
Document downloaded from:  

http://hdl.handle.net/10459.1/59095 

The final publication is available at:  

https://doi.org/10.1016/j.copbio.2016.12.002 

Copyright  

cc-by-nc-nd, (c) Elsevier, 2016 

  Està subjecte a una llicència de Reconeixement-NoComercial-
SenseObraDerivada 4.0 de Creative Commons 

http://creativecommons.org/licenses/by-nc-nd/4.0/�
http://hdl.handle.net/10459.1/59095
https://doi.org/10.1016/j.copbio.2016.12.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 

Biofortification of crops with nutrients: factors affecting utilization and storage 1 

Joana Díaz-Gómez 
1
, Richard M Twyman 

2
, Changfu Zhu 

3
, Gemma Farré 

3
, José C E 2 

Serrano 
4
, Manuel Portero-Otin 

4
, Pilar Muñoz 

3
, Gerhard Sandmann 

5
, Teresa Capell 

3
 3 

and Paul Christou 
3, 6

 4 

5 

Abstract 6 

Biofortification is an effective and economical method to improve the micronutrient 7 

content of crops, particularly staples that sustain human populations in developing 8 

countries. Whereas conventional fortification requires artificial additives, 9 

biofortification involves the synthesis or accumulation of nutrients by plants at source. 10 

Little is known about the relative merits of biofortification and artificial fortification in 11 

terms of nutrient bioaccessibility and bioavailability, and much depends on the 12 

biochemical nature of the nutrient, which can promote or delay uptake, and determine 13 

how efficiently different nutrients are transported through the blood, stored, and 14 

utilized. Data from the first plants biofortified with minerals and vitamins provide 15 

evidence that the way in which nutrients are presented can affect how they are 16 

processed and utilized in the human body. The latest studies on the effects of the food 17 

matrix, processing and storage on nutrient transfer from biofortified crops are reviewed, 18 

as well as current knowledge about nutrient absorption and utilization. 19 
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Introduction 34 

Nutrients in the human diet ultimately come from plants, but all our major food crops 35 

lack certain essential micronutrients (vitamins and minerals) [1]. The endosperm of 36 

cereal staples such as rice, wheat and maize are the most important source of calories 37 

for humans, providing ~23%, ~17% and ~10% of total global calories, respectively [2]. 38 

However, endosperm tissue lacks sufficient amounts of vitamins (particularly vitamins 39 

A, E, C and folate) and minerals (particularly iron, zinc and selenium) [1,3]. Iron and 40 

zinc deficiencies affect more than 50% of the human population, resulting in poor 41 

growth and development, an impaired immune system, fatigue, muscle wasting, sterility 42 

and even death [2,3]. More than 4 million children worldwide suffer from severe 43 

vitamin A deficiency (VAD), including 250,000–500,000 per year who become 44 

partially or totally blind [4]. Women have a higher demand for vitamin A during 45 

pregnancy, and currently more than 20 million pregnant women in developing countries 46 

suffer from VAD [4]. 47 

Strategies to address micronutrient deficiency include dietary diversification, nutritional 48 

supplements, fortification and biofortification [1–3]. A combination of approaches is 49 

likely to provide the greatest overall benefit, but in some populations dietary 50 

diversification is impractical and supplements are only suitable as short-term 51 

interventions [2,3]. Fortification requires the addition of nutrients to food products, e.g. 52 

iodine is added to table salt, and iron, zinc and folate are added to flour to make bread 53 

[2,3]. One major drawback of these approaches is the limited stability of the additives, 54 

e.g. folate added to rice becomes more soluble at higher temperatures and is lost when 55 

the rice is boiled [2]. A second disadvantage is that additives can also affect the quality 56 

of food, e.g. iron additives are oxidized over time and this has an impact on taste [3]. 57 

The third and major limitation of conventional fortification is that it is mainly suited to 58 
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developed countries with the necessary technical infrastructure and distribution 59 

networks, but is less appropriate for developing countries with their extensive reliance 60 

on subsistence agriculture [2]. Biofortification can address all three issues by facilitating 61 

the development of nutrient-dense staple crops that can be grown and distributed using 62 

existing agricultural practices [3,5]. 63 

Biofortification is well established in principle but there are few practical examples of 64 

deployment thus far. Zinc-enriched rice and wheat have recently been deployed in 65 

Bangladesh and China, respectively; an orange sweet potato rich in provitamin A 66 

carotenoids has been released in Mozambique and Uganda; and provitamin A rich 67 

maize has been released in Zambia and Nigeria [5]. Golden Rice II, the first transgenic 68 

biofortified crop engineered with provitamin A carotenoids in the endosperm, has 69 

incurred multiple delays in terms of deployment. It is currently being backcrossed into 70 

locally adapted varieties in the Philippines, Indonesia, India and Bangladesh [5]. 71 

Multivitamin corn (registered as the protected variety Carolight
® 

in Spain) was 72 

developed by transforming an elite white-endosperm South African inbred line with 73 

four genes representing three different vitamin biosynthesis pathways, increasing the 74 

levels of β-carotene, other carotenoids, vitamin C and folate [6]. Carolight
®
 also 75 

contains a Bacillus thuringiensis (Bt) gene making it pest resistant [7]. Biofortification 76 

is a sustainable approach which can bring nutritious staple crops to populations that are 77 

difficult to supply with supplements or fortified food products, and once the crop is 78 

developed there are no recurring costs other than those associated with normal 79 

agriculture. However, it is necessary to consider the efficiency of nutrient delivery by 80 

biofortified crops compared to other interventions in order to determine the long-term 81 

benefits of this approach. Data from the first biofortified crops are now available to 82 

allow such comparisons. 83 
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 84 

Fate of nutrients produced in plants 85 

The fate of organic nutrients in plant tissues is highly dependent on their solubility and 86 

their affinity for the constituents of the plant tissue matrix. 87 

Folate 88 

Folate is soluble in water and is easily released from the matrix, thus plasma folate 89 

levels are higher following the consumption of minced/chopped spinach rather than 90 

whole leaves both as raw tissue [8] and after microwaving [9]. Dietary fibers such as 91 

cellulose, lignin, pectin and alginate do not appear to affect folate bioavailability [10]. 92 

Baking causes the loss of endogenous bread folates (~40%) as well as added synthetic 93 

folic acid (30–60%). Furthermore, the bread matrix inhibits folate absorption [11]. 94 

Carotenoids 95 

In contrast, the bioavailability of fat-soluble nutrients appears to be much more 96 

dependent on associations with matrix components and other dietary constituents, as 97 

shown for the six major dietary carotenoids (β-carotene, α-carotene and β-cryptoxanthin 98 

with provitamin A activity, lycopene, lutein and zeaxanthin without provitamin A 99 

activity) [12]. Carotenoids are associated with proteins in many green leafy vegetables, 100 

whereas in carrots and tomatoes they are also stored in a semi-crystalline form [13,14]. 101 

Cooking, food processing, and the enzymatic processes during digestion weaken the cell 102 

walls and disrupt the protein-carotenoid complexes, promoting release and increasing 103 

bioavailability [15]. The bioavailability of carotenoids appears to depend on food 104 

particle size, with more efficient absorption from smaller food particles produced by 105 

homogenization, grinding, or milling. The bioavailability of carotenoids after release is 106 

favored by the presence of fats because carotenoids are incorporated into lipid droplets 107 
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before entering the micelles, whereas soluble fibers, sterols and stanols inhibit the 108 

absorption of carotenoids [13,16–18]. The inhibitory effect of fibers may reflect the 109 

higher viscosity of fibrous solutions, the formation of gel aggregates, the incomplete 110 

hydrolysis of triacyl glycerols, or carotenoid aggregation [19]. Carotenoids are 111 

lipophilic and may also compete with plant sterols and stanols for solubilization in 112 

mixed micelles [18]. 113 

Vitamin E 114 

Vitamin E comprises eight fat-soluble molecules (α, β, γ and δ tocopherol and the 115 

corresponding tocotrienols, with α-tocopherol possessing the greatest biological 116 

activity) and like carotenoids its bioavailability is therefore highly dependent on 117 

interactions with the food matrix [20,21]. Accordingly, the bioaccessibility of vitamin E 118 

varies extensively in different types of food, ranging from 0.47% in apple to almost 119 

100% in banana, white bread and lettuce. Interestingly, the bioaccessibility of 120 

α-tocopherol was similar to that of γ-tocopherol when sourced from almonds, wheat 121 

germ, cheese or hazelnuts, but α-tocopherol was more bioaccessible than γ-tocopherol 122 

when sourced from banana, bread, lettuce and milk. This may reflect the food matrix 123 

effect, which determines the location of tocopherols, their physicochemical state, and 124 

the co-presentation of absorption effectors such as fibers, fats, sterols and stanols [22]. 125 

Calcium and iron 126 

The bioavailability of minerals is affected by the food matrix, intrinsic chemical 127 

properties such as the oxidation state and counter-ion, and also by co-presented food 128 

substances, because all of these factors can affect solubility [23]. Calcium must be 129 

solubilized before it can be absorbed. The extracellular calcium concentration depends 130 

on intestinal absorption, kidney reabsorption and bone resorption/formation, which are 131 

regulated by the calcium sensing receptor (CaSR) located in the parathyroid gland [24]. 132 
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The absorption of calcium is highly dependent on the abundance of phytate and oxalate, 133 

which can combine with calcium to form insoluble complexes [25,26]. Calcium also 134 

forms complexes with proteins, so cooking can help to release calcium for absorption, 135 

but the cooking method is important because the soluble calcium leaches into water 136 

used for boiling, but is retained during baking [27]. Vitamin D is also required for 137 

calcium absorption [28]. Similarly, iron in meat and fish is relatively easy to absorb 138 

because of its favorable oxidation state and its storage in the form of ferritin-iron 139 

complexes that release the mineral readily, whereas some dietary proteins (such as 140 

albumin, casein, phosvitin and conglycinin) and certain plant polyphenols can reduce 141 

the bioavailability of iron [23,29]. 142 

 143 

The role of the food matrix, food processing and storage 144 

Food matrix 145 

The major role of the food matrix in terms of nutrient bioaccessibility and 146 

bioavailability is to trap the nutrients within cells or subcellular compartments, and to 147 

provide constituents that interact chemically with specific nutrients to either encourage 148 

or delay their release, leading to their classification as absorption promoters and 149 

inhibitors (Table 1). Lipid food components increase the bioaccessibility of fat-soluble 150 

nutrients, so cooking methods that preserve fats (e.g. frying) tend to outperform 151 

methods that disperse them (e.g. boiling) in terms of promoting the bioaccessibility of 152 

nutrients such as β-carotene, as recently shown for biofortified cassava [30]. Similarly, 153 

β-carotene bioaccessibility increased by 3–5 fold in a transgenic biofortified sorghum 154 

line when the lipid content was increased from 5% to 10% [31]. Inhibitors such as 155 

phytate, oxalate and polyphenols reduce the bioaccessibility of iron and zinc by forming 156 

insoluble complexes.  Transgenic maize, rice and sorghum with lower phytate levels in 157 
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the seeds have been developed to address this issue [32]. Biofortification is 158 

advantageous for iron nutrition because plants can be engineered to maximize 159 

bioaccessibility. In contrast, standard fortification is achieved using sparingly soluble 160 

iron compounds to avoid an undesirable metallic taste, but the bioavailability of such 161 

compounds is low [33]. Agronomic interventions are short-term strategies that focus on 162 

the use of soil and foliar mineral fertilizers, but regular applications are required [34]. In 163 

maize, rice and wheat, foliar fertilization achieves higher levels of zinc accumulation 164 

than soil fertilization [35]. Mineral biofortification is most efficient when cereals are not 165 

consumed as flours, e.g. rice grain. Accordingly, zinc in rice grains biofortified using 166 

zinc-rich fertilizer is absorbed to a similar extent as the same rice variety fortified 167 

artificially with zinc immediately before consumption [36].  168 

Food processing 169 

Food processing can enhance the bioaccessibility and bioavailability of nutrients by 170 

removing inhibitors or releasing nutrients from the food matrix (Table 2) but it can also 171 

reduce nutritional value. For example, most cereal grains are dehulled and milled before 172 

consumption, causing significant losses of minerals [32] and certain vitamins [37]. 173 

Carotenoid levels tend not to be affected by light milling, but greater losses are caused 174 

by heavy milling [38,39]. Genetic engineering strategies that promote the accumulation 175 

of nutrients in the endosperm rather than the bran or husk are therefore useful to 176 

increase the nutritional value of polished grains [40], as shown by the expression of 177 

enzymes that promote the synthesis of phytosiderophores in rice, leading to the 178 

modulation of endogenous metal transporter gene expression and the mobilization of 179 

zinc and iron from the bran to the endosperm [41]. Cooking and thermal food 180 

processing methods such as pasteurization can destroy heat-sensitive organic nutrients 181 

such as folate and B6 group vitamins, and the cooking method can also encourage 182 
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leaching, but the bioaccessibility of other nutrients can increase when they are released 183 

from the plant matrix by cooking. Transgenic biofortified cassava provides sufficient 184 

bioavailable vitamin B6 after cooking: the leaves and roots retain, respectively, 9-fold 185 

and 4-fold more non-phosphorylated B6, than non-transgenic cassava [42]. Transgenic 186 

biofortified rice meets folate requirements even after cooking losses of 45% (100 g of 187 

rice contains 500 µg of folates) [43]. Interestingly, only 43% of the original content of 188 

provitamin A carotenoids was retained in fortified rice grains after cooking, whereas 189 

iron, zinc, folic acid and vitamin B12 levels usually remained above 80% of the original 190 

value [44]. In contrast, β-carotene was retained when biofortified maize [38,39] and 191 

biofortified pumpkin [45] were cooked (>72% and >78%, respectively) suggesting that 192 

biofortification prevents the loss of provitamin A carotenoids during cooking more 193 

effectively than standard fortification, probably due to the food matrix effect. In hens 194 

fed on transgenic biofortified maize, provitamin A carotenoids are preferentially 195 

diverted to the liver, whereas non-provitamin A carotenoids accumulate in the egg, in 196 

some cases doubling the initial concentration in the feed. When non-provitamin A 197 

carotenoids were supplied as intrinsic components of the transgenic biofortified maize, 198 

these nutrients were more efficiently absorbed than carotenoid additives in the standard 199 

commercial maize diet [46]. Transgenic biofortified cassava also preserves the 200 

bioaccessibility of provitamin A carotenoids after processing, with a greater efficiency 201 

of β-carotene transfer to micelles (30–45%) than non-transgenic cassava (27–31%) [47]. 202 

In contrast, the transfer of β-carotene to micelles in transgenic sorghum was less 203 

efficient (1–5%) than in non-transgenic sorghum (6–11%) [31]. Several studies have 204 

highlighted the importance of genotype-specific effects on the retention of carotenoids 205 

during identical processing treatments, probably reflecting differences in the food 206 

matrix [30,38,45,47]. The impact of cooking on the retention of β-carotene also varies 207 
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according to the genotype [30,38,45], and genotype has a greater effect on the quantity 208 

of β-carotene in the micelle fractions than on the retention of β-carotene after processing 209 

[47]. 210 

Storage 211 

The stability of nutrients during storage is also an important consideration because 212 

biofortified maize loses a greater quantity of carotenoids during post-harvest storage 213 

than during cooking [38]. As discussed above for cooking and processing, genotype has 214 

an important impact on carotenoid stability during storage [48]. Moreover, maize 215 

genotypes which lose more carotenoids during drying tend to lose less during storage 216 

[49]. Biofortified cassava was more susceptible to carotenoid losses during storage than 217 

white cassava with added red palm oil, suggesting that fatty acids can prevent 218 

carotenoid degradation [50]. Transgenic biofortified rice with improved folate stability 219 

was recently reported to maintain folate levels for 4 months when stored at 28ºC [43]. 220 

The sequestration of carotenoids in chromoplasts, which act as a metabolic sink, can 221 

enhance carotenoid levels during storage, as recently shown for transgenic potatoes (cv. 222 

Désirée) in cold storage for 5 months [51]. Nevertheless, when the Phureja cultivar was 223 

used as the parental genotype (high carotenoid content in tubers) instead of Désirée (low 224 

carotenoid content in tubers), there were no significant changes in total carotenoid 225 

levels during cold storage [52]. 226 

 227 

Downstream behavior of absorbed nutrients 228 

Nutrient supplements and fortified foods are provided in well-controlled doses to avoid 229 

toxicity. One concern about biofortification is that dosing would be more difficult to 230 

control, but recent studies have shown that the uptake of nutrients from biofortified 231 
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crops is regulated at the level of absorption from the gut, and also at the cellular level 232 

and by the modulation of storage reservoirs, based on the abundance of nutrients already 233 

in the body and the demand for certain nutrient molecules [53]. 234 

Each vitamin and mineral has a specific transporter that facilitates its uptake from the 235 

gut, but some unrelated nutrients can also share the same transporter, as shown for the 236 

sodium-dependent multivitamin transporter that can mobilize pantothenic acid, biotin, 237 

-lipoic acid and iodine [54]. In this context, the transport of one nutrient can be 238 

inhibited in a concentration-dependent manner by other compounds that share the same 239 

transporter. Fat-soluble compounds are also mobilized by lipid transporters that vary in 240 

specificity. For example, carotenoids are absorbed via scavenger receptors (class B type 241 

1 and Niemann-Pick type C1-like 1) that are selective for particular carotenoid 242 

molecules such as lutein [55]. Some nutrients can only be absorbed as a complex with a 243 

ligand that is secreted into the gut. For example, intrinsic factor is secreted by gastric 244 

parietal cells to absorb cobalamin (vitamin B12), polyglutamyl folates must be 245 

processed by glutamate carboxypeptidase II, and the pancreatic secretion of -glutamyl 246 

hydrolase is necessary to release folate for absorption [56]. 247 

The intestinal uptake of nutrients is adaptively regulated by the substrate level in the 248 

diet and depends primarily on the number of transporters in the apical and basolateral 249 

cell membranes of endothelial cells. For thiamin, this involves the transcriptional 250 

regulation of thiamin transporter-2 [57]. The production of nutrient-specific transporters 251 

is regulated at the level of transcription. High levels of nutrient bioavailability lead to 252 

the suppression of transcription and starvation causes the transporter gene to be induced. 253 

In some cases, specific epigenetic changes have been observed in the promoter of the 254 

transporter gene, e.g. the oversupply of riboflavin leads to the epigenetic suppression of 255 

the riboflavin transporter gene [58]. 256 
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The transport of nutrients after absorption may also be regulated. For example, 257 

fat-soluble vitamins, carotenoids and -3 fatty acids (particularly docosahexaenoic and 258 

eicosapentaenoic acids) are transported in lipid vesicles that require chylomicron 259 

assembly and secretion, and these processes are inhibited when the corresponding 260 

nutrients are plentiful [59]. Similarly, iron is exported from enterocytes via ferroportin 261 

and its distribution is limited by the availability of transferrin. Finally, specific 262 

intracellular sensors of nutrient bioavailability may regulate tissue distribution. For 263 

example, the absorption of iron is inhibited by the regulatory protein hepcidin which is 264 

stored in macrophages. Interestingly, hepcidin synthesis is sensitive to both circulating 265 

iron and intracellular iron stores because the macrophages communicate with 266 

hepatocytes to regulate hepcidin release via multiple indicator proteins, including 267 

transferrin and transferrin receptor-2 [60]. 268 

 269 

Conclusions 270 

The biofortification of staple crops was envisaged as a sustainable strategy to deliver 271 

nutritious food to populations that are unsuitable for other intervention measures, but 272 

the bioavailability of nutrients in biofortified crops must be confirmed before they can 273 

be widely deployed. The bioavailability of nutrients is partly dependent on the intrinsic 274 

qualities of each nutrient molecule and partly dependent on their presentation in the 275 

context of the food matrix.  276 

The major difference between biofortification and standard fortification is that the latter 277 

involves additives that are mixed with the food, whereas biofortification embeds the 278 

nutrients inside plant cells. The bioencapsulation of nutrients in this manner can prevent 279 

them from leaching during cooking and processing, as shown by the direct comparison 280 

of β-carotene levels after cooking fortified and transgenic biofortified rice, but can also 281 
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enhance the binding of nutrients to plant proteins and fibers, as shown for iron and other 282 

minerals. The full value of biofortified crops can therefore be realized only by 283 

combining the adoption of biofortified varieties with the most appropriate food 284 

preparation and cooking methods to maximize the bioavailability of different nutrients. 285 

Moreover, cooking and storage losses could be reduced by growing crops in which the 286 

nutrients are more stable (e.g. transgenic folate-biofortified rice). Biofortified crops can 287 

help to alleviate micronutrient deficiency in at-risk populations in a sustainable manner. 288 

Some biofortified crops (e.g. rice, maize, cassava and pumpkin) achieve better results 289 

than others (e.g. sorghum), but rural populations are accustomed to eating staple crops 290 

commonly harvested in their area, so biofortification strategies must be tailored for 291 

different communities to achieve the greatest improvements in nutritional health. 292 
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Table 1. Relationship between micronutrients and the food matrix. 

Carotenoids [14,26] 

• In photosynthetic plant tissues, carotenoids are bound to proteins in the inner chloroplast membrane, 

whereas in other tissues, such as fruits and endosperm, they are mainly found in chromoplasts. 

Carotenoids accumulate in the plastoglobuli of chloroplasts and chromoplasts, but in the latter they are 

also deposited as crystals. 

• Cell walls, carotenoid-protein complexes and fibers trap carotenoids and inhibit absorption. 

• The type and amount of fat can influence carotenoid absorption by promoting the excretion of bile salts, 

enhancing micelle formation and carotenoid solubilization. 

• Xanthophylls are more hydrophilic than carotenes and are thus easier to absorb. 

• Carotenoid cis isomers are more easily absorbed than trans isomers due to their greater polarity and 

solubility. 

Iron and zinc [32,33,49,65] 

• Iron and zinc are chelated by other food components for transport (e.g. nicotianamine, peptides, proteins 

and organic acids). Proteins can also enhance absorption. 

• Heme iron and organic zinc complexes are more readily absorbed than non-heme iron and inorganic 

zinc salts. The absorption of non-heme iron and zinc from plant-based foods can be enhanced by 

consuming meat, poultry, fish or seafood in the same meal. 

• Phytate, oxalate, phenolic compounds and fibers form insoluble complexes with iron and zinc. The 

efficiency of complex formation depends on the chemical properties of the mineral, the pH and the 

presence of other compounds. Phytate binds preferentially to calcium and iron, limiting their 

bioavailability but increasing zinc bioavailability. 

• Organic acids (such as ascorbate and citrate) and cysteine promote iron absorption. EDTA can promote 

iron and zinc absorption. 

• Calcium can compete with iron for intestinal absorption; its effect on zinc has not been determined. 

Water-soluble vitamins  [14,65]  

• Vitamins that form complexes in the food matrix are absorbed less efficiently than free vitamins. 

• Vitamins B1, B3, B6 and B9 can become trapped in the insoluble part of the food matrix in certain plant 

foods, reducing their bioaccessibility. 

• Dietary fiber does not have a significant impact on the absorption of water-soluble vitamins. 
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Table 2. Effect of processing on the micronutrient content of food 

Carotenoids [14,26,49,66] 

Drying Can reduce carotenoid levels but this depends on the drying method, the 

temperature/time combination and the genotype of the plant source. 

Storage Can cause the loss of carotenoids, but this depends on the crop species, genotype and 

storage conditions. 

Milling Increases carotenoid bioavailability because the food particle size is reduced.   

Blanching Enhances carotenoid retention because it inactivates peroxidases that can lead to the 

formation of undesirable colors and flavors, and carotenoids are released from 

carotenoid–protein complexes. 

Fermentation Does not usually affect carotenoid retention, and can also remove inhibitors and/or 

favor the accumulation of nutritional promoters. 

Nixtamalization Defined as soaking maize grains in an alkaline solution, which can reduce carotenoid 

levels. Bioaccessibility depends more on the subsequent processing/cooking method.  

Heating Can increase bioaccessibility by releasing carotenoids from plant tissues and disrupting 

carotenoid–protein complexes, although this depends on the plant source and the 

cooking method. Boiling and steaming retain more carotenoids than baking and frying. 

Exposure to light and long-term heating induces trans-to-cis isomerization resulting in 

the loss of provitamin A activity, although photoxidation is the main factor responsible 

of carotenoid isomerization. 

Iron and zinc [32,49,65,67]  

Dehulling Reduces the level of inhibitors that prevent mineral uptake. This process removes the 

bran, reducing the amount of fiber and phenolic compounds, but phytate levels still 

remain high because phytate is also present in the germ. Significant quantities of 

minerals can also be lost, e.g. up to 50% of the iron in some grains, whereas zinc losses 

are more variable. 

Milling Degrades the cell wall, allowing minerals to interact with other components. Iron, zinc 

and phytate levels are reduced by milling, but the remaining iron and zinc is more 

bioavailable. 

Soaking Can reduce phytate levels by solubilizing phytate or activating endogenous phytases. 

However, blanching and soaking also cause the leaching of minerals. 
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Fermentation Can degrade phytate through the action of microbial phytases. Fermentation can also 

enhance iron and zinc absorption because low-molecular-weight organic acids are 

produced during this process. The phytate content is reduced more during fermentation 

than during cooking. 

Nixtamalization Can reduce iron absorption by competing with calcium, although it may also improve 

zinc and iron absorption by reducing the phytate content. 

Heating Can enhance mineral absorption by softening the cell walls and removing inhibitors. 

Minerals are heat-stable, although losses can occur due to leaching. The 

bioaccessibility of iron is affected more than zinc by the cooking method. 

Water-soluble vitamins [14,49,65] 

Drying Can result in the loss of vitamins, especially air drying which promotes oxidation. 

Storage Does not appear to affect water-soluble vitamins, except B vitamins in long-term 

storage, and vitamin C due to oxidation during storage. 

Dehulling 

Milling 

The grain components are separated, resulting in significant losses of certain B 

vitamins that accumulate in the bran and germ. 

Soaking Reduces the levels of water-soluble vitamins by leaching. 

Blanching Inactivates enzymes that oxidize vitamin C but also encourages the loss of vitamin C 

by leaching. 

Fermentation Can increase the bioavailability of certain B vitamins (e.g. B2 and B3). 

Nixtamalization Can reduce the content of certain B vitamins (e.g. B1 and B3), but in some cases the 

remaining quantity can become more bioavailable (e.g. B3).  

Cooking Can release vitamins from the food matrix but can also destroy heat-sensitive vitamins 

(B1, B2 and C), although this depends on temperature/time combinations. The greatest 

losses during cooking occur due to vitamins leaching into the water, so steaming is 

preferred to boiling. 


