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ABSTRACT 17 

The aim of this work was to study the influence of biopolymer (alginate-ALG; chitosan-18 

CHI) charge on the formation of multilayer nanofilms by the layer-by-layer (LbL) 19 

technique. The electrical charge of ALG and CHI (high, medium or low) was modulated 20 

by adjusting the pH of biopolymer solutions. The amount of biopolymer deposited in 21 

multilayers depended on the charge of ALG and CHI solutions. The lower the charge 22 

the higher the deposition rate due to the higher number of biopolymer molecules needed 23 

to neutralize the previous layer. Medium and low charge biopolymers led to a drastic 24 

change in the wettability of multilayers, being ALG layers strongly hydrophilic and CHI 25 

layers strongly hydrophobic. The SZP alternatively changed from negative to positive 26 

using ALG or CHI. This effect was more pronounced using highly charged 27 

biopolymers. Results obtained in this study evidenced that the multilayers properties 28 

can be tuned by controlling the biopolymer electrical charge.  29 

KEYWORDS: layer-by-layer, sodium alginate, chitosan, multilayers, electrostatic 30 

deposition 31 
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INTRODUCTION 33 

Over the past few years, there has been a growing interest in nanotechnology as a 34 

versatile tool to design new types of materials. Multilayer nanofilms formed by the 35 

layer-by-layer (LbL) electrostatic deposition have been extensively used as a simple 36 

strategy to coat and functionalize the surface of materials with different applications in 37 

biomedicine, pharmacology and biomaterials science, among others. In the food sector, 38 

multilayer nanofilms offer a wide range of interesting applications such as thin edible 39 

coatings, functionalization of food packaging surfaces or encapsulation of food 40 

bioactive compounds with controlled release under certain conditions 
1–3

. 41 

The LbL technique is based on the assembly of several thin layers by alternating the 42 

adsorption of oppositely charged polyelectrolytes on a charged substrate. The LbL 43 

process is mainly driven by electrostatic forces, although other interactions such as 44 

hydrogen bounding, hydrophobic and van der Waals forces may intervene 
4
. Each 45 

deposited layer leads to a charge overcompensation that has two important 46 

consequences: i) the repulsion of equally charged molecules and thus self-regulation of 47 

the adsorption and restriction to a single layer and; ii) the formation of a new layer by 48 

the adsorption of oppositely charged molecules on the top of the previous layer 
5
. This 49 

process results in the formation of multilayer nanofilms of 10-100 nm per layer, and the 50 

average thickness is determined by the number of layers of the film.  51 

A variety of polysaccharides could be used to form edible multilayer nanofilms. 52 

Alginates are unbranched polysaccharides extracted from marine brown algae 53 

consisting of (1→4) linked β-D-mannuronic acid and α-L-guluronic acid residues. In 54 

aqueous solutions, alginates behave as polyanions (pKa ≈ 3.6) due to the presence of -55 

COOH groups along the molecular chains that can be deprotonated to confer negative 56 

charges 
6
. Chitosan is a copolymer naturally abundant in the exoskeleton of crustaceans, 57 
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fungal cell walls and in other biological materials. It is mainly composed by β-(1-4)-2-58 

acetamido-D-glucose and β-(1-4)-2-amino-D-glucose units and it is generally described 59 

in terms of degree of deacetylation. Chitosan acts as a cationic biopolymer (pKa ≈ 6.2) 60 

in acidic conditions due to the protonation of -NH2 groups in the chemical structure. 61 

The formation of stable complexes between alginate and chitosan through electrostatic 62 

interactions has been described by other authors 
7,8

.  63 

In spite of the simplicity of the LbL technique, processing parameters such as coating 64 

material concentration, washing and drying steps, ion concentration, and pH of 65 

solutions may influence the adsorption kinetics of the films 
4,9

. The solution pH is an 66 

important factor to be considered since its variation alters the dissociation of charged 67 

polysaccharides and thereby, the magnitude of the electrical charge. This fact directly 68 

affects the electrostatic interactions between polysaccharides, changing the adsorption 69 

process and the film properties. The assembly of alginate and chitosan through the 70 

layer-by-layer technique has been previously described for biomedical approaches 
10–12

. 71 

However, scarce systematic studies have reported the effect of the electrical charge of 72 

both biopolymers modulated by pH for food purposes. The study of the deposition 73 

during the LbL process is crucial to understand the assembly mechanism and optimize 74 

the conditions for the use of nanofilms in practical applications. The objective of this 75 

work was to obtain multilayer nanofilms based on natural polymers such as alginate and 76 

chitosan and evaluate the effect of the electrical charge of the biopolymers solutions on 77 

the formation and film properties of multilayers through the layer-by-layer assembly 78 

method. 79 

MATERIALS AND METHODS 80 

MATERIALS 81 
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Quartz slides (suprasil
®

 300) were purchased from Hellma analytics (Müllhein, 82 

Germany) and polyethylene terephthalate (PET) sheets were obtained from Isovolta 83 

(Barcelona, Spain). Reactives for substrate aminolization such as, 3-84 

aminopropyltriethoxysilane (APTS, 99 %), N,N-Dimethylformamide (DMF, 99,8 %) 85 

and 1,6-Hexanediamine (99,5 %) were purchased from Acros Organics (Geel, 86 

Belgium). Piperidine (99 %) was purchased from Sigma-Aldrich (Madrid, Spain). 87 

Methanol and bromophenol blue (BPB) were obtained from Fisher Scientific 88 

(Loughborough, UK). Ethanol Absolute and 1-propanol were purchased from Scharlau 89 

(Barcelona, Spain). Hydroclorhidric acid (HCl, 35-38%) was purchased from POCH 90 

(Gliwice, Poland). Chitosan (CHI, high molecular weight, deacetylation degree >75%) 91 

and sodium alginate (ALG; manucol
®

 DH) were purchased from Sigma-Aldrich 92 

(Madrid, Spain) and FMC biopolymers (Scotland, UK), respectively. The pH of the 93 

polysaccharide solutions was adjusted with lactic acid (88-90%) and sodium hydroxide 94 

(NaOH) purchased from Scharlau (Barcelona, Spain). Deionized water (18,2 mΩ, Milli-95 

Q ultrapure water system, Millipore) was used in all film-forming solutions and 96 

washing steps for the nanofilms fabrication.   97 

SUBSTRATES PRE-TREATMENT 98 

Quartz slides were cleaned with a Hellmanex
® 

solution 2% (v/v) for 2 hours. 99 

Substrates were immersed in APTS (1% v/v) at 25 ºC during 30 minutes to induce a 100 

positive charge on the quartz surface, and rinsed with copious deionized water in order 101 

to remove reactive excess 
13

. Quartz slides were left in a desiccator containing silica gel 102 

until nanofilms were assembled. 103 

PET sheets were functionalized according to a method described by ref 
14

 with some 104 

modifications. PET rectangles (6 cm x 2 cm) were cleaned in propanol/water 1:1 105 

solution during 3 hours. Briefly, the sheets were submerged in tubes containing 10 mL 106 
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of 1,6-hexanediamine/methanol solution (1 M) at 50 ºC during 4 hours to induce the 107 

aminolysis reaction, giving a positive charge to the PET surface. PET substrates were 108 

removed from the tubes and washed with methanol, and then dried in vacuum at room 109 

temperature (25 ºC) for 12 hours. The PET sheets were treated with HCl 0,1 M during 3 110 

hours at 25ºC to protonate amine groups attached to the material surface. After this 111 

process the rectangles were left in vacuum for at least 12 hours and 25ºC. 112 

POLYELECTROLYTE SOLUTION PREPARATION 113 

Sodium alginate and chitosan solutions were prepared at a concentration of 0.5 % 114 

w/w. Sodium alginate was dissolved in ultrapure water and chitosan was prepared in 115 

lactic acid solution (1 % v/v) to promote protonation of amino groups in the biopolymer 116 

molecule and therefore increase its solubility. Polysaccharide solutions were left under 117 

agitation during 5 hours. Alginate and chitosan solutions with different electrical 118 

charges (high, medium and low) were prepared by adjusting the pH of the solutions 119 

using lactic acid or NaOH solutions (Table 1). 120 

ZETA POTENTIAL 121 

The electrical charge of ALG and CHI solutions was evaluated by phase-analysis 122 

light scattering using a laser diffractometer (Zetasizer NanoZS, (Malvern Instruments 123 

Ltd, UK). 124 

LAYER-BY-LAYER ASSEMBLY 125 

Nanofilms were assembled on two types of substrates. Quartz slides were used to 126 

obtain the UV-visible spectra and PET rectangles were used for the other 127 

determinations. The previously cleaned and positively charged substrates were 128 

submerged in alginate solutions in order to form the first layer. Substrates remained in 129 

this solution during 20 min. After the adsorption process, samples were rinsed twice in 130 

ultrapure water at the same pH of alginate solutions for 5 min. This step was necessary 131 
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to remove the sodium alginate molecules that were not bound to the substrate. 132 

Straightaway, substrates were immersed in chitosan solutions for 20 min to obtain the 133 

second layer. In this step, the positively charged chitosan molecules were adsorbed to 134 

the previous negatively charged alginate layer by means of electrostatic interactions. 135 

After this, the process was followed by two rinse steps with ultrapure water at the pH of 136 

chitosan solutions for 5 min. Alternate deposition of layers was repeated to obtain a 137 

multilayered structure film. For the purpose of this work, 10 layers were considered as a 138 

reasonable number to study the buildup process and the differences in film architecture 139 

according to the pH used during the assembly. When the deposition of layer was 140 

complete the nanofilms were dried using a nitrogen gas flow.  141 

CHARACTERIZATION OF SUBSTRATES 142 

Determination of the concentration of amine groups 143 

After the aminolysis reaction, the concentration of amine groups introduced to the 144 

PET sheets and quartz slides were analyzed with a method previously reported by ref 
15

. 145 

The substrates were immersed in 25 mL of BPB/DMF solution (0,1 mg/mL) for 30 146 

minutes. Then rectangles were removed from the previous solution and washed with 147 

copious ethanol to remove unbounded dye. PET sheets were treated with 10 ml of 148 

piperidine/DMF solution (20 %), and the absorbance of the solution obtained was 149 

measured at λ = 605 nm. The surface concentration of amine groups was calculated 150 

from Lambert’s-Beer law following equation 1: 151 

� = �. �. �          (1) 152 

Where � is the absorbance of the sample, � is the molar extinction coefficient 153 

(BPBε605 = 91,800 L.mol
-1

.cm
-1

), � is the path length (1 cm) and � is the sample 154 

concentration. The concentration of amine groups found in untreated PET and quartz 155 

slides was 0.04 ± 0.01 nmol/cm
2
, and after being treated, final concentrations increased 156 
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up to 0.63 nmol/cm
2
 and 0.11 ± 0.01, respectively (figure 1). In both cases it could be 157 

confirmed that –NH2 groups were incorporated onto the substrates.  158 

 159 

 160 

Figure 1. Surface concentration of amine groups on untreated PET or quartz substrates 161 

(PET CT and Quartz CT) and after aminolization (PET amino and Quartz amino). 162 

 163 

CHARACTERIZATION OF EDIBLE NANOFILMS 164 

Spectrophotometric measurements 165 

The layer-by-layer assembly of ALG and CHI on quartz slides was monitored using a 166 

UV-visible-NIR spectrometer (V-670, Jasco Corporation, Tokio, Japan). The absorption 167 

spectra of bilayers were obtained. The absorbance of ALG in aqueous solutions is 168 

increased as a function of the biopolymer concentration (Figure 2A). ALG (0.5%) 169 

presented a bell-shaped absorption peak at 200 nm, whereas CHI does not show 170 

appreciable absorbance at that wavelength range (Figure 2B), thus multilayer deposition 171 

was assessed using 200 nm.  172 
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 173 

Figure 2. (A) Absorption spectra of ALG and CHI in aqueous phase at different 174 

concentrations (0.1 – 1 %). 175 

 176 

Surface ζ-potential analysis 177 

The ζ-potential is an important and useful indicator of the electrical charge at the film 178 

surface. The zeta potential of nanofilms after each deposition of layers was determined 179 

using the Zetasizer NanoZS laser diffractometer, (Malvern Instruments Ltd, 180 

Worcestershire, UK) equipped with a surface ζ-potential cell unit (ZEN1020), specially 181 

designed for zeta potential analysis in flat surfaces. Nanofilms formed on PET and 182 

attached to a sample holder were placed between two electrodes of the surface ζ-183 

potential cell. After that, samples were immersed in an appropriated aqueous solution 184 

containing tracer particles. The negative and positive particles were polystyrene latex 185 

particles in buffer solution pH 9 (DTS1235, Malvern instruments) and quaternary 186 

ammonium salts in solution (obtained from fragrance-free fabric conditioner), 187 

respectively. The electrical charge of these tracer particles was opposite to the charge of 188 

the surface to be analyzed. The tracer ζ-potential was measured by phase-analysis light 189 

scattering (PALS) at 5 distances from the sample surface. By plotting the zeta potential 190 
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as a function of displacement from the surface, the software equipment extrapolated this 191 

relationship to zero displacement to obtain the surface ζ-potential of nanofilms. 192 

Water contact angle measurements 193 

The contact angle of the nanofilms after each layer deposition was determined using a 194 

DSA25 Krüss goniometer (Krüss GmbH, Hamburg, Germany) equipped with an image 195 

analysis software (Drop Shape Analysis System, Krüss GmbH, Germany). By applying 196 

the sessile drop method, five deionized water drops of 1 µL were created at the tip of the 197 

syringe and carefully placed along the PET sheet covered with nanofilms. 198 

Measurements were conducted immediately after drop deposition and tests were carried 199 

out at room temperature. The contact angle was calculated using the Young-Laplace fit. 200 

SEM imaging 201 

SEM imaging measurements were performed using a J-6510 scanning electron 202 

microscope (JEOL Ltd, Tokio, Japan). Aluminum stubs containing PET covered with 203 

nanofilms were treated with carbon and metalized with evaporated gold, using a SCD 204 

050 sputter coater (Balzers Union AG, Liechtenstein). This step was necessary to confer 205 

electrical conductive properties to the substrate with nanofilms. Samples were analyzed 206 

with an acceleration voltage of 5 kV. 207 

Thermal properties 208 

The thermal properties of ALG and CHI nanofilms fabricated on PET substrates were 209 

determined using a differential scanning calorimeter (DSC822e, Mettler Toledo S.A.E., 210 

Barcelona, Spain). Samples were heated from 0 ºC to 400 ºC at a rate of 10 ºC/min 211 

under an atmosphere of inert nitrogen. The glass transition temperature (Tg), the melting 212 

temperature (Tm) and the enthalphy of melting (ΔHm) were reported from the 213 

thermograms. The melting curve was integrated using StartE v.11 software (Mettler 214 

Toledo S. A. E., Barcelona, Spain), in order to obtain the enthalpy of melting. 215 
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Statistics  216 

Experiments were repeated twice and samples were analyzed by triplicate. The 217 

average and standard deviations of data were presented. ANOVA analysis was 218 

performed using Statgraphics plus 5.1 software (Statistical Graphics Co., Rockville, 219 

MD, EE.UU) and differences among average results were assessed using Fisher’s least 220 

significant difference (LSD) method with a significance level of 95 %. 221 

RESULTS AND DISCUSION 222 

EFFECT OF THE BIOPOLYMER CHARGE ON THE BUILDUP 223 

The pH of the biopolymer solution determines the ionization of the surface groups on 224 

a macromolecule and therefore the final surface charge density
17

. ALG and CHI are 225 

weak polyelectrolytes, thus the degree of dissociation of their functional groups, and in 226 

turn, the electrical charge can be controlled by changing the pH of the solutions. In this 227 

study, three combined pH settings for ALG and CHI were selected in order to obtain 228 

polysaccharide solutions with a low, medium and high electrical charge during the 229 

formation of multilayers. Table 1 shows the electrical charge expressed by ζ-potential of 230 

ALG and CHI solutions at different pH conditions corresponding to three different 231 

levels of charge. In the case of ALG, the ζ-potential values of high, medium and low 232 

charge polysaccharides used for the formation of nanofilms were -87.4 mV, -77.3 mV 233 

and -41.3 mV at pH 7, 5 and 3, respectively. Similarly, the ζ-potential of high, medium 234 

and low charge CHI chains in aqueous solutions were 77 mV, 68 mV and 27 mV at pH 235 

3, 4 and 7, respectively. The change in the degree of ionization of both biopolymers can 236 

be explained by the protonation or deprotonation of the charged moieties, such as –237 

COOH and -NH2, under the presence of different concentrations of H
+
 and OH

-
 ions in 238 

the surrounding media. 239 

Table 1. Electrical properties of biopolymer solutions at different pH conditions. 240 
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Levels of electrical charge Polysaccharide – pH ζ-potential (mV) 

High 
ALG – 7 -87.4 ± 2.1 

CHI – 3 77.0 ± 4.0 

Medium 
ALG – 5 -77.3 ± 1.4 

CHI – 4 68.0 ± 4.0 

Low 
ALG – 3 -41.4 ± 1.6 

ALG - 7 27.0 ± 4.0 
Results are presented as the average ± standard deviation. ALG: alginate solutions, and CHI: chitosan solutions.

 241 

To study the effect of the biopolymer electrical charge on the buildup of multilayers, 242 

absorbance spectra in the UV-visible range were obtained (Figure 3). Absorbance is, in 243 

principle, directly proportional to the amount of material deposited on the substrate after 244 

the formation of multilayers. The spectra of (ALG-CHI)10 multilayer nanofilms showed 245 

absorbance around 200 nm, although, there is not a bell-shape peak at this absorbance, 246 

probably due to the formation of molecular complexes between ALG and CHI during 247 

the LbL procedure that could have influenced the optical properties. In fact, it is known 248 

that layers of oppositely charged polyelectrolytes form molecular blends that might 249 

present an intermediate molecular spectrum
17

. 250 

The absorbance increased as a function of the number of layers, regardless of the 251 

electrical charge of the polysaccharides chains (Figure 3A, 3B, 3C). This fact evidenced 252 

the deposition of material onto the substrate, thus confirming the effective buildup of 253 

nanolayers with the LbL technique by oppositely charged biopolymers. Nevertheless, 254 

the electrical charge of polysaccharides significantly affected the amount of material 255 

deposited in nanofilms. When multilayers were assembled with low charge ALG and 256 

CHI chains, the absorbance was significantly higher after each layer formation 257 

compared to the multilayers formed from medium or high charged biopolymers (Figure 258 

3D). After 10-layers, nanofilms assembled with high, medium and low charge ALG and 259 

CHI chains exhibited significant differences in absorbance values, being of 0.2690 ± 260 
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0.016, 1.3 ± 0.4 and 1.55 ± 0.05, respectively. The differences observed in the 261 

absorbance of multilayer nanofilms depending on the electrical charge of the 262 

polysaccharide might be due to the different molecular conformations of the 263 

biopolymers under pH conditions selected. ALG presented a high electrical charge at 264 

pH 7 whereas CHI presented a high charge at pH 3. At these pH conditions, carboxylic 265 

groups of ALG and amino groups of CHI had a strong intra molecular repulsion 266 

exhibiting a well-extended molecular conformation. When the net charge is rather high, 267 

less amount of material is required to overcompensate surface charge during the 268 

adsorption process. On the contrary, when ALG and CHI have relatively low charge, at 269 

pH 3 and 7 respectively, most of the carboxylic groups of ALG and amino groups of 270 

CHI become neutral and the molecules tend to fold adopting loopy conformations. In 271 

consequence, greater amounts of material are required to achieve the charge reversal 272 

during the assembly process, thus increasing absorbance. In fact, this is what is typically 273 

observed when the multilayers assemblies are carried out with weak polyelectrolytes at 274 

different pH conditions 
18,19

. For poly(allylamine hydrochloride) and poly(acrylic) acid 275 

multilayers, the film thickness dramatically decreases when the pH is between 6.5-7.5, 276 

and both polyelectrolytes are fully charged. However, if one of the two polyelectrolytes 277 

is partially charged at certain pH the film thickness is increased. Moreover, Pargaonkar 278 

et al.,
20

 and Ai et al.,
21

 observed that the thickness of multilayers made of 279 

poly(dimethyldiallyl ammonium chloride), sodium poly(styrenesulfonate) and gelatin 280 

on drug particles increased when gelatin in acidic pH was incorporated, and that 281 

behavior was attributed to changes in its molecular conformation. Other authors have 282 

described that thickness of the adsorbing layer can be modulated by changing the pH of 283 

the polyelectrolyte solution
11

. 284 
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Additionally, the growth rate of nanofilms was evaluated (Figure 3D). Multilayers 285 

assembled with high charge polysaccharides exhibited a linear trend, meaning that 286 

absorbance at 200 nm increased uniformly in each bilayer. Conversely, multilayers 287 

formed from medium and low charge polysaccharides exhibited an exponential growth 288 

trend, which is characterized by an increasing rate of mass deposition for each 289 

additional layer with the number of layer depositions. A polyanion/polycation system 290 

that grows exponentially under certain conditions can also grow linearly when 291 

deposition conditions are modified 
22

. A linear growth indicates that charged molecules 292 

in the solution interact exclusively with the outer layer of the multilayer film. However, 293 

when exponential growth occurs one of the polyelectrolytes is able to diffuse within the 294 

film structure toward the outer layer, and these free chains can interact with the 295 

adsorbing solution contributing to the film growth 
23

. Therefore the results observed in 296 

the present work are in agreement with other studies, confirming that the charge density 297 

of the polysaccharide solution plays a key role in their capacity to form multilayers by 298 

the LbL technique 
24

. Furthermore, changes in the growth type as a function of pH have 299 

been observed in multilayers made with polymers that behave as weak 300 

polyelectrolytes
25

.  301 

 302 
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 304 

 305 

 306 

Figure 3. UV-visible spectra of sequential adsorptions of bilayers (2, 4, 6, 8 or 10 307 

layers) at (A) low, (B) medium and (C) high electrical charge, according to table 1. (D) 308 

Absorbance at 200 nm of nanofilms as a function of the number of layers. 309 
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 310 

3.2. EFFECT OF THE BIOPOLYMER CHARGE ON THE SURFACE ζ-311 

POTENTIAL  312 

An important property of multilayers formed by electrostatic interactions is the ζ-313 

potential, which is defined as the potential at the hydrodynamic slipping plane adjacent 314 

to the boundary phase 
26

. To assess the effect of the polysaccharide charge on the 315 

electrical properties of nanofilms, the surface ζ-potential (SZP) was measured after each 316 

layer deposition (Figure 4). Initially, the aminolyzed PET was positively charged (49 ± 317 

7 mV). After the first layer formation, the charge magnitude switched to negative in 318 

assemblies formed with high and medium charge ALG chains, suggesting that surface 319 

was completely saturated by the adsorbing molecules. Nevertheless, the first layer 320 

formed from low charge ALG chains did not show a change in SZP sign, although the 321 

magnitude decreased down to 5.0 ± 2.4 mV, which can be associated with a sparse 322 

coverage of the substrate. In this case, the positive SZP value may result from 323 

contributions of the low residual charge of ALG chains and the PET surface. Literature 324 

reports that a minimum charge density is required for the formation of multilayers and 325 

below this threshold, the charge reversal is not sufficient to achieve charge 326 

overcompensation 
4,9

. However, despite the low charge of the first ALG layer, the 327 

results evidence that the formation of multilayers is possible and even presents an 328 

increased deposition when using low charge biopolymers as discussed earlier. In this 329 

line, the electrostatic interactions were not necessarily the main driving force 330 

responsible for the multilayers formation. The non-Coulombic interactions such as 331 

hydrogen bonding between neutral molecules, van der Waals forces or steric 332 

interactions, play an important role on the process of adsorption of multilayers. The 333 

impact of non-electrostatic interactions on the deposition of multilayer systems of 334 

cellulose and chitosan have been recently described in detail by other authors
27

. 335 
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Moreover, the formation of multilayers from low charge polyelectrolytes have been 336 

reported, attributing this fact to the presence of synergistic non-electrostatic interactions 337 

that contribute to the layer formation 
28,29

. After the consecutive addition of new layers 338 

of the oppositely charged biopolymers, the SZP of the subsequent layer presented a 339 

positive charge (CHI layers) or negative charge (ALG layers). This supports the fact 340 

that each layer adsorption leads to a charge reversal, providing a new opposite charge 341 

required to continue further adsorption steps. These results are consistent with the ζ-342 

potential measured by Richert et al.,
30

 on biopolymer-based (hyaluronan/chitosan) 343 

multilayers and by Ladam et al.,
31

 on synthetic polymer-based (poly(allylamine 344 

hydrochloride)/ poly(sodium 4-styrenesulfonate)) multilayers, deposited on flat surfaces 345 

and determined by streaming potential measurements.  346 

The charge of the biopolymer solution significantly affected the SZP of the successive 347 

layers formed. When high and low charge ALG and CHI solutions were used, the ALG 348 

layers (odd) and CHI layers (even) showed significantly more negative or more positive 349 

SZP, respectively, at increasing number of layers. However, this pattern was not 350 

observed for the medium charge biopolymer solutions, where the SZP of increasing 351 

number of ALG or CHI layers was significantly lower (p<0.05). These results are in 352 

concordance with those previously discussed in this work. The layers formed with high 353 

charge polysaccharides may present a greater number of ionizable groups on the surface 354 

that can increase the magnitude of electrical charge. In the case of layers formed with 355 

low charge polysaccharides the high surface charge may be attributed to the greater 356 

amount of polysaccharides chains needed to form the nanolayers that in turn, increase 357 

the number of charged groups on the surface. In all the assemblies the charge magnitude 358 

of even layers was greater than the charge magnitude of the odd layers suggesting a 359 

higher contribution of CHI to the electrical properties of nanofilms. The pH of solutions 360 
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containing biopolymers with ionizable groups could lead to irregular behaviors on the 361 

charge reversal during the LbL deposition. According to Zhang et al.,
32

, the multilayers 362 

composed by hyaluronic acid and collagen followed a similar trend regarding the SZP. 363 

However, the magnitude of SZP remained relatively constant from the 8th layer at the 364 

different levels of charge, suggesting the stability of the system after the deposition of a 365 

certain amount of layers. 366 

 367 

Figure 4. Surface ζ-potential (SZP) of multilayer nanofilms assembled from alginate 368 

(ALG) and chitosan (CHI) at high, medium and low electrical charge (according to table 369 

1).  370 

 371 

3.3. EFFECT OF BIOPOLYMER CHARGE ON THE CONTACT ANGLE  372 

The contact angle is often used to describe the wetting behavior of films. It is defined 373 

as the angle formed at the intersection of the liquid, gas and solid phases 
33

. There is a 374 

balance between the cohesion forces within a liquid and adhesion of a liquid to a solid
34

. 375 

The contact angle that creates a drop of water on the surface of the multilayers provides 376 

meaningful information to describe the hydrophilic or hydrophobic behavior of the 377 

nanofilm. The greater the contact angle value the more hydrophobic the film surface. 378 
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Figure 5 shows the contact angles of the multilayers assembled from biopolymers with 379 

different electrical charge. Water contact angles showed a zigzag trend when nanofilms 380 

passed from ALG-ending layers to CHI-ending layers with low and medium charge, 381 

indicating a pronounced change in the wetting properties of the multilayers. CHI layers 382 

were more hydrophobic, whereas ALG layers presented a strong hydrophilic behavior. 383 

This effect was more pronounce in multilayers formed with low charge biopolymers. 384 

Results are in good agreement with those found by other authors
35,36

. Conversely, no 385 

remarkable differences were observed in the results obtained from multilayers 386 

assembled with high charge polysaccharides (p<0.05), which could be correlated with 387 

the results of absorbance previously discussed (Figure 3). This means that the strong 388 

hydrophobic/hydrophilic interactions observed in multilayers made of medium and low 389 

charge biopolymers can be due to a greater amount of material deposited in each layer 390 

during the assembly process, originating more uniform and structured layers. On the 391 

contrary, the assemblies obtained from high charge polysaccharides did not show 392 

differences in the wetting properties during the sequential formation of new layers and 393 

presented the lower mass adsorption rate as well. This behavior suggests that the 394 

hydrophilic or hydrophobic character of the nanofilms is highly dependent on the 395 

experimental conditions used during the assembly of multilayers. For instance, Fu et 396 

al.,
37

 have reported the strong effect of the film thickness on the wettability of 397 

multilayers made of two natural polyelectrolytes (heparin and chitosan). In thinner 398 

layers, the oppositely charged polysaccharides establish strong interactions originating 399 

well-interpenetrated structures in which the surface properties will be governed by the 400 

properties of the polysaccharide blend resulting in a less stratified multilayer structure. 401 

In thicker layers, the surface composition is rich in the last polysaccharide adsorbed and 402 

the chain segments of the outermost layer dominate the film wetting properties 
31,38

. 403 
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Thus, water contact angles observed in this study are strongly related with the 404 

differences in the amount of polyanion/polycation mass adsorbed during the LbL 405 

procedures. Other factors including the microstructure of multilayers might have an 406 

influence on the wettability. For example, in the work of Deng et al.,
39

 the notable 407 

decrease in water contact angles of star-shaped supramolecule-deposited surface 408 

regarding to pristine polymeric surface coated by multilayers was attributed to a greater 409 

porosity of the first-mentioned surface, thus increasing its hydrophilicity.  410 

On the other hand, contact angles of the outermost layers (CHI) increased as the 411 

electrical charge decreased, indicating an increase in surface hydrophobicity. Similarly, 412 

when the outermost layer was ALG significant differences were observed among 413 

assemblies at low, medium or high electrical charge (p<0.05). Contact angles tended to 414 

decrease as the polysaccharide electrical charge decreased, indicating that film surface 415 

increased their water affinity. These results indicate that the outermost layer and the 416 

thickness of the individual layers govern the wettability of multilayer nanofilms. This 417 

has important implications in the food sector, since multilayer nanofilms can be 418 

designed to provide strong hydrophobic properties in the case of dry food products 419 

sensitive to moisture effects, whereas hydrophilic multilayers can be used in products 420 

that need certain water activity to maintain their freshness. 421 

 422 
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423 

424 

 425 

Figure 5. Water contact angle of multilayer nanofilms assembled from polysaccharides 426 

with different electrical charge; A) low, B) medium and C) high, according to table 1. 427 

Different letters means significant differences between layers (p< 0.05).428 
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3.4. MICROSTRUCTURE 429 

To study the film microstructure, multilayers fabricated from polysaccharides with 430 

medium electrical charge were selected, since the most uniform deposition was observed 431 

based on previous analyses of absorbance, SZP and contact angles. Figure 6A shows the 432 

uncoated PET substrate, where the surface present a smooth appearance. However, the 433 

micrographs taken after the coating PET with 10 layers reveal the presence of a thin 434 

film, thus confirming the formation of multilayers by the layer-by-layer method. 435 

According to the image 6B, multilayer nanofilms present film thickness of 297 nm in 436 

ten layers. The structure shows an appreciably grainy appearance. Additionally, the 437 

cross section of nanofilms (figure 6C) reveals that layers present a solid structure, but it 438 

is not possible to distinguish a nanolayered structure. The topography of the 10-layer 439 

nanofilm was also evaluated (Figure 6D). The film surface was characterized by the 440 

presence of small clusters with a globule-like appearance connected between them, 441 

probably due to formation of polyelectrolyte complexes of ALG/CHI onto the surface 442 

during the LbL assembly process 
8
.  443 
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 444 

Figure 6. SEM images obtained from multilayers formed from ALG and CHI solutions 445 

at medium electrical charge. (A) Cross-sectional view of PET without coating. (B) 10-446 

layer nanofilms formed onto PET, film thickness = 297 nm. (C) Cross section of 447 

multilayer nanofilms. (D) The topography of films at x2000. 448 

 449 

3.5. THERMAL PROPERTIES 450 

Thermal properties were evaluated in assemblies formed with medium charge 451 

polysaccharides considering the same criteria used for SEM analyses. Thermograms of 452 

uncoated and coated PET containing 10-layer nanofilms are presented in Figure 7. The 453 

thermal profile of PET coated by the alginate and chitosan multilayers showed a similar 454 

behavior regarding to uncoated PET. The glass transition temperature (Tg) and melting 455 

temperature (Tm) were 78 ºC and 257 ºC; whereas the Tg and Tm found for uncoated 456 
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PET was 78 ºC and 255 ºC, respectively. The latter results of uncoated PET are in good 457 

agreement with those reported by other authors 
40–42

. The presence of multilayers on the 458 

PET film did not significantly affect the Tg and Tm obtained in the DSC analysis, 459 

probably due to differences in the mass ratio between the PET film and multilayer 460 

nanofilms, predominating the PET thermal properties. The glass transition temperature 461 

is reversible and occurs when an amorphous material is heated or cooled in a certain 462 

temperature range. Furthermore, the melting temperature is the point where the material 463 

changes from solid to liquid phase due to an increase in molecular mobility
43

. These 464 

thermal properties are especially relevant from a practical point of view in materials 465 

coated with biopolymer-based multilayers because they greatly determine the 466 

mechanical behavior of the material.  467 

Moreover, the melting enthalpy (∆Hm) of coated PET with multilayers slightly 468 

increased compared to the melting enthalpy of uncoated PET. This could be related to 469 

the ability of multilayers of acting as barrier to the diffusion of gases originated by the 470 

thermal degradation process, from the bulk to the surface of the film, contributing to 471 

slow down the polymer degradation
44

. In addition, the surface modification by the 472 

carboxylic groups and amino groups from CHI and ALG, or an increase in the polymer 473 

crystallinity may have a contribution to the enthalpy changes, as it was previously 474 

discussed in the thermal properties of PET coated with five multilayers of alginate and 475 

chitosan
45

.  476 
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 477 

Figure 7. DSC thermograms and thermal properties of PET uncoated and PET coated 478 

with (ALG-CHI)10 multilayer nanofilms formed from medium charged biopolymers, 479 

according to table 1. 480 

 481 

3.6. CONCLUSIONS 482 

The effect of the electrical charge of ALG and CHI on the formation of multilayer 483 

nanofilms was investigated. A linear growth type was characteristic of nanofilms 484 

assembled from highly charged ALG and CHI layers, however, as the polysaccharides 485 

charge diminished nanofilms exhibited an exponential growth type, which was 486 

associated to the different electrostatic and non-electrostratic interactions between 487 

polysaccharides under the pH conditions selected in this study. The amount of material 488 

adsorbed substantially increased when low charge polysaccharides were used, and 489 

conversely, mass adsorption was lower when the polysaccharides were fully charged. 490 

SZP of multilayers switched from negative (in ALG layers) to positive (in CHI layers) 491 

confirming the LbL deposition. Differences in SZP with regard to the charge of 492 

polysaccharides were also found. Wetting properties were affected by the electrical 493 

charge of ALG and CHI. A correlation between the water contact angles and the amount 494 
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of material absorbed was observed. From these results it can be conclude that the 495 

buildup of multilayers can be easily modulated by controlling the electrical charge of 496 

the oppositely charged polysaccharides to reach specific properties. In addition, this 497 

study provides valuable knowledge for the rational selection of the experimental 498 

conditions needed to obtain multilayers from food-grade ingredients, and could 499 

represent a starting point for further applications in food products. 500 
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