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Abstract

Artificial intelligence techniques have been successfully applied to control dynamic
systems looking for an optimal control. Among those techniques, reinforcement learn-
ing has been shown as particularly effective at reducing the dimensionality of some real
problems and solving control problems by learning from experience. The use of ther-
mal energy storage active systems in the building sector is identified as suitable option
to reduce their energy demand for heating and cooling. However, these systems might
be expensive and require appropriate control strategies in order to improve the perfor-
mance of the building. In this paper a ventilated facade with PCM is controlled using
a reinforcement learning algorithm. The ventilated facade uses mechanical ventilation
during nighttime to solidify the PCM and releases this cold stored to the inner environ-
ment during the peak demand period. It is crucial to decide correctly the schedule of
charge and discharge process of the PCM according to the weather and indoor condi-
tions. An experimentally validated numerical model is used to test the performance of
the control algorithm under different weather conditions. Important improvements on
the energy savings due to the use of control strategies were found and supported by the
data under the different tested climatic conditions.
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1. Introduction

In last decades the energy consumption of buildings has been increasing as a result
of increasing comfort requirements. The contribution of buildings in the global energy
consumption is very significant and thus, a lot of attention and efforts are focused on
decreasing building energy requirements [8]. For such purpose, the European Directive
2010/31/EU [5] states ambitious objectives for 2020, such as reducing by 20% the
global energy consumption and the greenhouse gas emissions. The use of renewable
energies presents a huge potential since they contribute to reduce the greenhouse gas
emissions while also reducing the pressure exerted to limited natural resources, such
as fossil fuels, and the energy dependence on third countries.

However, several renewable energies present intermittent availability, which results
in the necessity of conventional back-up systems, low efficiencies of renewable sys-
tems, and loss of potential energy savings. The use of thermal energy storage can solve
the mismatch between supply and demand of renewable energies, helping to overcome
such problems [2]. One of the most promising and widely studied thermal energy stor-
age technologies is latent heat. It is based on the phase change (usually solid-liquid)
of a material in order to store energy at an almost constant temperature and with high
energy densities. In the design of such thermal energy storage systems (TES) it is criti-
cal to select the correct phase change material (PCM) based on its melting temperature
and enthalpy. The phase change temperature range must be within the available energy
source temperature and the required temperature level. This is of great importance
when both temperature levels are close, since the system will be extremely sensitive to
small changes.

This sensitivity has been demonstrated in a previous publication [4], where a ven-
tilated double skin facade (VDSF) with PCM in its air chamber was experimentally
tested with the aim to provide cooling during summer by taking advantage of night
free cooling strategies and thermal storage. The PCM was integrated into the build-
ing structure and mainly used as an active system to store cold at night and to provide
cooling during peak hours. However, the system was very sensitive to external ambi-
ent conditions and it was not possible to achieve net electrical energy savings due to
excessive use of fans to charge and discharge the storage. Therefore, a suitable control
system was required.

Although control systems are common in many building installations, the studied
systems do not operate based only in real time inputs (such as weather conditions and
internal temperature) but also based on forecasts (especially weather forecasts). In or-
der to optimize the use of fans, the storage must be charged during the time period of
lower external temperatures and the cold must be released during the peak demand pe-
riod. Both periods depend on the weather forecast which will define both the available
cold and the cooling demand. Therefore, these advanced control systems need to be
able to re-adapt the operational schedule depending on different predicted boundary
conditions.

In this paper, reinforcement learning techniques are used to control an innovative
ventilated facade with PCM in its air chamber. Reinforcement learning has been ap-
plied in real world applications in a broad range of problems, from resource allocation
to scheduling. As an example, [6, 7] show how approximate dynamic programming
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Figure 1: Modes of operation of the VDSF. (a) Charge process, (b) Discharge process, (c) Overheating
prevention

techniques may help complex automated vacuum waste collection systems to derive
more efficient operation policies, reducing their operation cost and energy require-
ments. In this work, the efficiency improvement when algorithms based on reinforce-
ment learning ideas are applied to optimal control is evaluated by means of numerical
simulation.

2. Methodology

2.1. Prototype and operating principle description

The ventilated facade studied has been implemented in an experimental house-like
cubicle in order to measure its thermal behavior. The cubicle is built with alveolar brick
walls, and the ventilated facade with PCM is located in the south wall. The ventilated
facade is composed of an external layer of glass covered with insulating panels that are
used as the outer opaque skin to avoid solar radiation during summer. These panels
are held by an insulated metallic structure. The air cavity is 15 cm thick and 112 PCM
panels (RT21 from Rubitherm) divide it into 14 airflow channels.

Moreover, the system is equipped with six gates distributed at inlet (bottom) and
outlet (top) of the cavity and three fans located at the bottom, so different airflow paths
can be programmed, as well as mechanical or natural ventilation conditions (Fig.1).
Air can flow from indoors/outdoors to indoors/outdoors. Detailed description of the
system can be found in de Gracia et al.[4].

The operating principle of this innovative ventilated facade during the cooling pe-
riod is based on using the low temperatures at night (below the congealing temperature
of the PCM) to solidify completely the PCM, and store cold to provide a cooling supply
during the daytime when required by the demand.

During the charge process (Fig.1(a)) air is pumped from outdoors using the fans
in order to intensify the convective heat exchange. The three fans require 55 W in
total at minimum speed; hence it is critical to reduce as much as possible their use
while ensuring complete solidification of the PCM. The VDSF is used as a cold storage
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Figure 2: S evolution vs Temperature

system before a cooling supply to the inner environment is needed. Then, instead of
using conventional HVAC systems which implies the electrical energy consumption,
the discharge process starts (Fig.1(b)). Once the PCM has been melted the facade is
opened outdoors and natural convection avoids overheating inside the VDSF (Fig.1(c)).

2.2. Numerical model

A simple model based on the assumption that all the PCM included in the facade is
at the same temperature (isothermal model from here on) is used to simulate the thermal
performance of the VDSF with PCM under different weather conditions and control
strategies. The isothermal model aims to feed the reinforcement learning model in
order to determine the best control strategies. The huge amount of cases and scenarios
that should be evaluated, in order to achieve an optimal control strategy under the
different weather conditions, makes crucial the use of a simple numerical tool without
any iterative process. In this way, it is possible to reduce dramatically the required time
and computational resources and hence deal with this huge number of case studies.
Standard numerical methods based on iterative processes, such as finite volume or finite
element methods could not be applied to create the reinforcement learning model.

In the simple isothermal model, the phase change is modeled as a variation of the
heat capacity depending on the average temperature of the PCM. A parameter called S
is defined to determine how far the material is to full solidification. The value of the
parameter S depends directly on the average temperature of the PCM. It has a value
of 0 at the beginning of the solidification process (23◦C) and a value of 1 for fully
solidified PCM at 18◦C. Moreover, as negatives values of S indicate liquid state, the
lower is the negative value, the further is the PCM from the melting region. On the
other hand, values below 0 indicate that the PCM is in liquid region, the higher is this
number, the further from the phase change range. According to the data provided by
the manufacturer [10], a latent heat of 93 kJ/kg was considered within this temperature
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Parameter RT21 Units

k 0.2 W
m·K

Cp 2 kJ
kg·K

L 93 kJ
kg

ρl 880 kg
m3

ρs 770 kg
m3

∆TPCM 18-23 ◦C

Table 1: Thermo-physical properties of the used materials

range of phase change (from 18◦C to 23◦C). Table 1 provides the used thermo-physical
properties, where k is the thermal conductivity, Cp is the heat capacity, L is the latent
heat, ρl and ρs is the density in liquid and solid state respectively and ∆TPC is the
melting range. Out of this temperature range, the S value is calculated according
to the ratio between the sensible heat to/from the phase change boundaries and the
latent heat of the phase change range (Fig.2). Moreover, the charge and discharge
processes are assumed to behave as an internal flow through a constant temperature
surface. Hence, the temperature at the outlet of the channel at an instant ’t’ can be
calculated from the Eq.1:

T outlet
t = TPCM

t −
(
TPCM
t − T inlet

t

)
· e

−h·Aconv
ṁ·Cp . (1)

Once the outlet temperature is calculated, the power of charge or discharge of the PCM
can be obtained by an energy balance between the inlet and the outlet of the air flow
at the ’t’ instant. In order to avoid any iterative method that will result in a high
computational cost, the isothermal model makes use of an explicit scheme to discretize
the time. Hence, the amount of energy stored or released by the PCM can be obtained
by integrating the power of charge or discharge through the time step. Once the energy
that the PCM has exchanged with the air is determined, the state of the PCM at the
instant ’t+ 1’ can be calculated as expressed a follows:

St+1 = St +
Qt+1

mPCM · L
(2)

being Qt+1 the amount of released/absorbed energy from t to t+ 1.
The calculation of the state parameter allows determining the temperature of the

PCM at the new instant of calculation ’t + 1’ by interpolation in its definition. With
the temperature of PCM at the new instant, Eq.1 can be applied to determine the outlet
temperature at the new instant, and so on. When the system is in storage mode all
the gates are closed and no air circulation exists. The PCM is not charged neither
discharged by the air flux but it gains or losses energy depending on the outer climatic
conditions. In this period, heat losses or gains to the outer environment are taken into
account.
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The isothermal model has been validated experimentally; more details about the
model and the assumptions made can be found in de Gracia et al.[3].

2.3. Reinforcement Learning

Design controllers to minimize a given measure on dynamic systems over time
is traditionally known as optimal control. Dynamic programming [1] solves optimal
control problems through the well known Bellman equations. Even though dynamic
programming is the only feasible way to solve optimal control from a general perspec-
tive, it suffers from what so called dimensionality curse, that is, an exponential growth
of computational requirements with the number of variables. To overcome such a prob-
lem, many methods have been devised, by looking for smart searching strategies that
avoid the complete search of dynamic programming algorithms. An example of such
methods is reinforcement learning [12], being an effective technique to solve control
problems by searching the correct answer by successive approximations.

Typically, in a reinforcement learning paradigm, the system to be modeled is rep-
resented by its state at a given time, st ∈ S , being S the set of states. Time t ∈ T is
discrete, being T the set of time slots when actions are taken, and usually, time slots
are equally spaced (Ts). At each state, one can take an action from a possible set of
actions, a ∈ Ast . As a consequence of action a on a state st, the system produces a
reward, rt(st, a) ∈ R, and leaves the system at a new state st+1.

In this particular case, the system state at time t is determined only by the PCM
temperature (TPCM

t ). As TPCM
t ∈ R, later it will be shown how to avoid an infinite

number of states by using gradient descent methods. The set of actions Ast consists in
non activate the ventilators or activate them at a set of determined speeds. The reward
Rt(st, a) is computed as the amount of thermal energy obtained from the PCM minus
the electrical energy consumed by the ventilators, as follows:

rt(st, a) =

(
Q̇t

f
− Ep(a)

)
· Ts, (3)

where Q̇t is the cooling power supplied at t, f is a thermal-electrical equivalence factor
(usually 3), Ep(a) is the electrical power consumption of the ventilators operating at
the speed determined by action a and Ts is the time slot duration. Finally, state st+1 is
determined by from Eq.1 and Eq. 2.

Under this considerations, the model is deterministic, in other words, a perfect
foresight is always expected. Effectively, given a certain state, the future state is de-
fined by the action over this state and the external temperature conditions. There is
no uncertainty, and one can employ the classical Bellman formulation to solve it. For
non-stochastic problems and discrete time, it may be expressed as:

max

{∑
t∈T

γtrt(st, a)

}
, (4)

where γ is a discount factor. Eq. 4 clearly indicates the goal of maximizing the system
rewards along a period of time by finding the optimal actions. Bellman optimality
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equations can be derived from Eq. 4 describing the system in terms of the state values
(vt(st)) as:

vt(st) = max
a∈Ast

{rt(st, a) + γvt(st+1)} , (5)

allowing an iterative resolution of Eq. 4. Frequently, solving a set of system of equa-
tions as in Eq. 5 may not be suitable for large problems because the number of states
tends to grow exponentially with the number of the variables. Monte Carlo methods
(MC) overcome this problem by sampling only those states that are involved in the
experience. Effectively, Monte Carlo methods learn from simulated experiences by av-
eraging sample returns. During an episode – an episode is a particular simulation that
spans over all the time T , in this case, a day – MC updates state values at each time
slot. This simulation is repeated with as many episodes as needed until convergence.

Even though those methods are not complete, their efficiency in terms of speed
and guaranteed convergence, as well as the quality of the obtained solutions, make
them powerful tools to solve large problems. Usually the obtained solutions are quasi-
optimal, but close enough to the optimal solution, being useful for certain application
requirements and easy to obtain in terms of computation time.

For a fixed policy, i.e. the set of actions depending on the state are previously deter-
mined, MC methods update system values visiting them through a set of iterations until
the system values converge to stationary values, according to a rule as the following:

vt(st)← vt(st) + α (gt − vt(st)) , (6)

being gt =
∑

k γ
krt+k+1 the expected total reward from state st+1. At this point, a

new family of learning algorithms emerge, called temporal difference learning (TD).
The simplest TD method, known as TD(0), updates vt(st) values at each point of the
iteration, without waiting the end of an episode, according to:

vt(st)← vt(st) + α (rt+1 + γvt+1(st+1)− vt(st)) . (7)

TD(0) methods can be used to control, i.e. determining the best policy, expressing Eq.
7 in terms of state-action pair values rather that state values:

qt(st, at)← qt(st, at) + α (rt+1 + γqt+1(st+1, at+1)− qt(st, at)) . (8)

As this updating rule employs the sequence (st, at, rt+1, st+1, at+1), it is called Sarsa.
Sarsa algorithms are the base for the learning algorithm employed in this study.

The gap between updating at each iteration point as in Eq. 8 or wait at the episode’s
end as in Eq. 6 is filled TD(λ) algorithms. Those algorithms not only compute the
reward at different iteration points, but also weight the iteration points by a factor
0 ≤ λ ≤ 1. Consequently, the expected gain in a TD(λ) algorithm, known as lambda-
return, is computed as:

gt = (1− λ)
∑
n=1

λn−1g
(n)
t ,

being g(n)t the n-step predictions:

g
(n)
t = rt+1 + γrt+2 + · · ·+ γn−1rt+n + vt+n(st+n).
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Using this return, λ = 1 defines a Monte Carlo method as in Eq. 6 meanwhile λ = 0
reduces it to a TD(0). λ-return methods can reduce the updating error but add some
difficulties to its implementation. In this sense comes to help the backward view of
TD(λ) methods. Instead of making updates ahead of the time sequence, updates are
redefined in the backward direction, obtaining incremental and simpler implementa-
tions from a computational point of view. This backward view methods introduce a
new variable, Zt(s), for each state that indicates the eligibility of this state in the up-
date. At each state (st), this eligibility variable is updated as:

Zt(s) =

{
γλZt−1(s) s 6= st;
γλZt−1(s) + 1 s = st.

Therefore, updates result:

vt(s)← vt(s) + αδtZt(s), ∀s ∈ S,

where δt = rt+1+γvt+1(st+1)−vt(st). See [11, 13] for further details. The Sarsa(λ)
algorithm implemented in this study is detailed in Alg. 1. Finally, only remains to

Algorithm 1: Sarsa(λ) algorithm from [12].
Set qt(s, a) = 0 for all t ∈ T, s ∈ S, a ∈ As

for each episode do
Zt(s, a) = 0 for all t ∈ T, s ∈ S, a ∈ As

for for each t ∈ T do
Initialize s and a
For action a, observe its return r and next state s′

Select next action a′ from s′ according a ε-greedy1policy of qt+1(s′, a′)
δ ← r + γqt+1(s′, a′)− qt(s, a)
Zt(s, a)← Zt(s, a) + 1
for all s ∈ S, a ∈ As do

qt(s, a)← qt(s, a) + αδZt(s, a)
Zt(s, a)← γλZt(s, a)

s← s′

a← a′

explain how one dealt with the continuous nature of the state space. Linear gradient-
descent functions allow to approximate state values, as well as state-action pair values,
as a linear combination of the system features. Assuming that the system has n fea-
tures (xi(s)) that describe its state s, such as temperatures, PCM mass , . . . , one can
approximate its state value as a linear combination with a given weight wi for each
feature, such as v(s) =

∑n
i=1 wixi(s) = w>x. The features may be constructed in

different ways. This approach used binary features and tile coding. It means that a

1ε-greedy policy choose the best action with probability (1− ε) and a random action with probability ε,
avoiding this way getting stuck in local minimum.
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feature range of values is partitioned in some tiles, splitting each tile the continuous
space into small binary domains. In the experiments, 4 randomly spaced tiles are cho-
sen, being each tile split into 4 domains. As only one parameter (PCM temperature)
defines the system state, taking slot times of 10 minutes gives a state space dimension
of 4× 4× 144 = 2, 304 possible states.

2.4. Experimentation benchmark
The energy performance of the system, as well as the required control strategy,

depends strongly on the weather conditions. The Köppen-Geiger Climate Classifi-
cation [9] was used to select representative locations according to the weather. This
classification divides the main climate in A: equatorial, B: arid, C: warm temperate, D:
snow and E: polar. Moreover, it defines the level of precipitation in W: desert, S: steppe,
f: fully humid, s: summer dry, w: winter dry, m: monsoonal. Finally, it provides details
about temperature as h: hot arid, k: cold arid, a: hot summer, b: warm summer, c: cool
summer, d: extremely continental, F: polar frost, T: polar tundra. The combination of
the previous definitions gives overall information about the weather conditions at each
location. All the possible climates were analyzed in this study, except those that do not
need any cooling supply during the whole year (E: polar and mostly all D: snow main
climates).

For each location, outdoor temperature profiles were obtained during all the sum-
mer days, i.e. from June 21st to September 22nd for north hemisphere locations and
from December 21st to March 20th for south hemisphere. Since temperature data set is
sampled hourly [14], it was interpolated linearly at the sample rate required by the al-
gorithm. Therefore, an interval time between decisions of 10 minutes was taken. Such
an interval is a good trade-off between accuracy and state space dimensionality.

As mentioned in subsection 2.3, the optimization goal is to maximize the net elec-
trical energy savings due to the use of the VDSF with PCM. Hence, not only the energy
benefits from the cooling discharge have to be taken into account, but the electrical en-
ergy consumed by the fans both during charge and discharge process, as well. In order
to compare the cooling energy to the electrical energy consumed by the fans, a value
of 3 was used for the thermal/electrical energy ratio (f in Eq. 3), simulating a standard
air conditioning equipment with COP=3.

Therefore, it is important that the control system could select the most appropriate
timing for the charge process according to the weather prediction. In this study, the
charge period might span from 0:00 to 8:00. Moreover, discharge periods may start at
different times. In this study the discharge process was programmed to start at 10:00,
12:00 and 14:00. Between both periods, fans remain stopped.

Furthermore, the electric fans can operate at different speeds, from 0 (stopped) to
5 (higher speed), with important differences in terms of volumetric flow rate as well
as electrical power consumption. Our experimentation has not shown any evidence of
better performance, in energy consumption terms, when using more than fan speed 1.
More explicitly, best results are obtained when using only speeds 0 and 1. Sensible
higher electrical power requirements for fan speed above 1 explain this fact. Being so,
we only show results for a fan speed policy of stopped (speed 0) or activated (speed 1).

Moreover, the adequate amount of PCM used in the VDSF might depend also on
the weather conditions, the performance of the system and the potential energy benefits
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that the system can provide. In this paper it is also explored how a possible increase
in the PCM mass could affect the net energy savings achieved by the system in all the
studied climatic conditions. The reinforcement learning model was used to determine
the net energy savings if using 224 (x2) and 336 (x3) panels of PCM instead of the
current 112 panels.

Finally, as the objective of this paper is to establish an efficient schedule of the
fans activation based on temperature forecasts, it was checked how weather forecast
accuracy impacts in the studied system performance. In this sense, temperature predic-
tions and real measurements were captured from a couple of meteorological stations so
predicted and real performances could be compared. The two selected meteorological
stations correspond to Arenys de Mar (41◦ 34’ 41” N, 2◦ 33’ 18” E) and Lleida (41◦

36’ 4” N, 0◦ 37’ 21” E, which were identified by Köppen-Geiger classification as Csa
and Cfb, respectively.

3. Results

3.1. Energy performance around the world
As example of the obtained data from the reinforcement learning model, a typical

behavior of temperatures and energy for a given day is depicted in Fig. 3. The upper
plot shows the evolution of the PCM and outlet temperatures depending on external
temperatures according to the isothermal model, once a given policy is determined for
fans activity. As can be observed, the automatic scheduler decides to activate the charge
phase mostly when the external temperature achieves its minimum. This can be consid-
ered an optimal behavior, even though small activation periods are produced at early
hours. This occurs because the learning strategy does not complete all the possible
search space, returning a near optimal solution, not really far from optimal. The same
effect explains the small deactivation period during the discharging phase, which starts
as soon as allowed at 10:00 AM. Moreover, the lower plot shows the energy balance
of our system, i.e. thermal energy delivered (normalized to electrical energy) minus
electrical energy consumed by the fans. In this example, the final balance is positive,
achieving a net electrical gain of 1.79 MJ in a day.

As it was previously stated in subsection 2.4, the optimal operational schedule was
calculated for all the cities involved in the study and for all the summer days. The
results of the obtained summer average net electrical energy savings for each city are
shown in the color map Fig.4. The results demonstrate that the system is suitable
to operate under continental and snow climate regions while it is difficult to achieve
important net savings in arid and equatorial areas. This coincides with prior numerical
studies using SP-22 instead of RT-21 [14]. The results also confirm that the use of
the PCM without hysteresis (such as RT-21) increases the number of possible suitable
cities in which the system can provide net savings. Furthermore, there is an increment
in the net energy savings in comparison to this prior study. This increment is justified
because of the better performance of RT-21 and because of the use of the control system
based on the reinforcement learning model to regulate the use of fans, especially during
the charge process.

Moreover, Table 2 shows the summer average net electrical energy savings achieved
and its standard deviation when the system is controlled by the reinforcement learning
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Figure 3: Evolution of temperatures and net electrical energy savings for Moscow 28/07/2014
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Figure 4: Summer average net electrical energy savings in each studied city
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model (automatic) and when is controlled manually, programming the charge process
from 06:00 to 08:00 and from 04:00 to 08:00. It can be seen, that the improvement
is robust and constant in all the cities, increasing the average savings in the cities in
which the climate makes the use of the VDSF suitable and avoiding negative net sav-
ings in cities in which is not. Within this context, Fig. 5 shows the comparison of
the net electrical energy savings achieved when using control based on reinforcement
learning (automatic) versus manually scheduled charge period (from 06:00 to 08:00).
This figure is useful to demonstrate that the improvement is constant through all the
summer period and to highlight how the automatic control system is beneficial to man-
age different control requirements. On one side, Montreal shows a climate in which the
system has to operate almost during all summer but it has short periods with no possi-
ble energy benefits in which the control has to stop the fans and wait for better weather
conditions; here the automatic control maximizes the benefits. In addition, Chicago
shows a similar pattern during the first two months of summer (short periods of non-
benefits between periods of 2 MJ/day of net savings), but has a different profile during
the last summer month, in which the fans have to be stopped during the first two weeks,
and active during the last two weeks, achieving net savings of 3 MJ/day. The automatic
control demonstrated its capability to adapt to these control requirements. Moreover,
Quito shows a climate in which the VDSF can operate during all summer, while in
Singapore it cannot provide any benefit. The use of automatic control increases the
benefits during all the period in the case of Quito, while it prevents waste of energy in
the case of Singapore.

3.2. Discharge starting times and PCM mass

As it was previously described, once the night charge process has finished, the
system starts the storage period, in which it is subjected to heat gains from the outer
environment. The start of the discharge process is driven by the cooling demand of the
building and might influence strongly the benefits extracted from the VDSF, especially
if the storage media (PCM) is not well insulated from the outdoor environment. In
order to evaluate if the discharge schedule is critical for the performance of the system,
Fig. 6 compares the average net electrical savings achieved during summer in case that
discharge is needed at 10:00, at 12:00 or at 14:00. It can be seen that even though the
performance is reduced if the storage period is increased, this reduction is very small
(around 0.2 MJ/day between discharging at 10 a.m. or at 14 a.m.), which demonstrates
that if the outer envelope is well insulated the system can store effectively the PCM
solidified until cooling is demanded.

In addition, Fig.7 presents the ratio between the net electrical energy savings pro-
vided by the system when using double (x2) or triple (x3) amount of PCM by the net
savings using the standard amount of PCM. Only locations with significant net energy
savings provided when using standard amount of PCM are considered for the compar-
ison (net savings above 0.5 MJ/day). It can be seen that increasing the amount of PCM
increases the net energy savings from the system in all cases by a factor higher than the
factor in which the PCM has been increased (x2 or x3). This is very significant in cities
in which the performance of the system is weak, such as Albuquerque or Brasilia.
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Table 2: Summer average net electrical energy savings and standard deviation for automatic and manual
scheduling

Energy / Std. Dev. [MJ]
Automatic Manual

Charge period
City 6:00-8:00 4:00-8:00

Abu Dhabi 0.00 / 0.00 -0.35 / 0.01 -0.73 / 0.01
Albuquerque 0.71 / 0.60 0.46 / 0.64 0.36 / 0.74
Beijing 0.43 / 0.68 -0.01 / 0.60 -0.26 / 0.71
Berlin 2.00 / 0.77 1.76 / 0.87 1.49 / 0.77
Bogota 2.84 / 0.07 2.66 / 0.12 2.32 / 0.08
Chicago 1.16 / 0.95 0.76 / 0.97 0.62 / 0.10
Kuala Lumpur 0.00 / 0.00 -0.35 / 0.00 -0.72 / 0.00
Madrid 1.14 / 0.73 1.14 / 0.73 1.02 / 0.83
Mexico DF 2.28 / 0.21 2.21 / 0.24 2.08 / 0.17
Montreal 1.45 / 0.93 1.22 / 0.94 1.10 / 0.93
Moscow 2.30 / 0.77 1.99 / 0.91 1.81 / 0.76
New Delhi 0.00 / 0.00 -0.35 / 0.00 -0.72 / 0.00
San Francisco 1.81 / 0.44 1.55 / 0.44 1.53 / 0.41
Singapore 0.00 / 0.00 -0.35 / 0.00 -0.72 / 0.00
Stockholm 2.23 / 0.77 1.75 / 1.06 1.47 / 0.95
Tokyo 0.07 / 0.16 -0.23 / 0.24 -0.58 / 0.31
Antofagasta 1.23 / 0.46 1.16 / 0.45 1.13 / 0.49
Auckland 1.60 / 0.69 1.49 / 0.66 1.43 / 0.64
Brasilia 0.55 / 0.38 0.34 / 0.35 0.21 / 0.42
Brisbane 0.15 / 0.25 -0.27 / 0.16 -0.57 / 0.28
Johannesburg 1.67 / 0.47 1.32 / 0.50 1.32 / 0.47
Quito 2.86 / 0.07 2.80 / 0.05 2.43 / 0.04

14



Figure 5: Net electrical energy savings comparison when using control based on reinforcement learning
(automatic) versus manually scheduled charge period (from 06:00 to 08:00)
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Figure 6: Net electrical energy savings comparison when discharging at different schedule

Figure 7: Ratio of increase of net electrical energy saving when using double or triple amount of PCM
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3.3. The effect of accurate forecasts
In this section the performance of the system for scheduling based on predicted

weather data versus real data is compared. The fans schedule is computed and decided
according to the short term meteorological forecast obtained at 20:00 of the previous
day. Then, the performance of the system was simulated according to this forecast
predictions and to the real temperatures obtained the day after. This test is used to eval-
uate how sensitive the schedule defined by the reinforcement learning model is to the
variations between the expected weather conditions and the real ones. The forecasted
and real weather data were registered during two weeks at two different locations. The
average performance of the system during these two weeks was slightly deviated in
both places when comparing what was expected from the predictions and what really
happened. In one hand, in Arenys de Mar (Csa), while the forecast predicted 1.79 MJ
of net energy savings, only 1.48 MJ could be obtained (reduction of 17.3%). On the
other hand, in Lleida (Cfb) the real net energy savings were increased to 2.33 MJ in
comparison to the 2.14 MJ predicted (increase of 8.88%). As it was expected, the ac-
curacy in the weather forecast is an important parameter in order to decide an optimal
operational schedule of the system. As an example, Fig. 8 shows one day of operation
in Lleida (Cfb). In this case, even the measured temperatures at night were lower than
the predicted, they follow a similar evolution in time, hence the decision of whether ac-
tivating the fans or not were mostly the same, and therefore slightly higher net energy
savings were achieved.

4. Conclusions

The incorporation of TES active systems in the building design requires smart con-
trol techniques to enhance their performance and to make them attractive to architects
and engineers, as well as to final users. A reinforcement learning algorithm is imple-
mented to control the operational schedule of a ventilated facade with PCM in its air
chamber. This algorithm uses a simple isothermal model to determine when is the op-
timal schedule to charge the PCM, and hence maximize the energy benefits from its
use.

The Köppen-Geiger climate classification [9] was used to select and test the perfor-
mance of this control system in one city for each climate region. It was demonstrated
that the improvement due to the use of the automatic control is constant through all
the summer period and all the studied climatic conditions. Furthermore, the paper
evaluated how the starting time of the discharge and the amount of PCM influence in
the performance of the whole system. On one hand, it was observed that the perfor-
mance of the system is slightly affected by the starting time of the discharge (varying
from 10:00 to 14:00) which reflects a high efficient storage sequence with low heat
losses/gains from the outdoor environment. On the other hand, the amount of PCM is
a critical parameter and has to be determined correctly according to the climate region.
Increasing the amount of PCM by a factor of two or three enhances the net electrical
energy savings achieved by the system by a higher ratio than this increased factor.

Finally, since the control system will be based on the weather forecast, the influence
on the accuracy of this forecast was explored. It was observed that even though the per-
formance of the system is very sensitive to an accurate weather forecast, the variations
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Figure 8: Performance comparison with real and predicted data
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of the achieved net electrical energy savings between predicted and real weather data
were lower than 18%.

Nomenclature

Aconv Area air-PCM heat transfer
[
m2
]

Cp Heat capacity
[

J
g·K

]
h Heat transfer coefficient

[
W

m2·K
]

L Enthalpy of fusion
[
J
g

]
ṁ Air mass flow rate

[
kg
s

]
mPCM Mass of PCM [kg]

Qt+1 Energy absorbed or released [J]

S PCM state [−]

T inlet Inlet temperature [K]

TPCM Average PCM temperature [K]

T outlet Outlet temperature [K]
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