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Abstract 11 

 12 

Buildings contribute to climate change by consuming a considerable amount of energy to 13 

provide thermal comfort for occupants. Cooling energy demands are expected to increase 14 

substantially in the world. On this basis, technologies and techniques providing high energy 15 

efficiency in buildings such as passive cooling are highly appreciated. Passive cooling by means 16 

of phase change materials (PCM) offers high potential to decrease the cooling energy demand 17 

and to improve the indoor comfort condition. However, in order to be appropriately 18 

characterized and implemented into the building envelope, the PCM use should be numerically 19 

analyzed. Whole-building energy simulation tools can enhance the capability of the engineers 20 

and designers to analyze the thermal behavior of PCM-enhanced buildings. In this paper, an 21 

extensive review has been made, with regard to whole-building energy simulation for passive 22 

cooling, addressing the possibilities of applying different PCM-enhanced components into the 23 

building envelope and also the feasibility of PCM passive cooling system under different 24 

climate conditions. The application of PCM has not always been as energy beneficial as 25 

expected, and actually its effectiveness is highly dependent on the climatic condition, on the 26 

PCM melting temperature and on the occupants behavior. Therefore, energy simulation of 27 

passive PCM systems is found to be a single-objective or multi-objective optimization problem 28 

which requires appropriate mathematical models for energy and comfort assessment which 29 

should be further investigated. Moreover, further research is required to analyze the influence of 30 

natural night ventilation on the cooling performance of PCM. 31 

 32 

Keywords: Passive cooling; PCM; EnergyPlus; TRNSYS; ESP-r; Natural night ventilation; 33 

Whole-building energy simulation. 34 
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policy [6] is seeking pathways to achieve low-carbon economy with a minimum cost in Europe 62 

[7]. The improvement of the building envelope is an essential step to achieve this goal, as 20% 63 

to 60% of all energy consumed in buildings is affected by the design and construction of the 64 

building envelope [5]. 65 

 66 

Today, the energy beneficial of the thermal energy storage (TES) is well known. TES is a 67 

promising technology to achieve a low-carbon future [8]. It is accounted as an initiative to 68 

reduce the energy consumption in buildings [8], to alleviate the UHI effects in cities [3] and to 69 

increase the energy efficiency and comfort by creating a balance between diurnal and nocturnal 70 

energy demand [9] Energy could be stored physically or chemically. In physical processes 71 

energy is accumulated as sensible or/and latent heat, on the other hand thermochemical energy 72 

storage takes place when a chemical reaction with high heat of reaction happens [10]. For 73 

building applications, mostly sensible and latent heat storage are considered, although today 74 

thermochemical energy storage is increasing in interest within researchers [11]. For sensible 75 

heat TES, massive materials (concrete, stone, etc.) are required to store considerable amounts of 76 

heat, however, in latent heat TES higher amounts of energy per volume can be stored. Latent 77 

heat storage takes place by phase transition of the storage material. When heat is transferred to 78 

the storage material, melting takes place at a specific and quasi constant temperature, storing a 79 

large quantity of heat, which is called melting temperature or phase change temperature. After 80 

this stage, further increase of heat results in an addition of sensible heat storage. This heat then 81 

dissipates by solidification of the storage material. Regularly, for building applications solid-82 

liquid phase change is used since it presents high energy density and no volume expansion 83 

problems. Materials with a solid-liquid phase change which are capable to store heat and cold 84 

are generally called phase change materials (PCMs) [9,10,12]. Previous researches [13–16] 85 

were documented and classified different types of PCM for building applications. These 86 

materials can be incorporated in buildings either as passive [17] or active [18] systems. In 87 

passive design approach the PCM is incorporated into the building construction and elements as 88 

an integrated-design. Enhancing the benefits of sunlight to reduce heating requirements or 89 

reducing energy needs for cooling by minimizing heat gains in summer are principal objectives 90 

of integrated designs. 91 

 92 

An appropriate passive design by means of PCM can provide long-term energy efficiency, 93 

thermal comfort, stabilization of indoor air temperature and a reduction of the use and size of 94 

the HVAC systems [19,20]. Commonly, in passive design approach for building applications 95 

the PCM is incorporated into the building envelope as an integrated material into building walls, 96 

roofs, floors, slabs, fenestration, insulation, façade, and shading system [21,22]. However, 97 

before applying these innovative materials their performance should be analyzed using validated 98 
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numerical simulation tools since application of PCM requires special attention to proper 99 

materials selection, the location, and the quantity of PCM in the envelope [23].  100 

 101 

With the advent of digital computers, mathematical modeling and computer simulation has now 102 

become a crucial economical and quickest way to providing a broad understanding of the 103 

practical processes involving PCM [24]. Reliable whole-building energy simulation tools can 104 

numerically facilitate design, analysis and optimization of the PCM-enhanced building 105 

component with no need to set up expensive and time consuming whole-building field 106 

experiments [25]. Further on, computer-based simulation tools help designers and engineers to 107 

evaluate potential decisions and achieve long-term targets. For example, some researchers 108 

developed thermal load predictive models of commercial buildings using building energy 109 

simulation software [26]. In another study, whole-building simulation was used for the 110 

benchmarking of residential buildings [27]. Additionally, the validated model can always be 111 

employed for parametric or optimization studies and has more general applications than an 112 

experimental work. Therefore, numerical simulation is a widely-used method for economically 113 

and efficiently analyzing complex physical phenomena, such as the modeling of PCM [24]. 114 

 115 

Accordingly, a considerable amount of literature was published on the building energy 116 

simulation pointing out the advantages of using the PCM as a passive cooling or free cooling 117 

approach [21]. The current paper presents a holistic review of the numerical simulation of 118 

buildings containing PCM for passive cooling purposes using whole building energy simulation 119 

tools. The present study is an attempt to address the methods that have been used to evaluate 120 

and analyze the effects of passive PCM-based design on the cooling energy performance in 121 

buildings through whole building energy simulation software. In this regard, an extensive study 122 

was done to address the previous, current and future research trends toward the application of 123 

PCM in buildings for passive cooling by means of building energy modeling tools. 124 

 125 

2. Whole-building energy simulation for PCM-based passive design   126 

 127 

The use of whole-building energy simulation is an essential step to evaluate and analysis the 128 

performance of PCM-enhanced buildings. These tools can numerically analyze the dynamic 129 

thermal behavior of the building passively enhanced with PCMs. Today, there are many 130 

validated whole-building energy simulation programs which are capable of carrying out 131 

dynamic energy simulation for different applications [28] but there are few validated whole 132 

building energy simulation programs that can analyze energy performance and indoor comfort 133 

of PCM-enhanced passive buildings. This section overviews the commonly used and important 134 

simulation tools for building passive cooling design based on the PCM technology. According 135 
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to literature review, EnergyPlus [29], TRNSYS [30], and ESP-r [31] have been extensively used 136 

by researchers to study the behavior of PCM in buildings and several studies have been carried 137 

out to validate these simulation tools [32].  138 

 139 

2.1. EnergyPlus v8.6.0 140 

 141 

EnergyPlus is an open-source and multi-platform building energy performance modeling with 142 

the most popular capabilities of BLAST and DOE-2.1E with many highlighted features. 143 

Furthermore, it is possible to develop new modules and/or control strategies and integrate them 144 

into the program as subroutines using energy management system (EMS) as a dedicated  145 

computer that could be programmed to control the whole energy-related systems of the 146 

building, such as heating, cooling, ventilation, hot water, interior lighting, exterior  lighting,   147 

on-site power generation, and mechanized  systems  for  shading  devices,  window, actuators,  148 

and  double  facade  elements [33]. Additionally, functional mock-up unit (FMU) for co-149 

simulation import interface allows EnergyPlus to conduct co-simulation with various simulation 150 

programs that are packaged as FMUs [34]. Other capabilities which give power to this software 151 

are advanced fenestration analysis as well as general envelope calculations (outside and inside 152 

surface convection algorithms), advanced infiltration, ventilation, room air and multi-zone 153 

airflow calculations, environmental emissions and developed economic evaluation including 154 

energy costs, and life cycle costs. In addition, comparing to other simulation tools, EnergyPlus 155 

includes several developed human thermal comfort algorithms for analyzing the occupant’s 156 

thermal well-being and indoor air quality measures. Moreover, there are several graphical 157 

interfaces for EnergyPlus to simplify the use of this software by different types of users such as 158 

students, researchers, architects and engineers [28,35]. 159 

 160 

2.2. TRNSYS v17 161 

 162 

TRNSYS is a flexible transient systems simulation program with a modular structure. It is a 163 

component-based simulation program, in which the user selects the components that comprise 164 

the energy system and interconnects them using appropriate input/output ports. The TRNSYS 165 

library consists of various components specifically designed for simulation of buildings, HVAC, 166 

lighting, ventilation, solar energy, thermal energy storage, and also component routines to 167 

support input of weather data or other time-dependent forcing functions and output of 168 

simulation results. In addition it facilitates the addition of new mathematical models not 169 

included in the software and couples them with existing components. TRNSYS became globally 170 

a well-known software for researchers and engineers. It can simulate solar thermal and 171 
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photovoltaic systems, low energy buildings and HVAC systems, renewable energy systems, 172 

cogeneration, fuel cells, and active and passive PCM systems [36]. 173 

2.3. ESP-r 174 

 175 

ESP-r is a general purpose, multi-domain building thermal, inter-zone air flow, intra-zone air 176 

movement, HVAC systems and electrical power flow, simulation program. ESP-r allows its user 177 

to explore the complex relationships between form, envelope, air flow, plant and control of a 178 

building. ESP-r is based on a finite volume, conservation approach in which a problem is 179 

transformed into a set of conservation equations which are then integrated at consecutive time-180 

steps in response to climate, occupant and control system impacts [28,31]. In ESP-r, the PCM 181 

can be modelled using the concept of special materials facility [37,38]. 182 

 183 

2.4. PCM mathematical models used in whole-building energy simulation software 184 

 185 

Energy and comfort analysis of buildings enhanced with PCMs for passive cooling purposes 186 

strongly depend on the PCM melting temperature and quantity, its thermal characteristics, the 187 

location of PCM in the building envelope, climatic conditions, outdoor and indoor boundary 188 

conditions, and design of the building. Mathematical modeling of PCM is an essential step 189 

towards optimal design and proper material selection for passive buildings [39]. On this basis, 190 

several numerical modeling methods have been used in whole-building energy simulation tools 191 

to simulate the thermal response of PCM. These methods could be classified based on their 192 

mathematical model, PCM model, and discretization approach. More importantly, various 193 

experimental, analytical, and comparative analyses were performed with the objective of 194 

producing accurate, reliable, and validated models. Table 1 summarizes the current methods and 195 

models used in whole-building energy simulation tools to simulate the thermal performance of 196 

PCM-enhanced buildings. 197 

 198 

Table 1. Numerical methods used to simulate PCM in dynamic building simulation software, adopted from [32]. 199 

Software  
Module 

identification 

Mathemati

cal  

method 

PCM model Discretization Constrains Validation 
Refer

ence 

EnergyPlus 

 

Conduction 

Finite 

Difference 

(CondFD) 

FDM: 1D Enthalpy method 
Fully implicit/ 

Crank-Nicolson 

-Time step < 3 min 

-Hysteresis in PCM cannot 

be modeled currently 

-Phase change at isothermal 

temperature cannot be 

modeled 

Analytical, 

comparative & 

experimental 

 

[40–

43] 
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TRNSYS 

“TYPE285” FVM: 1D Enthalpy method Fully implicit 

-Hysteresis and sub-cooling 

are not considered 

 

Experimental, 

comparative 
[44] 

“TYPE272” FVM: 1D 
Heat capacity 

method 
Fully implicit 

-Internal convective heat 

transfer of the liquid state 

PCM is not considered 

- PCM with multiple peaks 

is not supported 

 

Experimental [45] 

Modified 

"TYPE36" 
FDM: 1D Enthalpy method Explicit -Low time step 

Limited 

validation using 

experimental 

results for 

concrete 

[46,47

] 

"TYPE58" FDM: 2D Enthalpy method Explicit NA Experimental [48] 

"TYPE204" FDM: 3D 
Heat capacity 

method 

Implicit, semi-

implicit 
-Computationally inefficient NA [49] 

"TYPE101" FDM: 1D 
Heat capacity 

method 
Crank-Nicolson 

-A correction factor to 

account for cold bridges has 

to be used for model 

accuracy 

Experimental [50] 

TRNSYS 

"Active Wall" 

Equivalent 

heat 

transfer 

coefficient

s 

Variable heat 

source function 

mimicking PCM 

behavior 

--- 
-Real heat transfer physics 

in PCM is not modeled 
Experimental [51] 

"TYPE241" FDM: 1D 
Heat source 

method 
Implicit NA NA [52] 

"TYPE260" FDM: 1D Enthalpy method Implicit 

-Thermal properties 

including heat capacity are 

based on previous time step 

(i.e, explicit scheme) 

Experimental [53] 

Modified 

"TYPE101" 
FDM: 1D Enthalpy method Implicit 

-Developed for internal 

partition wall 
Experimental [54] 

"TYPE1270" 

Lumped 

method 

using heat 

balance 

Quasi-heat source 

method 
--- 

-Very simplified method 

-Internal layer within an 

envelope 

- Based on lumped heat 

balance 

-Low accuracy for PCM at 

fixed temperature 

 

Experimental 

data in literature 

[55,56

] 

 

"TYPE399" 

available in 

TRNSYS v.17 

FDM: 1D Enthalpy method Crank-Nicolson 

-Hysteresis phenomena of 

PCM are considered in the 

model 

-It could be applied in both 

active and passive systems 

NA 
[30,57

] 

ESP-r 
SPMCMP53-

SPMCMP56 
FDM: 1D 

Heat capacity and 

heat source 

method 

Experimental 
[37,58

–61] 
--- -Low time step 

1D:One-Dimenssional, FDM:Finite Difference Method, FVM: Finite Volume Method, NA: Not Available. 200 

 201 
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3.6.  Comparison between existing technologies 430 

 431 

Different building models such as office buildings, residential buildings, and simple single-story 432 

were numerically analyzed by researchers, using macro-encapsulated or microencapsulated 433 

PCMs. Various strategies have been applied to integrate the PCM into the building envelope 434 

such as adding concentrated or compact PCM layer [72], PCM dispersed into insulation 435 

materials [95], PCM added to the gypsum boards and plaster [77]. In a great number of articles 436 

parametric analysis has been used to find out the best PCM melting point, latent heat capacity 437 

and layer thicknesses considering its addition in different locations of walls, ceiling, roof and 438 

floor. A considerable number of literatures were been published on the application of PCM 439 

gypsum boards or PCM-enhanced wallboards and concentrated PCM layers/panels for their 440 

high contribution in cooling energy saving, feasibility of installation on the inner surface of 441 

walls an being cheap [96]. More recently, special attention was paid to apply PCM in cool roof 442 

to increase the thermal comfort of occupants, to reduce the cooling energy consumption and to 443 

enhance the durability of cool roof membranes [94,97]. Additionally, through whole-building 444 

energy simulation, now it is possible to analyze the effects of PCM in reducing the heat island 445 

effects in urban area [91] and enhancing the thermal inertia of residential buildings to resist 446 

severe thermal shocks of heat waves by peak load and discomfort hours reduction of indoor 447 

temperature [98]. In addition, the feasibility of improving the thermal performance of 448 

lightweight relocatable buildings for mining camps or post-disaster rapid housing was 449 

investigated [81]. A detailed literature review was done regarding numerical analysis of PCM-450 

integrated buildings based on EnergyPlus, TRNSYS, and ESP-r whole-building energy 451 

simulation tools which is presented in Table 2. According to this literature review on the 452 

simulation-based passive cooling for building applications, EnergyPlus software was the most 453 

prominent tool to investigate the passive cooling effects of PCM in buildings; however, this 454 

does not deny the strength of other energy simulation tools at all. 455 

 456 
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 457 

Table 2. Passive cooling in buildings by means of whole-building energy simulation tools. 458 

Building type Encapsulation  
Latent heat 

[kJ/kg] 

Melting 

[ºC] 

Thickness 

[m] 
Installation Results 

Simulation tool Reference 

1. Office building NA 175 26 to 29 0.005, 0.01 

0.02, 0.03 

Inner surface of vertical 

walls 

 Greater cooling performance and comfort were achieved 

with 3 cm PCM in all vertical walls. 

 From 3% to 7.2% cooling savings, depending on the 

climate zone were achieved. 

 

EnergyPlus Ascione et al. [77] 

2. Office building Microencapsulated NA 23 to 28 0.02 Inner surface of partition 

walls 

 The organic honeycomb PCM was more effective in 

temperate climate rather than in hot Mediterranean 

climate. 

EnergyPlus Evola el al. [70] 

3. Single-room house Macroencapsulated 165-200 20 to 25 0.005 Parametric analysis was 

performed 

 From 17% to 23% of energy savings depending on the 

climate zone were achieved. 

 PCM had very little effect in hot and humid climates. 

EnergyPlus Alam et al. [83] 

4. Passive house duplex 

home 

Macroencapsulated 165-200 23, 25 0.015 Interior surface of the 

envelopes 

 PCM installed on the interior surface of the walls 

provided higher comfort. 

 About 50% of discomfort hours were decreased using 

PCM melting at 25 ºC. 

EnergyPlus Sage-Lauck et al. [99] 

5. Passive house duplex 

home 

Macroencapsulated 165-200 23, 25, 27, 

29 

0.015 All exterior & interior 

vertical and horizontal 

envelopes 

 Zone uncomfortable hours were reduced by 93% 

adding PCM (3.1 kg/m2) melting at 25 ºC. 

EnergyPlus Campbell et al. [100] 

6. Residential building Microencapsulated 70 18 to 28 0.01, 0.015, 

0.02, 0.025, 

0.03, 0.035, 

0.04 

Interior surface of the 

interior envelopes 

 From 46% to 62% of cooling savings were achieved 

under warm climate condition. 

 The best savings achieved with 4 cm layer PCM. 

EnergyPlus Soares et al. [74] 

7. Research center 

building 

Macroencapsulated 281 

230, 235, 

267 

20, 21, 24, 

29 

0.0064 Between insulation & 

interior gypsum board of 

all exterior walls 

 The cooling savings were insignificant (1%). 

 Night ventilation coupled with PCM increased the 

cooling performance to about 9%. 

EnergyPlus Seong et al. [68] 

8. Historic building NA 110 27, 32 0.03 Interior and exterior faces 

of the envelope 

 PCM application was not feasible and it increased the 

annual energy consumption. 

EnergyPlus Ascione et al. [76] 

9. Office building Microencapsulated 33.5 21 to 26 0.013 Interior and exterior faces 

of the envelope 

 Cooling savings were increased in all cases with PCM. 

 Annual savings between -25% to 33% depending on 

EnergyPlus Vautherot et al. [101] 
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the PCM melting point were achieved. 

10. Single-story house Microencapsulated 112 23 0.01117 Between interior framing 

and the air gap 

 10% reduction in annual wall-generated heating and 

cooling. 

 Proper combination of thermal mass and insulation is 

required. 

EnergyPlus Kosny et al. [63] 

11. Single-story house Microencapsulated 170 29 0.1 On the attic floor  70-80% reductions of roof-generated peak hour loads. EnergyPlus Kosny et al. [23] 

12. Office building  Microencapsulated 41 23 0.02 Inner surface of the 

interior partition walls 

 PCM storage efficiency increased by 10% to 30 %. EnergyPlus Evola et al. [64] 

13. Residential building  Microencapsulated 110 23, 25, 27 0.012, 0.024, 

0.036, 0.48, 

0.06 

On the inner surface of 

the vertical walls 

 PCM cooling savings in August 2011 was recorded as 

40%.  

 The cooling savings are expected to increase further by 

2050. 

EnergyPlus Sajjadian et al. [65] 

14. Residential building  Microencapsulated 70 26 0.052 On the inner surface of 

the vertical walls and 

ceiling 

 The use of PCM during the cold months of Montreal 

was not very effective; however, energy savings were 

achieved in warmer seasons. 

 In Mediterranean climate (Palermo) 87% of cooling 

reduction was shown at peak hours. 

EnergyPlus                    Guarino et 

al. [69] 

15. Simplified cubicle NA 223 22 to 32 0.003-0.020 Parametric analysis for 

different locations of 

PCM 

 21-32% reduction of heat gains achieved by using 

PCM 

 Better energy performance achieved when PCM was 

installed to the exterior surface of the envelope. 

EnergyPlus Lei et al. [66] 

16. Residential building Microencapsulated 70 21.7 0.005 After exterior layer of 

mosaic tile and cement. 

 Low annual cooling energy savings achieved (2.9%). 

 PCM with higher melting points should be studied in 

Hong Kong climate. 

EnergyPlus Chan [67] 

17. ASHRAE-140 case-

600 

Macroencapsulated 148 23, 25, 27 0.005 

0.01 

Interior surface of vertical 

walls & ceiling 

 10 to 15 % annual energy savings achieved with 10 

mm concentrated PCM melting at 27 ºC. 

 

EnergyPlus Saffari et al. [72] 

18. Residential building  Macroencapsulated 200 23 0.015 Inner surface of the 

exterior walls. 

 47-76% cooling savings at peak hour were obtained. 

 Higher energy savings (28-63%) achieved in the 

heating period. 

EnergyPlus Nghana et al. [102] 

19. Hospital building  Macroencapsulated 196 

177 

188 

21-24 

18-29 

26-28 

0.074 

0.003 

0.0063 

Rooftop, innermost layer, 

middle layer 

 The PCM-enhanced roof reduced the heat flux through 

the roof to the building interior by 54% at peak hour. 

 The sensible heat flux from roof surface to the 

EnergyPlus Roman et al. [91] 
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152 

160 

21-24 

28.5-30.2 

0.0033 

0.0162 

surrounding environment decreased by 40%. 

20. Office building Macroencapsulated 219 27, 29 0.01 Before the inner layer of 

walls, attic, ceiling, floor 

 Annual cooling loads were reduced by 47% using 

PCM melting at 27 ºC coupled with fan-assisted night 

ventilation. 

EnergyPlus Solgi et al. [103] 

21. Cubicle (single-zone 

building) 

Microencapsulated 46 25(peak 

melting) 

0.0125 Inner surface of vertical 

walls & roof 

 The highest cooling savings recorded from 150 to 171 

kWh. 

 PCM optimization is needed to improve savings in 

some climates. 

 

EnergyPlus Marin et al. [81] 

22. Cubicle (single-zone 

building) 

Macroencapsulated 170 26 0.01, 0.02 Interior surface of exterior 

walls before bricks 

 The most influential factors for cooling savings were 

defined as PCM melting point and thermal 

conductivity. 

EnergyPlus Mazo et al. [104] 

23. Residential building Microencapsulated 140 26 0.15 Inner surface of vertical 

walls & ceilings 

 The cooling energy consumption reduced by 14%. 

 

EnergyPlus Ozdenefe & Dewsbury 

[82] 

24.Prototype test-room Microencapsulated 110 26 0.004, 0.01 Exterior surface of the 

roof 

 PCM in roofing membranes resulted in 9.4% to 39.4% 

of cooling energy savings. 

EnergyPlus Pisello et al. [93] 

25.Test-room Microencapsulated 70 18-24 0.005 Interior surface of walls  The annual cooling reduced by 50% in heating-

dominant climate. 

 Natural/fan-assisted ventilation can increase the 

cooling performance in highly glazed buildings. 

 

 

 

EnergyPlus Guarino et al. [105] 

26.Single-story building Macroencapsulated 182 25, 27, 29 0.03 Interior surface of walls, 

exterior surface of walls, 

interior & exterior surface 

of walls 

 PCM finishing layer melting at 25 ºC could save 

cooling energy from 2% to 13% under Mediterranean 

climate condition. 

EnergyPlus  Ascione et al. [106] 

27. Multi-story office 

building 

Macroencapsulated 250 27 0.010 Before interior vertical 

mortar wall 

 PCM saved summer cooling energy needs from 1500 

to 2300 kWh in 3 cities of China with cold and hot 

summer climate condition. 

 Optimization of PCM melting temperature has been 

suggested as a solution to increase energy savings and 

economic benefits. 

EnergyPlus  Mi et al. [107] 
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28. Two-story 

residential building 

Macroencapsulated 219 29  0.02 

(optimization 

applied) 

Interior Surface of roof 

before gypsum board 

 PCM layer melting at 29 ºC added to roof envelope 

and no economic savings observed under climate 

condition of Iran. 

EnergyPlus Baniassadi et al. [108] 

29.Two-story house Macroencapsulated 134 25  0.02 Into ceiling and 

into ceiling and walls 

interior surfaces 

 PCM could reduce discomfort hours from 34% to 52% 

depending on the behavior of occupants. 

 

EnergyPlus Jamil et al. [109] 

30. Two-story house Microencapsulated 86 24 0.22 Inner Surface of all 

external walls 

 PCM has significant effect in reducing overheating in 

residential building in the UK. 

 A proper combination of insulation and PCM level 

should be investigated. 

 The effectiveness of PCM in lightweight buildings is 

higher. 

EnergyPlus Auzeby et al. [110] 

31. Residential building Macroencapsulated 219 27 0.02  Inner Surface of walls and 

ceiling 

 PCM passive cooling system combined with 

mechanical night ventilation could reduce the hours of 

extreme heat stress by 23% to 32% in Melbourne. 

EnergyPlus Ramakrishnan et al. 

[98] 

32. Residential building Macroencapsulated 200 

(parametric 

study 50 to 

300) 

20 to 27 

(parametric 

study) 

0.0125 Interior surface of walls, 

exterior surface of walls, 

in the middle of wood 

assembly  

 In Phoenix cooling savings were insignificant (0.8% 

annual cooling savings ) 

 In Seattle 15.8% of annual cooling savings recorded. 

TRNSYS Al-Saadi and Zhai [44] 

33. Single-story 

residential building 

Macroencapsulated 210 21, 23, 25, 

27 

0.0121 Interior Surface of roof 

before steel finishing 

 In Melbourne 39% and in Sydney 25% of cooling 

energy savings achieved. 

TRNSYS Jayalath et al. [56] 

34. Single-story 

residential building 

Microencapsulated 119 26.50 0.15, 0.255, 

0.357, 0.459, 

0.083, 0.050 

Homogenously blended 

PCM into cellulose 

insulation of attic, 

condensed layer of PCM 

into different locations of 

the attic 

 PCM-enhanced cellulose achieved 3.1% of cooling 

savings.  

 Concentrated PCM layer achieved from 0.56% to 6.6% 

of cooling savings. 

 

ESP-r  Kośny et al.[59] 

NA: Not available 459 

 460 

 461 
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4. Passive PCM-enhanced building with natural ventilation 462 

 463 

Natural ventilation is considered as a passive or free cooling method in which the cool nighttime 464 

air flows into the building zone to provide cooling [111]. In natural ventilation cooling system, 465 

the flow process is driven by wind and/or stack effect. An appropriate use of natural ventilation 466 

techniques can enhance the PCM performance by increasing the possibility of full charging and 467 

discharging process [112]. Coupling PCM as an innovative thermal mass with natural night 468 

ventilation could be an ideal solution to increase the cooling performance of buildings, 469 

nevertheless, it is not the only parameter found to be critically important for the appropriate and 470 

efficient operation of PCM in buildings. Many factors such as outdoor air temperature, wind 471 

speed, wind direction etc. affect the performance of this passive system. Therefore, using 472 

numerical simulation tools which are capable of simulating both the PCM and the natural 473 

ventilation effects on the energy performance of the building is essential. Natural night 474 

ventilation creates a heat sink system by help of wind and indoor-outdoor temperature 475 

difference to provide cool air or to remove excessive or unwanted heat stored in the building 476 

envelope resulting better indoor air quality, comfort and cooling loads reduction.  477 

Several publications have mentioned the advantages of passive cooling by means of natural 478 

ventilation using numerical simulation [113–115].  479 

 480 

In the literature, there are numerous studies of coupling thermal mass and natural night 481 

ventilation by means of whole-building energy simulation [116,117], nevertheless, there are 482 

only a few examples in which the effect of coupling PCM with natural night ventilation is 483 

analyzed [68,70,109]. Also, some authors have investigated the effect of fan-assisted night 484 

ventilation with high ratios of air exchange per hour (ach) which was highly effective to 485 

discharge the PCM. Studies have found that the integration of natural night ventilation strategies 486 

[69,82] or fan-assisted night ventilation [103] can effectively increase the cooling performance 487 

of the PCM-enhanced buildings in climates with cool nighttime outdoor temperature. For 488 

example the effectiveness of night ventilation to enhance the performance of PCM passive 489 

system was investigated by Evola et al. [70]. Different air change rates per hour (2-8 ach) were 490 

applied between 21:00 and 06:00 which caused a reduction in the mean daily and peak operative 491 

temperature; nevertheless, introducing more than 4 ach did not add significant benefits. 492 

However, the simulation results showed that coupling the proper night ventilation with PCM 493 

system can improve the thermal comfort by 10% in comparison to the PCM-enhanced model 494 

without night ventilation. With the same objective Seong et al. [68] showed that adding 6 495 

m3/m2-h of ventilation during the night period can enhance the annual cooling performance by 496 

about 9% compared to the PCM model without night ventilation. With the same objective, the 497 

feasibility of reducing peak zone temperature and improving occupant thermal comfort in a 498 
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naturally ventilated 5-star energy rated house located in Melbourne using passive PCM cooling 499 

approach was studied by Jamil et al. [109]. Two different scenarios were considered to apply the 500 

PCM into the building envelope; spreading PCM melting at 25 ºC only in ceiling, and 501 

incorporating the same PCM in ceiling and walls. Additionally, controlled (manual) night 502 

ventilation by opening 20% of windows from 19:00 to 7:00 to boost the solidification of PCM 503 

since the nighttime outdoor temperature was always below 23 ºC (below the melting point of 504 

used PCM). Their results showed that a combination of PCM in ceiling coupled with natural 505 

night ventilation can increase the effectiveness of PCM for passive cooling and reduce the 506 

discomfort hours (according to ASHRAE 55-2013 [118]) up to 34% (with PCM only in 507 

ceilings), and 52% (with PCM in ceilings and walls); nonetheless, this improvement strongly 508 

depends on the behavior of occupants to properly follow the proper night ventilation strategy. In 509 

addition, Solgi et al. [103] applied fan-assisted night ventilation to an office building in order to 510 

improve the annual cooling performance and the thermal comfort condition. The night 511 

ventilation with specific indoor-outdoor temperature control strategy was considered between 512 

24:00-7:00 with different fan ach (5 to 30). The simulation results were shown that the annual 513 

cooling load could be reduced from 30% in the PCM-enhanced case to about 46% in the PCM 514 

model with fan-assisted night ventilation with 15 ach, nevertheless, further increase of air 515 

change per hour showed an increase in the total energy consumption.  516 

 517 

5. Technical barriers 518 

 519 

When designing a passive system based on the PCM technology, one crucial fact that should be 520 

considered is that the PCM passive system can improve the energy efficiency of buildings, 521 

nonetheless, the discomfort due to the elevated humidity ratio should be considered in hot and 522 

humid climates. Very high humidity ratios might affect the thermal comfort of the occupants 523 

which is consistent with findings of [67,69,83,102]. Although high cooling energy savings 524 

could be achieved by proper PCM passive solutions but the ability of these materials to absorb 525 

the latent heat is very limited. Accordingly, in regions with high ratios of humidity, a proper 526 

HVAC system should be selected to control the dehumidification in order to provide the 527 

occupants with thermal comfort [119]. Also, solar renewable system could be a solution to 528 

provide cooling and dehumidification [120]. 529 

 530 

On the other hand, a proper PCM design ties with a balance between energy provisions and 531 

comfort criteria. It should be considered that adding the PCM does not always ensure the 532 

increase of comfort but in order to get the best results, the PCM melting range should be within 533 

the comfort range [101], otherwise limited energy savings could be achieved [121]. Moreover, 534 

the highest comfort level does not certainly lead to high savings in energy, but, the highest 535 
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comfort might be achieved by cost of higher energy consumption which is also discussed by 536 

other authors [72]. 537 

 538 

As it has been discussed, night cooling could be an effective way to enhance the performance of 539 

the passive PCM system. For example, in office buildings it offers the opportunity for system 540 

downsizing in climates where the air temperature decreases at night [100]. However, it should 541 

be considered that this outdoor temperature decrease should be lower than the PCM melting 542 

point in order to be able to solidify the PCM; otherwise, night ventilation may have reverse 543 

effect on the cooling performance in climate with high temperature nights [122]. In addition, 544 

more sophisticated night ventilation techniques [113] considering the outdoor boundary 545 

conditions such as wind pressure coefficients and wind velocity along with customized control 546 

strategies coupled with passive PCM approach could be studied and investigated using whole-547 

building energy simulation tools. 548 

 549 

Also it is noticeable to mention that in many simulation-based studies the parametric analysis is 550 

unfairly referred as optimization; however, to the best of authors knowledge, no report was 551 

found so far using optimization algorithms to optimize the e.g. PCM melting point temperature, 552 

and very few literature is available on the multi-dimensional analysis [74] and until now little 553 

importance has been given to single- and multi-objective mathematical optimizations [101] and 554 

there few cases of multi-objectives optimization of PCM-enhanced passive buildings, however, 555 

recently more attention has been paid to simulation-based optimization of passive PCM 556 

buildings to increase the thermal comfort and energy performance of building [106], to 557 

optimization the thickness of insulation and PCM layers [121], and to investigate the life cycle 558 

and environmental impact of building with PCM   [123–125]. Parametric analysis may help to 559 

find the best solution among the available options but not always the optimum solution and it is 560 

time consuming. In order to find the optimum solution in such systems, optimization tools and 561 

statistical methods are appreciable to reduce the simulation cost and to increase the energy 562 

efficiency [126]. 563 

 564 

Simulation-based studies can give valuable information about the energy and comfort benefits 565 

due to the integration of PCM in buildings, however, it should be taken into account that today, 566 

only few commercially available computer models use separate enthalpy–temperature curves for 567 

melting and freezing such as ESP-r [37]. Currently, in EnergyPlus whole-building energy 568 

simulation software identical algorithm for thermal characteristics of melting and freezing 569 

processes is used. On this basis, PCMs without noticeable subcooling should be considered for 570 

simulation [127].   571 

 572 
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6.1. Equatorial (A) 597 

 598 

Lei et al. [66] examined the effectiveness of PCM in climate of Singapore (Af) conducting 599 

parametric studies. The PCM with 28 ºC melting point temperature was used which could 600 

significantly decrease the heat gains which was estimated about 21-32% per year, nonetheless, 601 

the energy savings results were not presented. Further on, in the studied climate, better energy 602 

performance was achieved when the PCM was applied to the exterior walls since during night 603 

the stored heat could dissipate to the outdoor environment and not to the air-conditioned zone. 604 

In another study which was performed by Alam et al. [83] the potential of PCM to reduce the 605 

annual energy consumption was negligible in Darwin (Aw) due to hot and humid summers and 606 

hot winters. 607 

 608 

6.2. Arid (B) 609 

 610 

Campbell and Sailor [100] measured the impacts of integrating PCM in high performance 611 

super-insulated homes lacking from insufficient thermal mass to increase the thermal storage 612 

and stabilize the temperature fluctuation in such buildings in cooling season over different 613 

climate zones across the United States. The simulation results were shown only 6.4% of 614 

occupants thermal comfort increase in hot-arid climate of Phoenix (BWh) due to elevated 615 

nighttime temperatures and low storage density of PCM melting at 25 ºC. However, these 616 

results are in consistent with findings of Al-Saadi and Zhai [44], where 0.8% savings of annual 617 

cooling load achieved in Phoenix. Also, it should be highlighted that some researchers achieved 618 

about 46% savings in cooling energy consumption using the PCM with 27 ºC melting 619 

temperature into the external walls, ceiling and roof under climate condition of Yazd (BWk) by 620 

taking advantage of the night cooling and control strategy [103]. From the results mentioned 621 

above, it can be seen that the PCM passive system works better in cold arid climates since at 622 

nighttime the accumulated heat in the PCM can be dissipated by the cool outdoor air 623 

temperature. This effect could be increased in regions with high altitudes. For example some 624 

researchers [83] achieved about 23.5% annual energy savings with PCM melting at 22 ºC under 625 

climate condition of Adelaide (BSk) with about 700 m of altitude. 626 

 627 

6.3. Warm Temperate (C) 628 

 629 

A great effort has been made to study the energy-related impacts by applying the PCM into the 630 

building envelope in warm temperature climate. For example, the study carried out by Ascione 631 

et al. [106] adds more results regarding the application of passive PCM technology to improve 632 

the cooling energy performance of a single-story building under the Mediterranean climate 633 
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condition (Csa). Different wall compositions enhanced with PCM-enhanced gypsum 634 

plasterboard melting at 25 ºC, 27 ºC, and 29 ºC were numerically studied and optimized. 635 

According to their results, the integration of PCM melting at 25 ºC, adding PCM to the inner 636 

surface of vertical walls could improve the annual cooling energy performance by roughly 2%, 637 

4%, 7% and 13% in Madrid, Nice, Athens, and Naples, respectively. Moreover, the simulation 638 

results of Campbell et al. [100] showed significant improvements in occupant comfort in Los 639 

Angeles (Csb), Portland (Csb), and Denver (Cfa). The results were shown up to 44% and 79% 640 

reductions in zone discomfort hours in Los Angeles and Denver, respectively. However, the 641 

highest thermal comfort was achieved in Portland with about 93% reductions in uncomfortable 642 

hours using 3.1 kg/m2 of PCM melting at 25°C. As argued by the authors, these thermal comfort 643 

improvements could be associated with less severe daytime temperature and also cool nighttime 644 

temperature which facilitated the proper charging and discharging of the PCM. Similarly, 645 

Ramakrishnan et al. [98] concluded that enhancing the thermal inertia of non-air-conditioned 646 

buildings in Melbourne (Cfb) by adding PCM with 27 ºC melting point into vertical walls and 647 

ceiling can effectively reduce heat stress risks during extreme heat waves by 23%, however, 648 

when mechanical night ventilation was considered, discomfort hours reduced to 32%. However, 649 

it should be considered that when mechanical ventilation system is considered the building is no 650 

longer non-air-conditioned. 651 

 652 

Furthermore, Chan [67] investigated the cooling energy performance of the living room and 653 

bedroom of a typical residential flat with PCM-enhanced facade under the climate condition of 654 

Hong Kong (Cwa). The results showed very low annual cooling energy savings (2.9%) for the 655 

living room and approximately 1% rise in the cooling energy consumption for the bedroom. 656 

Consequently, a very long payback period in years (91 years) was estimated. As it was argued 657 

by the author, the melting point temperature of the selected PCM which was 21.7 ºC could not 658 

adequately absorb the heat; and the interior surface temperature of the PCM wall was mostly 659 

above 28 ºC, even at night and the PCM could barely discharge. So that, the existence of the 660 

low cooling savings implies that PCM with higher melting point should be used under this 661 

climatic region. Likewise, Mi et al. [107] investigated the energy and economic benefit of 662 

adding PCM to vertical walls of a multi-story office building under climate zones of China. 663 

They used PCM with melting temperature of 27 ºC to increase the summer cooling 664 

performance. However, in spite of achieving some cooling savings (e.g. 2100 kWh in case of 665 

Hong Kong), generally low energy and economic benefits were obtained for summer cooling 666 

period. Although, when energy savings for both heating and cooling periods were considered, 667 

the energy and economic benefits increased further.  668 

 669 
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Additionally, Vautherot et al. [101] carried out a parametric study to find out the best PCM 670 

solution from two different aspects of energy saving and comfort level for the weather condition 671 

of Auckland (Cfb). Different energy savings were shown due to the application of PCM with 672 

various melting point temperatures. It was shown that higher thermal comfort could be achieved 673 

(17-31%) by using PCM with higher melting point temperature (24 ºC), however, the best 674 

annual cooling and heating energy performance was achieved (23-32%) when PCM with lower 675 

melting point (20 ºC) was applied into the building envelope. Also, this trend was observed in 676 

the simulation results of other researchers [83,106] under the weather condition of Canberra 677 

(Cfb). This could be justified since in heating dominant climates such as New Zealand, with 678 

proportionally higher heating demands, optimizing the PCM melting point temperature for the 679 

heating period would result in higher annual energy savings.  The authors of the present paper 680 

would like to highlight that; far too little attention has been paid to above mentioned issue and 681 

in the available literature regarding the passive PCM technology for building applications 682 

further studies are required for numerical optimization studies under different weather 683 

conditions.  684 

 685 

6.4. Snow (D) 686 

 687 

As reported by Seong & Lim [68] installing PCM pouches with various melting points into the 688 

vertical envelopes of a research center in Seoul (Dfa) showed no evidence of significant cooling 689 

energy reductions (only around 1%).  Several arguments were given in an attempt to explain the 690 

scant effects due to the application of PCM in their studied climate such as the location of the 691 

PCM layer in the envelope, PCM quantity, PCM latent heat capacity, melting temperature, and 692 

HVAC operation schedule. However, the cooling savings increased to 9% when night 693 

ventilation was coupled to the passive system. Besides, it has been shown by some researchers 694 

[72] that the HVAC operation in office buildings may unfavorably influence the energy 695 

performance depending on the climate condition (e.g. sunshine hours and the intensity of solar 696 

irradiation), but also, other factors such as internal gains [129], ventilation, control strategies 697 

[84,86] and PCM thermal characteristics are highly influential. Further on, it was added by 698 

Kosny et al. [89] that in climate of Chicago (Dfa) about 11% of the annual cooling loads were 699 

decreased by application of PCM-enhanced insulation in attic floor of a building. 700 

 701 

According to the findings of Soares el al. [74] in cold climates of Warsaw (Dfb) and Kiruna 702 

(Dfc), the total energy savings due to application of PCM was limited to 24% and 10%, 703 

respectively. Furthermore, they added that the optimized incorporation of PCM in the room 704 

could reduce the cooling energy demand by 74% and 87% in Warsaw and Kiruna, respectively. 705 

Similarly, Guarino et al. [69] investigated the energy benefits of adding PCM to a small and 706 



28 
 

lightweight test-hut under the weather condition of Montreal (Dfb). Energy analysis results 707 

showed about 47% to 76 % of the peak cooling energy reduction in cold climate of Montreal; 708 

nevertheless, the annual energy performance in Montreal was limited to 11-19%. In lines with 709 

previous simulation results, some researchers [81,107] achieved limited energy savings due to 710 

the use of PCM in cold climates with no optimized PCM melting temperature in those specific 711 

climate zones.  712 

 713 

It should be considered that in heating dominant climates, high amount of energy is needed for 714 

heating than cooling, so that, in such climates the PCM melting temperature should be 715 

optimized to enhance the total annual cooling and heating energy performance and not only the 716 

cooling period. 717 

 718 

7. Conclusions 719 

 720 

Passive cooling technologies with phase change material (PCM) have the potential of reducing 721 

the increasing cooling demand, however, in order to properly implement this technology in 722 

buildings, numerical simulation is essential. The present paper set out to review numerical 723 

methods provided by whole-building energy simulation tools to analyze the passive cooling 724 

potentials of PCM-enhanced buildings. It was shown that EnergyPlus, TRNSYS, and ESP-r 725 

were used to analyze the cooling energy performance of buildings when PCM integrated into 726 

the building envelope in different ways such as dispersed PCM in drywall, dispersed PCM in 727 

gypsum board, pouches filled with PCM, PCM-enhanced insulation and PCM plaster. 728 

Additionally, researchers incorporated PCM in various parts of the building such as vertical 729 

walls, partitions, floors, ceilings, attic floor and as a component of green roofs as well as cool 730 

roofs.  731 

 732 

The application of PCM-enhanced wallboards was popular among researchers due to their 733 

feasibility of incorporation into the interior surface of walls and ceilings, lower price, and high 734 

effectiveness to moderate the indoor temperature and reduce the cooling energy requirements. 735 

In many simulation-based studies, the PCM was added to the interior surface of the building 736 

envelope. 737 

 738 

The application of PCM for passive cooling purposes under warm temperature climates 739 

(Köppen Geiger classification (C)) was investigated numerically more than other climates and 740 

considerable cooling energy savings were shown, however, in heating dominant climates the 741 

melting point temperature of PCM should be optimized in order to achieve higher total annual 742 

savings.  743 
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In addition, the importance of coupling the PCM passive system with natural night ventilation to 744 

enhance the PCM performance is highlighted by many researchers; however, literature reviews 745 

indicated that there was no detailed analysis of such system using more sophisticated numerical 746 

methods and it was limited to the simple analysis methods. More interestingly, the whole-747 

building energy simulation tools have been used to investigate the effectiveness of PCM in 748 

reducing the urban heat island and extreme summer heat waves. In addition, the application of 749 

PCM to enhance the durability and effectiveness of cool roof elements was suggested and 750 

investigated recently. 751 

 752 

Furthermore, many researchers used a parametric method to find out the best PCM solution, 753 

however, the numerical optimization of PCM-enhanced passive buildings is getting more 754 

popular. 755 

 756 
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