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Abstract Mapping the leaf area index (LAI) by using mobile terrestrial laser scanners 22 

(MTLS) is of significance for viticulture. LAI is related to plant vigour and foliar 23 

development being an important parameter for many agricultural practices. Since it may 24 

present spatial variability within vineyards, it is very interesting monitoring it in an 25 

objective repeatable way. Considering the possibility of using on-the-go sensors such as 26 

MTLS within an agricultural plot, it is necessary to set a proper length of the row to be 27 

scanned at each sample point for a reliable operation of the scanner. Three different row 28 

length sections of 0.5 m, 1 m, and 2 m have been tested. Data analysis has shown that 29 

models required to estimate LAI differ significantly depending on the scanned length of 30 

the row; the model required to estimate LAI for short sections (0.5 m) is different from 31 

that required for longer sections (1 and 2 m). Of the two models obtained, we 32 

recommend using MTLS for scanning row length sections of 1 m because the practical 33 

use of the sensor in the field is simplified without compromising the results (there is 34 

little variation in the model when the row length section changes from 1 m to 2 m). In 35 

addition, a sufficient number of sampling points is obtained to support a map of the 36 
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LAI. Linear regression models using as explanatory variable the tree area index, 37 

obtained from the data provided by the scanner, are used to estimate the LAI.  38 

 39 
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Introduction 43 

Several studies have been published on the use of mobile terrestrial laser scanners 44 

(MTLS) in viticulture (Rosell et al. 2009a, 2009b; Keightley and Bawden 2010; Llorens 45 

et al. 2011a; Sanz et al. 2013; Arnó et al. 2013). These studies focused on developing 46 

computational methods to characterize vineyards (canopy volume and leaf area) by 47 

using the data supplied by MTLS. An example of successful application of MTLS in 48 

vineyard is the possibility to estimate the leaf area index (LAI) by using simple linear 49 

regression models. Arnó et al. (2013) proposed this methodology in which, after 50 

processing the data supplied by the scanner, the tree area index (TAI) is obtained, and 51 

this index is subsequently used as the explanatory variable. The TAI was first proposed 52 

by Walklate et al. (2002) with the aim of applying it in apple orchards. The TAI was 53 

applied in viticulture later, and a detailed explanation of the process for calculating the 54 

TAI can be found in Arnó et al. (2013).  55 

 56 

 The operation mode of MTLS is well known for row cultivation. MTLS are used 57 

laterally along the rows and are positioned conveniently from the right or left side of the 58 

row to provide vertical scans of the vines. Each scan is the result of successively 59 

projecting the laser beam according to a predetermined scan resolution (typically 60 

between 0.25 and 1 degree). The influence of the scanning side has been discussed in 61 



Arnó et al. (2015); they concluded that the results obtained are similar regardless of the 62 

scanned side. However, there are very few studies on the length of the row section to be 63 

scanned, and how this factor influences the quality of LAI estimates. The methodology 64 

developed by Walklate et al. (2002) and adapted by Arnó et al. (2013) consists of 65 

projecting n successive vertical scans in a vertical XY plane to analyse them jointly to 66 

determine the TAI. The combined number of scans depends on the scanned length of 67 

the row and the scanner horizontal resolution (function of update frequency and travel 68 

speed of the system), and it strongly affects the TAI estimation (Arnó et al. 2013). 69 

Additionally, when scanning an entire vineyard in a continuous way to create a map, 70 

longer scanned sections results in less and more separated TAI estimates and vice versa, 71 

since to obtain a single value of TAI it is necessary to scan a given length of the row 72 

and cumulate the scans performed in that length. Hence, there is a need to specify the 73 

optimal section length to be scanned and simultaneously meet the requirements to 74 

obtain reliable data and sufficient support (or number of geo-referenced data) within the 75 

plot in order to optimize the use of MTLS to map the LAI. A field test was conducted in 76 

Vitis vinifera L. cv. Syrah to clarify this issue. 77 

 78 

Materials and methods 79 

Because the scanner used is the same as in previous works (Arnó et al. 2013, 2015), the 80 

characteristics and mode of operation are not included in this paper. The sensor used in 81 

this study was the LMS-200 (SICK AG, Waldkirch, Germany) (Fig. 1), which provides 82 

a two-dimensional vertical fan-shaped scan when it is applied laterally from one side of 83 

the row. As the scanner is moved along the row in a tractor-mounted system, different 84 

vertical scans are finally obtained along the scanned length of the row. A point of 85 

known absolute coordinates is generated when the laser beam strikes the canopy. Vines 86 



can be represented in 3D by combining the obtained information; this 3D representation 87 

of vines is known as a point cloud. However, calculating the TAI requires further 88 

processing of this point cloud. Specifically, all the scans in the scanned row section are 89 

projected into a vertical plane, and the overlapped points are then bound using a grid of 90 

polar cells as shown in Figure 1. The TAI is finally computed as the ratio between the 91 

density of leaf area detected by the scanner (which is proportional to the number of cells 92 

with interceptions and the points within each cell) and the ground area. Some 93 

assumptions are considered in the calculation process, such as the laser beam is 94 

transmitted within the canopy according to the Poisson probability model. A detailed 95 

explanation of the method and the mathematical expression of the TAI can be found in 96 

Arnó et al. (2013). 97 

 98 

Fig 1 (a) Mobile terrestrial laser scanner used in the study (based on LMS-200, SICK 99 
AG, Waldkirch, Germany) (b) Projection of the point cloud on a two-dimensional grid 100 
of cells. A generic cell (marked in red) is defined by two coordinates, rj is the distance 101 
from the MTLS, and θk is the angle in the clockwise direction. Hg is the height of the 102 
sensor from the ground, and dt is the threshold distance to exclude points that are not 103 
within the canopy (Arnó et al. 2013, 2015) 104 
 105 
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 The field test was conducted in a plot of Vitis vinifera L. cv. Syrah in Raimat 106 

(Lleida, Spain). The vineyard covers an area of 17.74 ha and was planted in 2002 in a 3 107 

x 2 m pattern. Drip irrigation is applied by partial rootzone drying in vines trained in 108 

vertical shoot position. The rows are oriented north-south. To ensure full vegetation in 109 

the vineyard during the pass of the scanner, the test was performed at the growth stage 110 

77 (berries beginning to touch) according to BBCH-scale (Meier 2001). Field 111 

methodology was similar to previous tests (Arnó et al. 2013, 2015); thus, five sampling 112 

sections of different vigour for five different rows were selected within the plot. Each 113 

sampling section was 2 m long and covered the distance between two consecutive vines 114 

(or distance between trunks). After scanning the sampling sections from both sides of 115 

the row (two replicate scans or passes from the left and two replicate scans or passes 116 

from the right side of the row), the vines were manually defoliated to measure the leaf 117 

area and the actual values of the LAI. The sampling sections were defoliated by 118 

separating the leaves of adjacent vertical vegetative strips of 0.5 m in length, allowing 119 

the generation of different LAI values within the same sampling section. Specifically, 120 

seven LAI values were obtained per section according to three different row lengths (4 121 

values for strips of 0.5 m, 2 values for strips of 1 m, and a single overall value for the 122 

total section of 2 m). As the number of sampling sites (or sampling sections) was 5, a 123 

total of 20, 10, and 5 LAI values were obtained, corresponding to row lengths of 0.5 m, 124 

1 m, and 2 m, respectively. In short, the latter are the three spatial supports evaluated to 125 

estimate the LAI. 126 

 A dummy-variable regression was proposed to assess whether the LAI 127 

estimation models differ according to the scanned lengths (0.5 m, 1 m, and 2 m). In fact, 128 

the aim of the paper is not finding a universal model to get the LAI in vineyard rows 129 

using a normalization by the length of row (e.g. per meter of row) but to compare three 130 



different models, corresponding to three different sampling sections, to provide MTLS 131 

users with the best option. The procedure was therefore based on the following model, 132 

iiiiiiiii DXDXDDXY εδδγγβα ++++++= )()( 22112211  (1) 133 

where Yi is the LAI, Xi is the TAI, Di1 and Di2 are the dummy regressors for the 134 

polytomous explanatory variable ‘scanned length of the row’, and XiDi1 and XiDi2 are 135 

the interaction regressors between the TAI and the ‘scanned length of the row’. The 136 

model for the intermediate length (1 m) was used as the reference model (baseline); the 137 

other models were compared with this reference model by using the dummy-variable 138 

regression and an adequate coding for each possible scenario. The analysis was 139 

performed using JMP® Pro 11.0.0 (SAS Institute Inc.), and the models obtained were as 140 

follows, 141 

Scanned lengths of 1 m (Di1 = 0 and Di2 = 0): iii XY εβα ++=  (2) 142 

Scanned lengths of 2 m (Di1 = 1 and Di2 = 0): iii XY εδβγα ++++= )()( 11  (3) 143 

Scanned lengths of 0.5 m (Di1 = 0 and Di2 = 1): iii XY εδβγα ++++= )()( 22  (4) 144 

 145 

Results and discussion 146 

Figure 2 shows the three models obtained. In each case, the LAI was estimated from the 147 

TAI using a linear regression model. The approach was to estimate the LAI of the 148 

vineyard using the mobile terrestrial laser scanner from either side of the row, as 149 

demonstrated in Arnó et al. (2015). Besides the goodness of fit (R2 between 0.67 and 150 

0.73), a very interesting trend appeared in that the slope of the regression line increases 151 

as the scanned length of the row decreases. However, contrary to the expected result, 152 

the behaviour of the intercept of the regression line was just the opposite of that shown 153 

by the slope, and the model for the scanned lengths of 0.5 m was the only one with a 154 

negative intercept value. 155 



 156 

Fig 2 Linear regression models for estimating LAI in a vineyard according to the 157 
scanned length of the row: (a) 2 m, (b) 1 m, and (c) 0.5 m 158 
 159 

 As shown in Figure 1, the point cloud was projected onto a grid of cells in a 160 

plane orthogonal to the direction of the scanner’s movement. The influence of the 161 

scanned length on the LAI estimation models can be interpreted by analysing Figure 3, 162 

where the obtained point clouds and their projections are shown for three different tests 163 

corresponding to each of the three evaluated lengths. As expected, a larger number of 164 

points was obtained when the scanned length increased because the sensor provided an 165 

increased number of scans (the horizontal scanning resolution remained the same), and 166 

this increased the likelihood of intercepting vegetation. High values of TAI correspond 167 

to a large number of intercepted points spread over a large cross-sectional area. 168 

Therefore, and in accordance with Figure 3, the TAI decreases as the scanned length 169 

decreases because of the reduced number of points and the reduced projected area of the 170 

polar grid occupied cells. In such cases, the regression coefficient should be increased to 171 

properly estimate the LAI. The remaining question is whether the models are 172 

significantly different. 173 

 174 
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 178 

Fig 3 Projected point clouds for three different scanned lengths of the row: (a) 2 m, (b) 179 
1 m, and (c) 0.5 m. The shaded area indicates the progressive reduction of the cross-180 
sectional area of the canopy. Simulated scans along the row in the Oxz plane (bird’s eye 181 
view) are shown for the three scanned lengths: (d) 2 m, (e) 1 m, and (f) 0.5 m. By 182 
decreasing the scanned length of the row (2 to 0.5 m), there are fewer points that 183 
intercept and penetrate the canopy. As a result, the cross-sectional area occupied by 184 
these points decreases (area seen in the Oxy plane), and therefore the cross-sectional 185 
area not intercepted by the laser beam (shaded area) increases. 186 

 187 

 Table 1 shows results of the dummy regression. It is to be noted that the models 188 

are not significantly different except for that based on scanned lengths of 0.5 m where a 189 

regression line with a large slope was found. Again, this result seems reasonable given 190 

the little difference between projected areas corresponding to lengths of 1 m and 2 m 191 

(Fig. 3). This finding may be important in optimizing the use of MTLS under field 192 

conditions. Focused on obtaining maps of the LAI in vineyard (Llorens et al. 2011b), 193 

the user of this technology requires not only a reliable model but, also, a model that can 194 

be reliably applied although the scanned length of the row can vary within certain 195 

limits. Under field conditions, it is very difficult to maintain a constant scanned length 196 



for all sampling points. A single model that covers a range of scanned lengths from 1 m 197 

to 2 m is ideal for simplicity and because the number of sampling points with scanned 198 

data will be sufficient for building a map of the LAI of a vineyard. Moreover, the 1 or 2 199 

m long sampling sections do not necessarily need to coincide with the position of the 200 

trunks, as vineyards are usually trained in trellis continuous systems. In conclusion, 201 

using MTLS on lengths of 0.5 m is not ideal. 202 

 203 

Table 1 Statistical analysis of dummy-regression models for LAI estimation in a 204 
vineyard for different scanned lengths of the row (2 m, 1 m, and 0.5 m) 205 

 Model Term Estimate Standard error t ratio 
 

p > t 

LAI-1 m (baseline) Intercept (α) 0.0888 0.1439 0.62 0.5380 
LAI-1 m (baseline) Xi (β) 1.0908 0.1146 9.52 <0.0001 

LAI-2 m Di1 (γ1) 0.3110 0.2379 1.31 0.1933 
LAI-0.5 m Di2 (γ2) -0.3748 0.1941 -1.93 0.0555 
LAI-2 m XiDi1 (δ1) -0.2714 0.1866 -1.45 0.1483 

LAI-0.5 m XiDi2 (δ2) 0.4241 0.1614 2.63 0.0096* 
*Significant coefficient compared to the baseline. 206 
 207 

 Another issue that requires further analysis is the intercept of the regression line. 208 

Ideally, a negative intercept is expected to better fit the model in the case of using 209 

MTLS in leafless vines (LAI = 0) as there is a possibility that the laser beam impacts the 210 

woody structure. However, this effect can probably be different for leafless vines that 211 

have different woody structures (Arnó et al. 2013). Table 2 shows the resulting models 212 

of the regression analysis. The intercept reached a positive value but remained close to 213 

zero in both models. On the other hand, it is interesting to note that the TAI 214 

underestimates the actual values of LAI by almost 10% in one case, and by a little more 215 

than 50% in the other case, as happened in similar studies for the same lengths (Arnó et 216 

al. 2013). This highlights the importance of using appropriate regression coefficients to 217 

prevent deviations that may be important if the scanned length of the row is reduced. 218 

Moreover, further studies are required to refine the models considering the effect of the 219 



cultivar or the training system on the intercept and slope of the regression lines obtained 220 

for lengths of 1–2 m.  221 

 222 

Table 2 Regression models for estimating leaf area index in a vineyard (cv. Syrah) 223 
using different scanned lengths of the row  224 

Type of scanned length Regression model 
1 m to 2 m TAI09.109.0LAI ×+=  

0.5 m TAI51.109.0LAI ×+=  
TAI: Tree Area Index 225 
 226 
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