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Abstract 

Brown rot on peaches and nectarines caused by Monilinia spp. results in 

significant economic losses in Europe. Experiments were conducted to study the 

effects of temperature (0-33ºC) on the temporal dynamics of decay and mycelium 

development and the subsequent sporulation on peaches and nectarine fruit infected 

by M. laxa and M. fructicola. The rates of decay and mycelium development 

increased with temperature from 0ºC to 25ºC for both Monilinia species. At 0 ºC, 

decay was faster for M. laxa (0.20 cm2 days-1) than for M. fructicola (0.07 cm2 days-

1); indeed, M. laxa was able to develop mycelia and sporodochia, but M. fructicola 

was not. At 4 and 20 ºC, there were no differences in decay and mycelia development 

between the two Monilinia species. When temperature increased from 25 to 33 ºC, the 

rates of fungal decay and mycelium development decreased. At 30 and 33 ºC, 

M. fructicola decayed faster (0.94 and 1.2 cm2 days-1, respectively) than M. laxa 

(0.78 and 0.74 cm2 days-1, respectively) and could develop mycelia and produce 

sporodochia, whereas M. laxa failed at 33 ºC. These results indicated that 

M. fructicola is better adapted to high temperatures, whereas M. laxa is better adapted 

to low temperatures. These results can be used to predict the relative importance of 

the two species during the season at a given site and to improve management 

strategies for brown rot in areas where both species are present.  

1. Introduction

Brown rot caused by Monilinia spp. can result in significant economic losses 

worldwide both in peaches [Prunus persica (L.) Batsch.] and nectarines [Prunus 



persica var nectarine (Ait) Maxim.] (Bryde and Willetts, 1977). In the EU, brown rot 

on stone fruit is caused primarily by M. laxa (Aderhold and Ruhland) Honey, and 

recently, M. fructicola (G. Winter) has become more important in southern Europe 

(Villarino et al., 2013). Catalonia is the most important region for stone fruit 

production in Spain, supplying 47% of peaches and 38% of nectarines marked for 

export (DAAM, 2013). 

M. laxa and M. fructicola overwinter primarily as mycelia on mummified fruits; 

in early spring when the weather conditions become favourable, overwintered mycelia 

sporulate on mummified fruit and produce conidia, which are dispersed primarily by 

wind (Bryde and Willetts, 1977). Conidia can infect blossoms and both immature and 

mature fruit (Biggs and Northover, 1985, Gell et al., 2009). Healthy fruit infected by 

both of the species usually remain asymptomatic (latent), and visual decay symptoms 

only develop during the late ripening period and post-harvest (Gell et al., 2008, Luo et 

al., 2001, Luo and Michailides, 2003). Although fruit infection occurs primarily in 

orchards, pre- and postharvest control is often not effective due to the limited use of 

fungicides at orchards and the ability of Monilinia spp. to become resistant to 

fungicides (Larena et al., 2005). During cold storage, latent infections become 

symptomatic and decay spreads by contact with adjacent fruits. In addition, 

sporulation may occur on rotten fruit, leading to secondary inocula infecting healthy 

fruits in the storage. In addition, the infected tissue of decaying fruits may remain 

adhered to containers, which can become a source of inoculum in packing houses and 

cold storage (Tian and Bertolini, 1999). 

Temperature and wetness duration have been reported as the two most important 

abiotic factors influencing conidial germination (Casals et al., 2010, Xu et al., 2001), 

fruit infection (Biggs and Northover, 1988, Phillips, 1984, Corbin, 1962), rot 

development and sporulation  (Bannon et al., 2008, Gell et al., 2008). Although many 

studies have been carried out to determine the effect of temperature on brown rot 

infection, colonization, and sporulation on stone fruits, the effect is usually studied 

within a narrow range of temperature and with only a single species included in a 

given study. In addition, many studies on Monilinia behaviour have been conducted 

on Petri dishes. However, the mycelium area on fruit may not be the same as the 

decay area, and mycelium development may not lead to sporulation. 

Tamm and Flückiger (1993) reported that the optimum temperature for the 

growth of M. laxa is 25 ºC, but it is even able to grow below 0 ºC in vitro. 

M. fructicola grows faster and sporulates more abundantly than M. laxa when the 

temperature is in the range of 15-25 ºC (Bryde and Willetts, 1977, De Cal and 



Melgarejo, 1999). Villarino et al. (2010) reported that M. fructicola is more virulent 

and has a greater fitness than M. laxa because it has a higher percentage of conidium 

germination and forms longer germ tubes. Although M. laxa sporulates at 5-10 ºC, it 

has shorter germ tubes (De Cal and Melgarejo, 1999). 

Recently, M. fructicola has been established in many stone fruit production 

regions in Europe. To develop effective management strategies for brown rot in these 

areas, we need to understand the relative effect of a wide range of temperatures on 

M. fructicola and M. laxa. The objective of the present study was to evaluate the 

effect of temperature on (i) fruit decay and mycelium development and 

(ii) sporulation on detached peaches and nectarines inoculated with M. laxa and 

M. fructicola individually. 

2. Materials and Methods  

2.1 Fruits 

Fruits from the peach variety ‘Baby Gold 9’ and ‘Summer Rich’ and nectarine 

variety ‘Albarret’ and ‘Diamond Ray’ were sourced from an organic orchard in Lleida 

(Catalonia). Fruits were picked at an optimum stage of commercial maturity, and 

immediately after harvest, healthy fruits of approximately the same size were selected 

manually for inclusion in the experiments. Fruits were immersed in 10% commercial 

chlorine for 1 min, rinsed with tap water for 3 min and, finally, air-dried for 24 hours 

before artificial inoculation. 

2.2 Fungal isolates and inoculum preparation 

Two fungal strains (M. fructicola - CPMC1, and M. laxa – CPML2) were isolated 

from decayed fruits in Lleida, and their identities were confirmed by the Department 

of Plant Protection, INIA (Madrid, Spain). The two strains were maintained on potato 

dextrose agar (PDA) medium (Biokar Diagnostic) at 4 ºC in darkness. 

The two strains were sub-cultured onto PDA Petri dishes and incubated in the 

dark at 25 ºC for approximately 1 week. To ensure conidial production, peach and 

nectarine fruits were inoculated with the isolates separately. The fruits were first 

wounded by a sterilized steel rod (1 mm wide and 2 mm long); conidia and mycelia 

were then transferred from the PDA culture onto each wound site by a sterilized 

pipette tip. Inoculated fruits were incubated at 25 ºC and 85% RH in the dark for 

M. fructicola and in a 12-h light photoperiod for 5-7 days for M. laxa.  



Conidia from infected fruits were scraped with a sterile loop and transferred to a 

test tube with 5 ml sterile distilled water added with one droplet of 80% tween. The 

conidial concentration for each strain was adjusted to 104 conidia ml-1 with a 

haemocytometer. 

2.3  Inoculation and infection development 

Peach and nectarine fruits were wounded by a sterilized steel rod (1 mm wide and 

2 mm long) and then inoculated with 15 µL of conidial suspension as described 

above. Fruits were then placed in plastic trays and incubated at 0, 4, 10, 15, 20, 25, 30 

and 33 ºC with ± 1 ºC for all temperatures and 85% RH in cooled or heated rooms as 

appropriate. The experiment was performed twice during 2012 and 2013. Each year, 

one variety of peaches and another variety of nectarines was selected and inoculated 

with M. fructicola and M. laxa separately and then incubated at the above mentioned 

temperatures. There were five fruits for each of four replications per treatment. 

Every inoculated fruit was assessed regularly after the appearance of the first 

visible symptom until the fruit lost its firmness. The first symptoms of decay are 

visible by a brown ring around the inoculated area. Mycelium presence was determine 

visually when a network of fine white filaments or sporodochia appeared in the decay 

area, and the presence of sporodochia was determined when several masses of brown 

conidia appeared all together in the epidermal decay and mycelia area. At 0 ºC, the 

fruits were assessed on 0, 7, 14, 21, 28, 35, 42, 49, 56, 64 and 72 days after 

inoculation; at 4 ºC on day 0, 7, 14, 21, 28 and 35; at 10ºC on day 0, 3, 5, 7, 8, 9, 10, 

11, 14, 16, 18 and 21; at 15ºC on day 0, 2, 4, 7, 8, 9, 10 and 11; at 20 ºC on day 0, 2, 

3, 4, 5 and 7; at 25ºC on day 0, 2, 3 and 4; and at 30 and 33 ºC on days 0, 2, 3, 4, 5, 

and 7. Decay and mycelium diameters were measured with a malleable ruler to take 

into account the curvature of the surface of the fruit. The presence or absence of 

sporodochia was recorded as well.  

2.4  Mathematical and statistical analysis 

The data shown correspond to the experiment conducted in 2013, and the 

experiment performed in 2012 exhibits the same pattern. All data were analysed using 

R statistical software 3.1.0 (2014). 

2.4.1 Analysis of decay and mycelium development  

Decay and mycelium size (area, x) were calculated assuming that a surface lesion 

is a perfect circle. To reduce heterogeneity and ensure that the residuals follow 



approximately normal distributions, the area data were transformed to the natural 

logarithm, i.e., ln(x+1). 

The overall effect of the treatment factor on decay and fungal development was 

assessed with analysis of variance, in which the variety, Monilinia species, 

assessment time and temperature were treated as factors. To quantify the relationship 

between decay and mycelium development and temperature, the data were subjected 

to logistic regression analysis (Fox & Weisberg, 2010). Logistic models were chosen 

based on the results from the preliminary analysis (results not shown) comparing 

several types of nonlinear models. The logistic model is given by 

      (1) 

in which A is a variable of interest, decay or mycelium area (cm2) in the present 

study, ‘exp’is the exponential function, t is the time elapsed since inoculation (day) 

and f1, f2 and f3 are parameters to be estimated. f2 is the asymptote, maximum decay 

or mycelium area (cm2); the quotient of f2 and f3 [-f2/f3] is the inflection point; and f3 

is the rate of decay or mycelium development (days-1). The logistic model was fitted 

to each combination of temperature and Monilinia spp. for decay development and to 

each combination of temperature, Monilinia spp. and variety for mycelium 

development. Then, the observed relationship between f3 and temperature was 

described by a nonlinear model, which was a variant of the thermodynamic model 

(Wagner et al., 1984). A possible biophysical interpretation of the original four model 

parameters in this variant of the thermodynamic model has been proposed based on 

the theory of enzyme responses to temperature. This model was reparametrized to 

reduce the magnitudes of the parameter estimates (Xu, 1996, Xu, 1999).  

         (2) 

 

The observed relationship of f2/f3 was well described by a negative exponential 

model: 

 

       (3) 

In both models, T (ºC) is temperature, and a1, a2, b1, b2, c1, d1 are parameters to 

be estimated. For the thermodynamic model, parameter a1 is a scale parameter; b1 

and d1 primarily indicate the steepness of the curve for supra-optimum and 



suboptimal temperatures, respectively (smaller values → less steep); increasing c1 

leads to both increased optimum temperature and developmental rates at the optimum 

temperature. For the negative exponential model, a2 is the maximum value and b2 

describes the steepness of the curve (smaller values → less steep). It should be noted 

that we were only mainly interested in describing the observed relationships 

mathematically in the present study rather than in the biological interpretation of the 

individual parameters. 

2.4.2 Analysis of the sporulation data  

dence of rot 

with sporulation, assuming that residuals follow binomial distributions: 

The Generalized Linear Model (GLM) was used to model the inci

    (4) 

ime 

elapsed since inoculation (days), and a3 and b3 are the parameters to be estimated. 

3. Results 

3.1 Decay area development 

ween the temperature and fungal species in 

affecting decay development. 

ermodynamic model for M. fructicola 

accounted for more variation than for M. laxa. 

where p is the probability of inoculated fruit with sporulation, x is the t

Decay expansion was affected by temperature (P < 0.001) and Monilinia species 

(P < 0.001) but not by varieties of either peach or nectarine (Table 1). There were 

significant interactions (P < 0.001) bet

The rate of decay development for both Monilinia species increased from 0 ºC to 

25 ºC and then declined with increasing temperatures (Fig. 1). There were significant 

differences in the rate of decay development between M. fructicola and M. laxa at 

25 ºC (2.50 and 1.75 days -1, respectively), at 0 ºC (0.07 and 0.2 days-1, respectively) 

and at 33 ºC (1.2 and 0.8 days-1, respectively). A thermodynamic model satisfactorily 

described the relationship between the rate expansion and temperature for each fungal 

species (Fig. 1 and Table 2). There were no significant differences in the relationship 

between peach and nectarine (Table 1). Fitted models indicated that M. fructicola 

develops slower than M. laxa from 0 to 17.5 ºC, and the opposite is true for 

temperatures from 17.5 to 33ºC. The models underestimated the development rate at 

25 ºC for both species (Fig. 1), and the fitted th



Table 1. Analysis of variance of the decay and mycelia area development of 

M. fructicola and M. laxa on peach and nectarine fruit in relation to temperature 

(Temperature), incubation time (Time), Monilinia specie (Specie) and fruit variety 

(Variety). 

  Decay   Mycelia 
Factor 

 
% SS1 P > F2 

  
% SS1 P > F2 

Temperature 4.47 < 2.2e-16 *  18.91 < 2.2e-16 * 

Time  43.74 < 2.2e-16 *  14.66 < 2.2e-16 * 

Specie 0.40 7.344e-07 *  1.38 9.833e-06 * 

Variety 0.00 0.883 NS   0.35 0.025 *   

Temperature x time 41.91 < 2.2e-16 *  47.22 < 2.2e-16 * 

Specie x Temperature 8.89 < 2.2e-16 *  9.48 < 2.2e-16 * 

Variety x Temperature 0.17 0.153 NS  0.96 0.057 NS 

Specie x Variety 0.01 0.528 NS  0.00 0.974 NS 

Specie x time 0.06 0.057 NS  5.47 < 2.2e-16 * 

Variety x time 0.01 0.429 NS  0.61 0.003 * 

1 Percentage of sum of square 
2 P value greater than F value indicate the overall results are significant 

* Significant (P < 0.05) and NS (not significant). 

The time to 50% of the maximum decay area (incubation period) was longer at 

low temperatures than at intermediate temperatures and slightly shorter at 30 and 

33 ºC for Monilinia species (Fig. 2). The shortest time was 3 days at 25 ºC, and the 

longest was at 0 ºC for both species. At 0 ºC, there were significant (P < 0.05) 

differences in the length of the incubation period between the two species: 49 and 

33 days for M. fructicola and M. laxa, respectively. The relationship between the 

length of the incubation period and the temperature was described by an exponential 

model (Table 2 and Fig. 2). The incubation period was longer for M. fructicola than 

for M. laxa from 0 ºC to 15 ºC, whereas from 15 to 33 ºC, the fitted models indicated 

a similar incubation time for the two Monilinia species. 

Table 3 shows the maximum decay area for M. fructicola and M. laxa at each 

temperature. The maximum area for M. laxa was smaller (P < 0.05) at 30 and 33 ºC 

than that of M. fructicola, and the opposite was true at 4, 10 and 25 ºC. 
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Figure 1. Relationship between temperature and the estimated decay development 
rate caused by M. fructicola (▲) and M. laxa (○) on fruit for each incubation 
temperature. Lines represent the thermodynamic models for M. fructicola (····) and M. 
laxa (�─�─�). The development rate (days-1) is calculated as the parameter f3 of the 
fitted logistic model and represents the mean value of 40 fruits. The observed 
development rate (A [cm2] days-1) was logarithmically transformed on the natural 
base, i.e., ln(A+1). Bars represent the standard deviation of the means. Bars are not 
shown where they are smaller than the symbol size. 

3.2 Mycelium area development 

As for decay area development, mycelium area expansion (Table. 4) had a similar 

relationship with temperature, increasing from 0 ºC to the maximum when the 

temperature was in the range of 22-25 ºC and then decreasing with increasing 

temperature. There were significant differences between peaches and nectarines 

(P < 0.025) and between the two Monilinia species (P < 0.001) (Table 1); the 

interaction between temperature and Monilinia species was also significant. At 25 ºC, 

the mycelial development rate was greater (P < 0.05) on nectarines (4.4 cm2 days-1 for 

M. laxa and 4.1 cm2 days-1 for M. fructicola) than on peaches (1.6 cm2 days-1 for 

M. laxa and 2.3 cm2 days-1 for M. fructicola). At 20 ºC, the rate of mycelium 

development was higher for M. fructicola than for M. laxa. At 33 ºC, the mycelia of 

M. laxa could not develop, whereas the mycelia of M. fructicola developed faster 

(P < 0.05) on nectarines (1.5 cm2 days-1) than on peaches (0.60 cm2 days-1); however, 

no mycelia of M. fructicola were observed at 0 ºC. At 10 and 15 ºC, mycelia were not 

observed for either species. 



Table 2. Estimated parameters of secondary negative exponential model 

describing the relationship of decay incubation period and temperature. 

Negative Exponential model  Thermodynamic model 
Specie 

Parameters1 Estimate  Parameters2 Estimate 

a2 46.42±2.82  a1 3.34±2.28 

b2 0.126±0.015 b1 116.45±39.45 

   c1 299.62±4.62 
M. fructicola 

      d1 41.23±23.29 

a2 31.84±1.64  a1 2.27±0.7 

b2 0.0960±0.01 b1 106.35±28.48 

   c1 300.37±2.52 
M. laxa 

      d1 26.96±8.16 

*All the parameters in both secondary models only described the observed relationships rather 
than in the biological interpretation of the individual parameters. 

1 Parameter a2 is the maximum value and b2 describes the steepness of the curve from the 
negative exponential model. 

2 Parameter a1 is a scale parameter; b1 and d1 primarily indicate the steepness of the curve for 
supra-optimum and suboptimal temperatures; increasing c1 leads to both increased optimum 
temperature and developmental rates at the optimum temperature from the Thermodynamic 
model. 

The time required for the mycelial area to reach 50% of its maximum area was 

longer at low temperatures than at intermediate temperature (Table 5). The shortest 

time occurred (2-3 days) at 25 ºC for Monilinia species and the longest at 0 ºC for 

M. laxa on peaches (44 days) and nectarines (36 days).  
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Figure 2. The estimated time for the rot area to reach half of the asymptote for 
M. fructicola (▲) and M. laxa (○) on fruits for each incubation temperature. Lines 
represent the negative exponential models for M. fructicola (····) and M. laxa 
(�─�─�). The incubation time (days) is calculated as the coefficient of the 
parameter (–f2/f3) of the logistic model and represents the mean value of 40 fruits. 
Bars represent the standard deviation of the means. Bars are not shown where they are 
smaller than the symbol size. 

Maximum mycelial area for M. fructicola and M. laxa on peaches and nectarines 

is shown in Table 3 at each temperature. For M. fructicola, the maximum area was 

greater at 30 and 33 ºC, and the opposite was true for M. laxa at 0, 4, 10, 15, 20 and 

25 ºC. 

3.3 Production of sporodochia 

The incidence of fungal sporulation on peaches and nectarines is plotted against 

only those temperatures at which mycelial development was observed (Fig. 3). 

Generally, M. fructicola and M. laxa were able to produce sporodochia at a range of 

temperatures on both peaches and nectarines. At 0 ºC, M. laxa produced sporodochia 

on nectarines and peaches (Fig. 3 C and D), whereas at 33ºC, only M. fructicola 

produced sporodochia (Fig. 3 A and B). Although M. fructicola developed mycelia on 

nectarines at 4 and 20 ºC, sporodochia were not produced at those temperatures but 

did appear at 25, 30 and 33 ºC (Fig. 3 A). In contrast, M. fructicola produced 



sporodochia on peaches at all temperatures at which mycelia developed (4, 20, 25, 30 

and 33 ºC) (Fig. 3 B). Similarly, at all temperatures at which mycelia developed, 

M. laxa produced sporodochia on nectarines (0, 4, 10, 20, 25 and 30 ºC) and peaches 

(0, 4, 20 and 25 ºC) with varying incidences of sporulation (Fig. 3 C and D). The 

lowest incidence of sporulation by M. laxa on peaches was at 25ºC after 5 days of 

incubation (Fig. 3 D).  

Table 3. The estimated maximum decay and mycelium areas (cm2) caused 

by M. fructicola and M. laxa on fruits for each incubation temperature (º C); these 

were estimated by the logistic model (parameter f1). In fitting the logistic models, the 

observed area (A [cm2]) was logarithmically transformed on the natural base, 

i.e. ln(A+1). The decay and mycelium area was averaged over 40 and 20 fruits, 

respectively, at each temperature on each assessment time before the logistical model 

was fitted to the data collected at each temperature. 

Decay   Mycelia 

  M. fructicola  M. laxa 
M. fructicola

 
M. laxa 

 Peach  Nectarine  Peach  Nectarine 

Temperature 
(ºC) 

Max. 
area  

SE1   
Max. 
area 

SE   
Max. 
area 

SE  
Max. 
area 

SE  
Max. 
area 

SE   
Max. 
area  

SE 

0 3.43 0.14  2.65 0.03  0.11 0.18  0.09 0.10  1.47 0.30  1.84 0.32 

4 3.77 0.09  4.08 0.06  2.05 0.32  1.53 0.29  3.51 0.18  3.54 0.28 

10 3.09 0.14  3.71 0.07  0.05 0.05  0.29 0.38  1.03 0.34  2.44 0.36 

15 2.90 0.49  3.41 0.17  0.10 0.19  0.01 0.01  0.06 0.13  0.22 0.33 

20 4.13 0.10  4.30 0.12  3.57 0.07  3.83 0.08  4.15 0.15  3.98 0.16 

25 3.32 0.04  3.73 0.06  2.44 0.25  2.96 0.20  3.09 0.23  3.74 0.11 

30 4.37 0.15  3,.5 0.41  3.99 0.21  3.80 0.12  0.30 0.20  1.73 0.28 

33 3.78 0.15   1.05 0.11   2.19 0.25  4.04 0.20  0.08 0.14   0.08 0.16 

1 Standard error of the parameter estimate 

4. Discussion 

This study has for the first time modelled and compared the effects of 

temperature on brown rot, mycelia development and sporulation on peaches and 

nectarines for both M. fructicola and M. laxa, in contrast to other studies, which 

focussed only on a single specific aspect of brown rot development (Weaver, 1950, 

Xu et al., 2001, Harada, 1977, Corbin, 1962, Phillips, 1982, Tian and Bertolini, 1999, 

Tamm and Flückiger, 1993). We showed that M. fructicola is better adapted to high 

temperatures, whereas M. laxa is better adapted to low temperatures. 



The optimum temperature determined in this study for brown decay and mycelial 

development agrees with previous studies (Biggs and Northover, 1988, Tamm and 

Flückiger, 1993). The optimal temperature for M. fructicola to produce sporodochia 

was approximately 25 ºC and between 20-25 ºC for M. laxa; however, a limited 

number of sporodochia was produced on peaches at 25 ºC. Corbin (1962) obtained a 

similar optimal temperature at 23 ºC for M. fructicola to produce sporodochia after 

24 hours of incubation. M. laxa may be more influenced by other factors that were not 

considered in the present study, including light intensity and photoperiod. It is more 

difficult for M. laxa to produce sporodochia than M. fructicola, although our 

unpublished results suggest that M. laxa is able to produce an abundant amount of 

sporodochia in a fotoperiod chamber compared with a dark chamber on stone fruit. 

Table 4. The estimated mycelium development rate (days-1) caused by 

M. fructicola and M. laxa on nectarine and peach fruits for each incubation 

temperature (º C); these were estimated by the logistic model (parameter f3). In fitting 

the logistic models, the observed development rate (A [cm2] days-1) was 

logarithmically transformed on the natural base, i.e., ln(A+1). The mycelium 

development rate was an average of 20 fruits at each temperature for each assessment 

time before the logistical model was fitted to the data collected at each temperature. 

 

Mycelium development 

M. fructicola M. laxa 

Peach Nectarine Peach Nectarine 
Temperature

(ºC) 

Dev. 
Rate1 

SE2  
Dev. 
Rate 

SE  
Dev. 
Rate 

SE  
Dev. 
Rate 

SE 

0 nd nd  nd nd  0.107 0.016  0.254 0.049 

4 0.275 0.038  0.275 0.108  0.275 0.016  0.253 0.028 

10 nd nd  nd nd  0.534 0.080  0.412 0.042 

15 nd nd  nd nd  nd nd  nd nd 

20 1.867 0.155  2.018 0.243  1.507 0.159  1.395 0.162 

25 2.275 0.357  4.107 0.758  1.578 0.179  4.368 0.280 

30 1.083 0.222  1.167 0.159  1.339 0.226  1.339 0.359 

33 0.604 0.092  1.457 0.248  nd nd  nd nd 

1 Development rate 
2 Standard error of the parameter estimate 
nd: not determinated 
 



 

Table 5. The estimated time for mycelial area to reach half of the 

asymptote (days) for M. fructicola and M. laxa on peach and nectarine fruits for each 

incubation temperatures (ºC); these were estimated by the logistic model 

(parameter (- f2/f3). The time for mycelial area to reach half of the asymptote was 

averaged of 20 fruits at each temperature on each assessment time. 
 

Time for mycelial area to reach half of the asymptote   

M. fructicola M. laxa 

Peach Nectarine Peach Nectarine 

Temperature
(ºC) 

Days SE1  
Max. 
area  

SE  
Max. 
area  

SE  
Max. 
area  

SE 

0 nd nd  nd nd  43.724 6.544  36.445 7.225 

4 32.068 4.525  28.790 11.609  25.914 1.520  22.906 2.669 

10 nd nd  nd nd  17.282 2.739  16.556 1.802 

15 nd nd  nd nd  nd nd  nd nd 

20 4.529 0.459  4.571 0.670  4.305 0.559  4.448 0.629 

25 3.297 0.673  3.068 1.328  3.620 0.527  2.163 0.270 

30 4.609 1.142  4.517 0.747  4.090 0.337  4.090 1.430 

33 6.147 1.064  4.463 0.927  nd  nd   nd  nd 

1 Standard error of the parameter estimate 
nd: not determinated 

M. laxa decay developed faster at 0 ºC than M. fructicola. In addition, 

M. fructicola took a longer time to show first decay symptoms and was unable to 

produce mycelia. However, M. fructicola resulted in a greater decay area at the end of 

storage than M. laxa. This suggests that at 0 ºC, M. fructicola could continue to 

develop rot, while M. laxa develops sporodochia. Tian and Bertolini (1999) also 

observed larger rots of M. laxa at 0 ºC on nectarines than at high temperatures after 6 

weeks of storage. Storing fruit after harvest as soon as possible at 0 ºC is a widely 

recommended management practice to suppress disease development and maintain 

fruit quality (Crisosto and Kader, 2014, Fraser, 1992, Brosnan and Sun, 2001). In 

areas such as Ebro Valley (Lleida, Spain), where both Monilinia species co-exist with 

similar frequencies (Villarino et al., 2013), M. laxa can lead to a secondary spread of 

the disease and could also produce conidia, leading to new infections in cold storage. 

However, M. fructicola could only generate secondary infections by contact. 



 

Figure 3. The estimated probability of sporodochia production from the mycelium 
area during the incubation time (days) at each incubation temperature on nectarines 
and peaches inoculated by M. fructicola and M. laxa. Each point represents the mean 
value of 20 fruits. 

Several authors also reported that the maximum temperature for M. fructicola 

growth is between 30 and 33 ºC (Weaver, 1950, Harada, 1977). In the present study, 

M. laxa cannot develop at 33 ºC, and previously, Tamm and Flückiger (1993) 

reported that growth on Petri dishes declined rapidly approaching 31 ºC. Decay in the 

development of M. laxa at temperatures above 33 ºC has not been evaluated, but 

conidia germination has been evaluated at 35 ºC. M. laxa and M. fructicola have the 

ability to germinate at 35 ºC with high water activity (Casals et al., 2010, Xu and 

Robinson, 2000), and research has shown that moisture on the wounded surface of 

apples was sufficient for M. fructigena to germinate and infect. Monilinia conidia 

should have infected fruit in the present inoculation study, and therefore, other factors 

such as temperature, time and fruit are intrinsic properties that may have influenced 

subsequent disease development on peaches and nectarines. In the Lleida area 

(Catalonia, Spain), daily mean temperatures in the summer commonly exceed 25 ºC 

and can easily reach 30-33 ºC or higher for a few hours. Although rainfall is usually 



 

 quite low, humidity can be still high because orchards often have irrigation systems 

with an increasing duration and frequency of irrigation approaching the harvest. In 

addition, the maximum number of airborne conidia in peach orchards occurs around 

harvest time (Villarino et al., 2012). These spores may result in secondary infection if 

the fruit is susceptible to brown rot. Wetness duration and temperature are not 

limiting factors for M. fructicola infection if the fruit is susceptible (Kreidl et al., 

2015). M. fructicola sporulates abundantly at high temperatures on both peaches and 

nectarines 2-3 days after inoculation. Similarly, Landgraf and Zehr (1982) achieved 

abundant sporulation of M. fructicola on peach blossoms during rainy periods. The 

influence of temperature and wetness duration on M. fructicola infection has been 

widely studied by several authors (Biggs and Northover, 1988, Kreidl et al., 2015, 

Weaver, 1950), but few studies have been carried out for M. laxa. Once conidia have 

produced an infection, rot development is influenced by temperature and humidity; 

however, the present research has shown that M. laxa development could be limited 

when temperatures are above 30ºC. 

At 10 ºC, only M. laxa was able to develop mycelia and produce sporodochia on 

nectarines, and at 15 ºC, both species of Monilinia were not able to develop mycelia 

and produce sporodochia. This variability may explain why both thermodynamic and 

exponential models failed to fit the mycelium data. It is likely that the pathogens did 

not have sufficient time to develop mycelia and sporulate before fruit degradation 

(hence discarded) at 10 and 15 ºC. These results regarding the sporodochia could be 

due to a lack of high humidity; high humidity has been reported to favour sporulation 

(Hong et al., 1997, Luo et al., 2001, Xu et al., 2001).  

Combining the findings of this study with those of previous works (Weaver, 

1950, Xu et al., 2001, Harada, 1977, Corbin, 1962, Phillips, 1982, Tian and Bertolini, 

1999, Tamm and Flückiger, 1993), it is known how M. fructicola and M. laxa develop 

in response to temperature during preharvest and postharvest once conidia have 

infected the fruit. Understanding germination, infection, decay, and mycelia and 

sporodochia development in brow rot disease is essential for predicting risk and 

deciding on strategies for disease management, in particular whether Monilinia 

species behave differently. Reducing the number of airborne conidia and therefore 

reducing the disease incidence in the field and postharvest could be possible with 

physical, chemical or biological control. The use of biological control agents requires 

more knowledge about the behaviours of the pathogen as well as the control agent to 

ensure effective control. Further studies are needed to understand how latent 

infections develop into visual decay and sporulate and to study the effect of 

fluctuating conditions on disease development under field conditions. 
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