subjected to 

analysis of variance (ANOVA) and means were separated using Tukey´s pairwise 

comparison at 0.05 probability level. Repetitions from the ethylene experiment (October 

and February) were not pooled due to statistical differences between experiments. 

All statistical analyses were carried out with the use of the R programming language 

[26]. drc packag [27] for the non-linear regression and multcom [28] for the post hoc 

Tukey´s test were employed 
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3. Results 

Both R and S plants showed morphological damage after 2,4-D application. Plant 

growth was reduced, and leaves were curled. R plants produced new growth within a 

few days of herbicide application. S and R plants treated with 600 g a.i.·ha
-1

 and 4800 g 

a.i.·ha
-1

 of 2,4-D, respectively, died 14 days after application. The GR50 for 2,4-D were 

the same for the two S populations (66.3 vs 68.6 g of a.i.·ha
-1

). F-R213 and D-R703 

plants were 12-fold and 15-fold more resistant to 2,4-D than H-S013 plants, 

respectively. There was very little control of F-R213 plants with tribenuron-methyl at 

600 g a.i.·ha
-1

 (thirty-two times the field rate), and GR50 was 25.2 g a.i.·ha
-1

, 286-fold 

more resistant than H-S013 plants. Tribenuron-methyl at 18.7 g a.i.·ha
-1

 (field rate) 

controlled the population D-R703 (Figure 1), and it showed a very low RI (Table 1). 

Differences between S populations in the response to tribenuron-methyl were minimal 

(Figure 1). 

The D-R703 and F-R213 populations were also resistant to dicamba and aminopyralid 

at the field rate (144 and 9.9 g a.i.·ha
-1

, respectively; Figure 2). The effectiveness of 

auxinic herbicides on the R population increased when they were applied at two times 

the field rate, but other than dicamba on F-R213, they failed to control the populations 

(Figure 2).  

There were no significant differences between R (D-R703 and F-R213) and S (H-S013) 

plants in the quantity of [
14

C]-2,4-D absorbed, with between 65 to 70% of the herbicide 

applied absorbed at 12 HAT. F-R213 and D-R703 plants translocated much less [
14

C]-

2,4-D than H-S013 plants with, significantly less translocation to the shoots and roots 

compared to the susceptible population (Table 2). Percentages of recovered 

radioactivity ranged from 89 to 96% in H-S013 plants and from 85 to 98% in the R 

plants. Images obtained from the qualitative studies at 48 HAT confirmed the above 
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results (Figure 3). Data from the contact angle and microroughness assays did not reveal 

any kind of differences between R and S plants (data not shown).  

No differences in ethylene production among populations were detected in untreated (0 

g a.i·ha
-1

) or plants sprayed at 150 g a.i·ha
-1

 of 2,4-D. There were differences between R 

and S populations starting at 300 g a.i.·ha
-1 

of 2,4-D, with maximum differences at the 

field rate (600 g a.i.·ha
-1

), when S plants produced between five and eight times more 

ethylene than R plants (Figure 4). Even though statistical differences in ethylene 

production occurred between repeated trials (October and February), similar patterns 

between R and S populations were confirmed in both experiments (Figure 4).  

4. Discussion 

Resistance to both tribenuron-methyl and 2,4-D in F-R213 plants was confirmed in our 

study. Multiple resistant corn poppy populations have also been previously detected in 

Italy and Greece [5,29]. Resistance to both auxinic and ALS inhibitor herbicides have 

been reported in other dicot weeds such as: Gallium spurium L. [13], Sisymbrium 

orientale L. [4], Kochia scoparia L. [14], Limnocharis flava L. and Raphanus 

raphanistrum L. [5]. Resistant factors obtained to tribenuron-methyl and 2,4-D were 

similar to those observed in other studies [29,30].  

The resistant plants were also resistant to dicamba and aminopyralid. Resistance to 

multiple synthetic auxins was also observed in Lactuca serriola L. [31], Sinapis 

arvensis L. [11], and K. scoparia [14]. New discoveries of proteins involved in auxin 

mode of action have indicated that specific alterations in nuclear receptors might 

contribute as a potential resistance mechanisms in auxinic herbicide resistant 

dicotyledonous weeds [2]. Similar to the results presented in this study, cross-resistance 

between 2,4-D and dicamba was also found in a F-box receptor mutant of Arabidopsis 

thaliana L. [32] 
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There was no difference in absorption of 2,4-D, however, reduced [
14

C]-2,4-D 

translocation was observed in 2,4-D resistant corn poppy populations. Reduced 

synthetic auxin translocation has previously been reported for resistant populations of 

Galeopsis tetrahit L. [16] and L. serriola. [3]. Alteration to the auxin efflux carriers 

(PIN-FORMD, PIN; ATP-binding cassette, ABC) could explain the lack of 

translocation observed in 2,4-D resistant corn poppy plants. Members of the PIN and 

ABC efflux carrier families have been considered the main mechanism involved in 

active and long-distance auxin transport [33]. Recent studies conducted with A. thaliana 

suggested that ABCB4 transporter (ABC family) is the target of 2,4-D [34]. In addition, 

a mutation in A. thaliana in another efflux carrier of ABC family, ABCG9, has been 

reported to provide increased tolerance to 2,4-D without affecting endogenous auxin 

Indole-3-acetic-acid (IAA) transport [35].  

Results from the ethylene experiments are consistent with previous studies conducted 

with other species. A three-fold increase in ethylene was induced in quinclorac-sensitive 

G. spurium plants compared with quinclorac-resistant plants [13]. Sensitive and 

resistant K. scoparia plants demonstrated greater than four-fold difference in ethylene 

production when they were treated with dicamba and sampled 24 HAT [36]. The 

stimulation of ethylene biosynthesis through the expression of 1-aminocyclopropane-1-

carboxylic acid (ACC) synthase has been described as one of the first phases after 2,4-D 

and F-box proteins binding [37]. Therefore, our results suggest that in R plants 2,4-D 

may not be binding this nuclear receptor.  

Overall, these results suggest that 2,4-D does not promote the signaling pathway in R 

plants because its receptor is not activated, either due to its alteration or as a 

consequence of reduced translocation involving any of the known auxin transporter 

families. The first step toward uncovering this mechanism could be seeking an 
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alteration in these specific proteins affecting the auxinic nuclear reception or auxin 

efflux carriers (a specific transporter belonging to PIN or ABC families). A 

comprehensive understanding of the resistance mechanisms in corn poppy biotypes, 

especially in those with multiple resistance to auxinic and ALS inhibitor herbicides, is 

needed to further understand the risk of resistance evolution to others modes of action. 

This information will be crucial to assist in the design of integrated weed management 

strategies. 

Abbreviations used 

2,4-D [2,4-dichlorophenoxyacetic acid]; ABA [Abscisic acid]; ABC [ATP-binding 

cassette]; ACCase [Acetyl-coenzyme A carboxylase]; ACCsynthase [1-

aminocyclopropane-1-carboxylic acid synthase]; ALS [Acetolactate synthase]; GR50 

[Herbicide rate causing 50% mortality]; HAT [Hours after treatment]; MCPA [4-

Chloro-2-ethylphenoxyacetate]; NTSM [Non-target-site mechanisms]; PIN [PIN-

FORMD proteins]; R [Resistant]; RI [Resistant Index]; ROS [Reactive oxygen species]; 
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Table 1 

Estimated GR50 and resistance index (RI) values to tribenuron-methyl and 2,4-D for H-

S013, S-S012, D-R703 and  F-R213 corn poppy (Papaver rhoeas) populations. 

Herbicide Field dose Population GR50 (g a.i.·ha
-1

) ± SE RI 

Tribenuron-

methyl 
18.75 g a.i.·ha

-1
 

H-S013 0.08 ± 0.02 -- 

S-S012 0.10 ± 0.02 1.1 

D-R703 0.17 ± 0.04 2 

F-R213 25.22 ± 6.4 286 

2,4-D 600 g a.i.·ha
-1

 

H-S013 68.60 ± 10.2 -- 

S-S012 66.36 ± 20.4 0.9 

D-R703 1039.70 ± 402.0 15 

F-R213 816.60 ± 96.0 12 
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Table 2 

Absorption (percentage of recovered radioactivity) and translocation (percentage of 

penetrated radioactivity) of [
14

C]-2,4-D in H-S013, F-R213 and D-R703 populations of 

corn poppy (Papaver rhoeas) at different times. Data are means and means followed by 

different letters indicate significant differences in each time and location (Absorption, 

treated leaf, shoots and roots) (P<0.05). 

Population 12 h 24 h 48 h 96 h 

Foliar absorption (% recovered radioactivity) 

H-S013 70.98 a 78.06 a 62.71 a 65.81 a 

D-R703 65.67 a 69.55 a 69.26 a 71.98 a  

F-R213 65.83 a 78.22 a 70.54 a 76.98 a 

Remained in the treated leaf (% penetrated radioactivity) 

H-S013 93.79 a 83.60 a 78.36 a 70.04 a  

D-R703 97.34 b 96.45 b 98.56 b 96.87 b 

F-R213 99.08 b 96.26 b 98.29 b 97.49 b  

Translocation to the shoots (% penetrated radioactivity) 

H-S013 4.25 a 12.77 a 15.05 a 22.22 a 

D-R703 2.23 ab 2.27 b 0.77 b 2.44 b 

F-R213 0.32 b 2.69 b 0.55 b 1.04 b 

Translocation to the roots (% penetrated radioactivity) 

H-S013 1.95 a 3.61 a 6.57 a 7.73 a 

D-R703 0.41 b 1.26 ab 0.65 b 0.34 c 

F-R213 0.58 b 1.04 b 1.14 b  1.46 b 
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Figure 1. Dose-response regression curves of susceptible (H-S013 and S-S012), and 

resistant (D-R703 and F-R213) corn poppy (Papaver rhoeas) populations to 2,4-D (A) 

and tribenuron-methyl (B) (log scale). Data were expressed as percentage of the mean 

dry weight of untreated control plants. 

 

Figure 2. Efficacy of aminopyralid (AMI), dicamba (DIC) and 2,4-D at the field rate: 

9.9, 144 and 600 g a.i.·ha
-1 (1x) and two-fold the field rate: 19.8, 288 and 1200 g a.i.·ha

-1 

(2x) on H-S013 (black), D-R703 (dark grey) and F-R213 (grey) corn poppy (Papaver 

rhoeas) populations. Columns with different letters indicate significant differences 

(P<0.05) for each product and dose. 

 

Figure 3. Digital image (upper panel) and autoradiographic image (lower panel) 

depicting [
14

C]-2,4-D translocation throughout plants tissues of H-S013, D-R703 and F-

R213 populations of corn poppy (Papaver rhoeas), 48 HAT. Arrows in the upper image 

indicate the leaf where [
14

C]-2,4-D droplets were applied. 

 

Figure 4. Ethylene production (µL C2H4·g
-1

·h
-1

) in susceptible (H-S013 and S-S012), 

and resistant (D-R703 and F-R213) corn poppy (Papaver rhoeas) populations after 

foliar application of 2,4-D at different concentrations. The experiment was repeated 

twice, in October 2014 (A) and February 2015 (B). Ethylene was measured 16 h after 

treatment (HAT). * indicate significant differences (P<0.05) between R and S plants for 

each application dose. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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