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24ABSTRACT

25A process is presented for the vector reconstruction of fruit plantations based on the
26model developed by Verroust and Lazarus. To solve occlusion problems, the use of a
27dual graph of local and extended connectivity is proposed. The process allows
28vegetation variables such as the length and volume of the ligneous structure to be
29measured, enabling studies such as intensity of pruning operations. The process has
30been tested against simulated models and real trees with different training systems:
31lopen-vase system (peach trees) and central leader hedgerow system (pear trees). The
32cost of the algorithm will be given by the cost of the implementation of Dijkstra’s

2
33algorithm, which in its standard version is of potential (O (n )). Algorithm accuracy was

34checked against point clouds of virtual trees. The reconstruction was also applied before
35and after a pruning operation of real trees to enable a study of the evolution of the
36vegetation indices. Results showed the algorithm to be suitable for multi-tree
37reconstruction of both central leader and open-vase training systems.
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Variable Description
b Number of sets in a branch.
- :
Centroid of a group of points, coordinates ¢ Ye  Zc




Maximum extended distance over which neighbour points are
selected.

d, Maximum local distance over which neighbour points are
selected.

E Cloud of enveloping points to each branch of a virtual tree. The
point cloud is obtained from an enveloping mesh on the
cylindrical surfaces so that there are no occlusions in the cloud.

G, Geodesic graph of tree °

GD,, Geodesic distance from point Pi o root s

HMT Hidden Markov Tree

k Maximum number of k-level sets in which the cloud points are
grouped.

KPI Key performance indicator

LS SimLidar-obtained cloud with simulation of lateral scan of a
virtual tree

m Total number of trees

M Connectivity matrix

md, Maximum geodesic distance to root s

MTLS Mobile terrestrial laser scanner

n Total number of points in cloud

nb Total number of branches in reconstructed model

NB . . .o d

e Extended neighbourhood graph obtained with "¢

NB, . . o d,
Local neighbourhood graph obtained with

ﬁj( t Surface area which encloses the 3D reconstructed branch object

PC Point cloud

P. Individual point of cloud

p Total number of points in a given set

q Number of sections in which the total md, geodesic distance is
divided

0, Polar angle which defines a spherical sector to select the closest
point at a distance smaller than d, or d,

?, Azimuth angle which defines a spherical sector to select the
closest point at a distance shorter than d or d,

s Point of the base of the tree S which is taken as root of the
geodesic graph.

rt) Piecewise polynomial curve which defines the axis of a branch




r Radius

rd Minimum radius
ru Maximum radius
S; Set of points

¢]

Linear parameter in " '/ used for least squares fit of the radii

distribution

TLS Terrestrial laser scanner

431 INTRODUCTION

44The geometric reconstruction of a tree is fundamental for a detailed analysis of its
45structure. Using massive data support with information about geometry, measurements
46can be made of direct (leaf area, canopy volume or wood volume) and indirect tree
47vegetation parameters (LAI, leaf density, canopy permeability or radiation interception),
48which provide information about the productive characteristics of trees related to their
49shape and structure. The direct use of rasterised information or image analysis, from
50photographs for example, can allow obtaining some of these parameters
51(Phattaralerphong and Sinoquet, 2007). The vector reconstruction of the geometry of the
52tree provides support for these objectives and lays the foundation for the
53implementation of virtual construction models, such as the use of the statistical
54framework of the hidden Markov tree (HMT) model introduced by Crouse et al. (1998)
55and used to undertake realistic constructions of apple trees by Durand et al. (2005) and
56Costes et al. (2008).

57

58In parallel, with the use of massive data provided by photogrammetry or airborne laser
59scanning (ALS) for tree detection and general parameter estimation, geometry at
60individual tree level has been studied using two main approaches. The first comprises
61the use of digital photographs (Shlyakhter et al., 2001; Mizoue and Masutani, 2003;
62Phattaralerphong and Sinoquet, 2005 and 2007; Tan et al., 2008). Image information is
63processed to determine the existence of vegetation and, based on sensor parameters
64(horizontal distance from camera to tree and tree height), a projection is made onto a
65voxel space through which the crown volume and leaf area are estimated
66(Phattaralerphong and Sinoquet, 2007). The use of a smaller voxel size to increase
67precision dramatically increases running time.

68

69The second approach involves the use of a terrestrial LIDAR system or terrestrial laser
70scanners (TLS), which allows dense point clouds to be obtained from which a detailed
71description of the geometry can be extracted. Detection of the woody geometry from the
72TLS was considered by Simonse et al. (2003) using Hough transforms, while Gorte and
73Winterhalder (2004) and Gorte and Pfeifer (2004) generated the topology of the
74skeleton from a voxel space. The use of a TIN (triangulated irregular network) to obtain
75vector information about the ligneous structure of a tree is limited as a result of the
76presence of a large number of small branches (Fig. 1). Pfeifer et al. (2004) and Méndez
77et al. (2014) obtained a model of the scaffold branches and stems from a cylinder fit.
780ther mixed methods, which combine scanner data with high resolution image-obtained
79texture information, have been proposed by Reulke and Haala (2005). ICP (Iterative
80Closest Point) algorithms have also been employed, used to minimise the difference



81between two point clouds. The algorithm iteratively revises the rotations and
82translations required to minimise the distance between the points of a cloud with respect
83to another cloud taken as reference. The ICP algorithms have been used to register point
84clouds, i.e. fit the orientations obtained in different scans (Besl and McKay, 1992;
85Henning and Radtke, 2006). Pfeifer et al. (2004) used cylinders in a kind of a following-
86the-line approach to do the reconstruction. Hackenberg et al. (2015) used a similar
87approach but changing the cylinders to spheres. In Raumonen et al. (2013), "the model
88is constructed by a local approach in which the point cloud is covered with small sets
89corresponding to connected surface patches in the tree surface".
90
91Figure 1 should be placed here
92
93Assigning the point of a cloud obtained with the TLS to the different components of the
94plant is easy in the case of the trunk and scaffold branches. However, when it comes to
95the higher order branches, particularly the shoots, assigning a particular cloud point to a
96particular object can be a tricky business. Neighbourhood graphs, geodesic graphs and
97different cluster balancing algorithms are used to obtain the skeleton of the tree together
98with the radius of each branch. Searches for close points to construct the neighbourhood
99graphs are kd-tree based. Verroust and Lazarus (2000) generated the skeleton of the tree
100from the neighbourhood graph, geodesic graph and k-levels set. Verroust and Lazarus
101(2000) implements a Dijkstra’s algorithm (1959) from a point-proximity neighbour
102graph to get the geodesic graph and using the geodesic distance to the root of the tree
103the points are separated in k-levels set, finally the sets fit the cylinders of branches. Yan
104et al. (2009), from a kd-tree structure, applied Lloyd’s iteration (1982) to undertake
105segmentation of the cloud in clusters which are reconstructed in cylinders. Delagrange
106and Rochon (2011) used the model of Verroust and Lazarus (2000) to obtain the
107skeleton framework and, selecting centroids in the skeleton, applied a clustering process
108to group together the points pertaining to each branch. Runions et al. (2007) and
109Preuksakarn et al. (2010) used a space colonisation algorithm (SCA), which is initiated
110with a seed point and advances by adding points according to a normalised surrounding
111point’s minimum distance, as a clustering function.
112
113The method employed by Verroust and Lazarus is relatively stable and not as dependent
1140n configuration parameter values and point cloud shape compared to the method of
115Pfeifer et al. (2004) which requires fitted parameters as described in the study by
116Méndez et al. (2014). Even so, the quality of the point cloud, as a result of precision
117related and laser scanner operational problems, as well as tree part occlusions, has an
118important impact on the quality of the final result. Essentially, the point clouds obtained
119are affected by various error sources associated with measurements carried out using
120LiDAR systems: ranging and angular LiDAR accuracy, tree part occlusions, the mixed-
121pixels phenomenon (partial impacts of the laser beam on different parts of the objects),
122LiDAR alignment and aiming errors, positioning and georeferencing system and inertial
123system errors, vibrations of the LiDAR-vehicle combination (Sanz et al., 2011a; Lichti
124and Skaloud, 2010), etc. The method will therefore not always converge to the real
125solution. Coté et al. 2009 implements a woody material reconstruction based in Verroust
126and Lazarus (2000) where the foliage are added using L-System productions.
127
128This present work offers a variation on Dijkstra’s algorithm (1959) which reduces
12%occlusion problems in a point cloud obtained by mobile terrestrial laser scanning
130(MTLS) consisting of using a dual (local and extended) neighbourhood connectivity



131graph. The process allows vegetative variables such as the length and volume of the
132ligneous structure in fruit orchards to be measured from 3D point clouds generated by
133MTLS. The first step is to determine the skeleton of the tree to subsequently adjust
134cylinders to it. In our algorithm, the model surface is obtained at the end of the process
1350nce the 3D skeleton is determined. Other previous methods such as those developed by
136Pfeifer et al. (2004), Hackenberg et al. (2015) and Raumonen et al. (2013) use different
137approaches. The results can be directly applied in the objective and quantifiable
138evaluation of the intensity of pruning operations (Sun et al. 2006). Indirectly, the results
1390f the algorithm could be used in the generation of decision support systems for pruning
1400peration and even in the automation of such operations.

141

142The algorithm has been tested against simulated models and against real trees with
143different training systems. In a first case, the reconstruction is presented of an isolated
144tree with open-vase training (peach tree, Prunus persica (L.) Batsch). A second case
145involves the reconstruction of a single tree in a row of central-leader trained pear trees
146(Pyrus communis L.), while a third case deals with the multi-tree reconstruction of
147various individuals in the tree row. The algorithm also returns the vegetative
148measurements distributed according to branch order following the terminology
149proposed by De Reffye et al. (1988).

150

151In this way, the aim of the present study is to implement the Verroust and Lazarus
152method, introducing the novel use of a dual matrix of connectivity in Dijkstra’s
153algorithm (1959), and test its suitability in the reconstruction of ligneous structures of
154commercially grown orchards. The use of the dual matrix of connectivity allows
155working with compact point subsets at local level as well as the interconnection of
156separated subsets due to occlusions of objects situated on a plane closer to the sensor,
157for example. An analysis is also undertaken of the feasibility of obtaining vegetation
158indices of interest for the agronomic analysis of the orchard trees. Three vegetation
159%indices are implemented: number of terminal apices, branch length and wood volume.
160Testing is undertaken of whether the estimation of the obtained indices is realistic or
161not. These vegetation indices are used as key performance indicators (KPI) for the
162validation of the reconstructed models.

163

1642 MATERIALS AND METHODS

165The first step of the present work comprises testing of the algorithm for a complex but
166simulated (Méndez et al., 2013) formation. A direct point cloud was obtained of a
167cylindrical structure of a tree with abundant branching. As a difference to point clouds
168obtained with MTLS, the simulated cloud presented no noise and no occlusions.
169Nonetheless, the problem of indeterminacy was evident in fine and close neighbouring
170branches. The total number of terminal apices and the total length and volume of the
171branches obtained in the reconstruction (the KPI) were compared to the corresponding
172values for the simulated model, being used as goodness-of-fit measures of the
173reconstructions.

174

175In the following step, cloud points were obtained from real MTLS operations,
176considering one side and both sides of the tree row. These scans were performed before
177and after a tree pruning process. Direct test of the goodness-of-fit of the estimations was
178performed by comparing the difference in branch volume, before and after pruning,
179against the mass of pruned wood. The reconstruction method used was the one proposed



180by Verroust and Lazarus (2000), comprising the construction of a series of graphs:
181Neighbourhood - NB, Geodesic - G, Level Sets - L and Skeleton - K.
182

1832.1 Neighbourhood Graph — NB

184The neighbourhood graph of a point cloud PC=(P,,coni=1...n}

relates each point
185with all the points with which it is connected. The employment of a tetrahedralisation
186using the conditions of Delaunay allows the optimum graph connecting each point with
187the minimum number of possible neighbours to be constructed. However, the high cost
1880of processing a tetrahedralisation has resulted in the use of alternatives which lead to
189%analogous results but at lower computational cost. Generally, tetrahedralisation is
190replaced with a neighbourhood graph in which all the points P;ePC given HP" P, H<di

191will be neighbours of a point P". Delagrange et al. (2014) proposed the suitability of this

192approach to enhance the density of the graph that is acquired. A graph of higher density
193implies a higher cost in obtaining the geodesic graph, with minimum cost when
194tetrahedralisation is used since the point connectivity based in tetrahedron edges is
1950ptimal. The edges obtained by tetrahedralisation are minimum in number, although the
196cost of the process is high. In the present study, the approach of Verroust and Lazarus

197has been followed, selecting the points P, at a minimum distance d; within a K* P sector

0<6,<2m

1980f the sphere {Pi’df} in intervals of the polar angle ( ) and azimuth angle (

—n n
1997<¢P£§). The neighbourhood graph thus obtained will be seen as (0,d)) - {(Pi’P1>}

vp

200" " i fulfilling the condition OSHP P jH<dl.

The classical implementation of a

M , such that from point [ of the

202cloud comes a connection to J if MU:l and there will be no connection when MU:O.

M,=M,Vi,j

201neighbourhood graph of a cloud of n points is a matrix

203The connection will be bidirectional when , as happens in our case. Given

204that the “1” values in the matrix are limited, a n-dimensional vector structure can be
205used to store the effective connections as an alternative to the matrix ”2.

206

207As reported by Delagrange et al. (2014), the choice of d, has an impact on the quality of

208the reconstruction. Obtaining an accurate reconstruction depends initially on the quality
209of the point cloud. Problems such as branch occlusion or the accuracy of the scanner
210itself affect the quality of the reconstruction. But even when starting with an ideal
211homogenous cloud, without occlusions or accuracy problems, such a ramified tree
212model will lead to a different result in the reconstruction depending on the chosen value

213of d, . Choosing a low value facilitates a detailed reconstruction of the small branches of

214the tree at the cost of leaving isolated point subsets without reconstruction when gaps
215are found as a result of scanner inaccuracy or occlusions. To avoid this problem, the use

NBJ(O, d[) and NBe(dl:de)

216is proposed of two neighbourhood graphs , with the condition



d,<d, NB;

217that / will be used to obtain the geodesic graph applying Dijkstra’s algorithm

218(see Table 1), while NB, will be used to connect subsets of points isolated with respect

219%to NB; .

220

2212.2 Geodesic Graph - G

222The geodesic graph of a point cloud defines the minimum distance from each point to a
223vertex chosen as origin or root, using a hierarchical path from a vertex to its
224predecessor. So, for each vertex, the minimum distance to the root is defined as well as
225the predecessor vertex which is used to arrive at that root. The root vertex will have no
226predecessor and will have a distance zero. An isolated vertex will similarly have no

227predecessor and its distance to the root will be .

228

229In order to obtain NBJ', a multi-tree option of Dijkstra’s algorithm has been
230implemented, which consists of calculating the geodesic graph of each point to the base

231(root, rs’ with s:l,...,m) for each of the ™ trees. The choice of each '* is made by

232taking the vertex of lowest # coordinate value in the region where each tree is found. In

233practice, the axes on which the roots go are defined as input parameters so that they are
234located in the appropriate place. Introducing these parameters is facilitated by a

235graphical assistant on the original point cloud. Therefore, the reconstruction of M trees

236requires m geodesic graphs to be obtained, which will be written as G, with S=L--m
237

238Dijkstra’s algorithm (Table 1) begins with marking the chosen root "s as treated,
239assigning to it a zero value as the geodesic distance (line 2), and, finally, relaxing it. The

240relaxation consists of setting the distance to the root of all untreated points adjacent to s

241. Given Pi, if P, is adjacent and untreated, the sum of the geodesic distance from P, plus

242the Euclidean distance between both points (GDS’I' *

‘P P j”) is stored as the geodesic

243distance to ' ¢ (GDS’J'), provided the resulting value is lower than the previous value of

244GDS’J'. The algorithm iterates searching for the closest untreated point (line 6), which is

245subsequently marked as treated and then relaxed. The loop ends when there are no
246untreated points left.

247

248Table 1 should be placed here

249

250The search for a close point to a given point (in the MinimumVertex function) requires

251the point to be connected by graph NB; with a treated point. The existence of a totally

252treated graph is a necessary condition to enable the calculation of the geodesic distance



253of all points of the cloud to the root. A d’value high enough is all that is needed for this

254to happen.
255
256However, in models with many concave elements, as occurs in ramified structures such

257as trees, choosing a high value of d, causes the reconstruction to merge neighbouring

258branches, joining them through the concavities that separate them.
259
260To minimise this problem, a variation is considered of Dijkstra’s algorithm with the use

261of a dual neighbourhood graph. On the one hand, a local neighbourhood graph, NB’, is

262employed with a similar use to that considered in the standard algorithm. NB, allows to

263construct the geodesic graph within isolated sets of neighbourhood graph formed by
264interconnected points (Fig. 2). On the other hand, an extended neighbourhood graph,

265NB6, constructed with a longer distance, de, is used to connect the different islands,

266thereby forming a complete graph.

267

268Figure 2 should be placed here

269

270The algorithm is fitted so that, when a connected minimum point is not found in graph

271NB1, a search is made for a minimum vertex through graph NBe(using the

272MinimumExtVertex function). This function searches for an untreated and connected
273point in NB, to a treated point with the shortest distance to the root. Once this minimum

274extended point is found (Fig. 1), its geodesic distance is stored (SetDistanceMinExt
275function), reported as treated and relaxed. A view of the resulting new code for the
276algorithm is shown in Table 2.

277

278Table 2 should be placed here

279

2802.3 Level Sets — L

281The geodesic graph allows a classification of the vertices to be made in levels. Knowing

rS

282the geodesic distance (mdS) of the most distant point from s, all the points of the

283geodesic graph are distributed according to classes of the geodesic distance. If the
284maximum number of classes is k, a point P; will belong to the class Lit its geodesic

l -1
285distance is E'm d;< GDS,I.< k m ds.
286
287Using the neighbourhood graph along with the geodesic graph and the above
288distribution of classes, it is possible to define sets or groups of homogenous points with

289a hierarchic structure which will serve to define the branches of the tree. Each set will



290be formed by P, points which are in the same class I and which are interconnected

291according to NBJ'.

292
293Each set is formed by all those points that are neighbours and of equal class. The

y
D D and

294centroid of each set can be obtained as € !X Ye Ze , where Xc=
_ Z Z;

2952c= p where P is the total number of points in a given set. Lloyd’s iteration can be
296applied to the group of points thus formed. Lloyd’s iteration aims at distributing the
297points of the initial cloud among the sets such that the distance from the points to the
298centroids is a minimum. Lloyd’s iteration is restricted to points belonging to the same
299%tree.

300

301In a class : there will generally be one or more sets. More than one set will be formed

302when there are vertices which are locally interconnected but disconnected from the rest.
303Sets of different class may be hierarchically interconnected, a hierarchy which is
304inherited from the existing hierarchy between the vertices in the geodesic graph. There
305will be a set to which the root vertex belongs which is predecessor to the rest and which
306is the only one which has no predecessor. The rest of the sets will all have a predecessor.
307The set which contains the preceding vertex with minimum geodesic distance will be
308taken as the predecessor set to a given set (Table 3).

309

310The choice of the value of X in the formation of the sets, along with the choice of d, in
311the formation of the neighbourhood graph, has a considerable impact on the quality of
312the reconstruction. High values of k allow more accurate reconstruction of the smaller-

313sized terminal branches and more detailed ramifications. If the geodesic distance of a set
md
314(" ) is smaller than the trunk radius, a unique section of trunk become rebuilt in

315different sets. Then, false branches appear around the kernel of the trunk. We substitute

ks Ky k

|
316a fixed K value by a series of values a, The total md, geodesic distance is

317divided in 4 sections, and section lis divided in ki sets. For example {1, 2, 4} divides

318the tree into 3 sections, creating 1, 2 and 4 sets in each one.
319

320Table 3 should be placed here

321

3222.4 Definition of branches and branch axes

323Each branch is defined as the surface of revolution over a smooth curve (B-spline)
324which fits over the sequence of centroids of the sets which make up the branch. Given a

[sl,sz,..., |

| |
325branch B composed of the sets | 5o/ the respective centroids :Cl’ 2CiseeesCy)



[fl(t)’ :fl(t>,,l-:b

326are used to build a polynomial piecewise curve ()] . The parameter

327! is chosen such that Fil0)=c, and Fil1)=cin and so the piecewise curve must meet the

328following conditions:
329 e Fi(]-):i:Hl(O):CHl

330 o Fll=F00]
331 o Fil1=Fl0)

332 ° rl(llzrb(O)ZO

333The obtained curve " <t ), is the axis of the branch. The branch will be reconstructed as a

Fi(t)+7]le] /le] is a normal vector

334surface of revolution with the vector where

i 2n
33sWithj=1,....p i stepsof p .

336

3371t is then determined whether the concatenation of sets which go from the root set to a
338leaf set (set which is not a predecessor of any other set) is a branch continuation or
339ramification. In this aspect, the De Reffye’s criteria (1988) have been followed to order
340the ramifications. Order 1 is given to the main trunk where the root is found. If the
341concatenation of sets does not deviate more than a given angle threshold, then it is
342considered that there is no change of order, otherwise the order is increased by one unit
343to the next order.

344

345In a real model, branch radius should decrease with respect to that of the predecessor
346branch. In the reconstruction, as a result of inaccuracies in the point cloud or because
347points of different and very small branches are very close to each other, branches may
348be generated with a radius greater than that of the predecessor branch. In these cases, a

349debugging algorithm consisting of a deconstruction process is applied to the set Si by
350extracting the outsider point (the point furthest from the axis of the initial branch).

351Subsequently, a new set i is created containing it. Following this, all the points of i

352which are closer to the centroid of 3 than to its own centroid are transferred to . This

353process is iterated until there is no branch left with a radius greater than its predecessor.
3541f the resulting new set is an isolated point, then it is discarded.
355

3562.5 Determination of mean radius

s |

d=c { C. .
n), where "1 is the

(
357Knowing the direction i~1€i of each set > of an axis |°12°27"""

358centroid, the mean radius of the points of the class to the axis is determined. For all the

|V P,€swithj=1...q|

359points of the set, the distribution of the 9 radial distances of each



[ |
360point in the shape t(tf T )J is determined. Using a least squares fit, a straight line can be

361obtained which defines in each class a minimum radius (rdi) and a maximum radius (rul.

362), where the subscript ' refers to the fact that there will be a value in each of the classes
, rd, and TYi
364form a trunk-cylinder curve which defines the axis. For the sake of simplicity, and given
rd.+ru,
365that the result is neutral in axis volume calculations, a mean radius value of (> ) is

363which forms the axis which we have fitted with F (t) This means that F(t)

366taken.
367

3682.6 Processing cost of the algorithm

369A potential process limit was estimated in order to establish the algorithm’s processing
370cost. The upper limit of growth (O) of each function is estimated in Table 4 according to

371the total number of cloud points ("), total number of trees (™) and total number of

O(nxlog(n))

372branches (nb ). The cost of generating the kd-tree is (Cormen et al., 2009).

373The creation of the neighbourhood matrix requires access to the kd-tree structure with a

374cost O(log|n)) (Cormen et al., 2009) for each point, and so the total cost will also be

2
3750(n*10g(n))' The cost of Dijkstra’s algorithm in its standard construction is o(n’)

376(Leyzorek et al., 1957) in its standard implementation. When a minimum point is not
377found in the local matrix (Minimum Vertex function), a complementary search needs to
378be made in the extended matrix (MinimumExtVertex) and the geodesic distances
379%assigned of the new minimum point (SetDistanceMinExt). In its standard version, the

ofn)

380MinimumExtVertex function will have a cost complexity while

O(log(n)). It

382can be concluded that the complexity of the proposed variation maintains the initial
ol

381SetDistanceMinExt will have a lower complexity that we can estimate in

2
383complexity of Dijkstra’s algorithm, " ) . When implementing the multi-tree algorithm,

O(m*nz)

384the maximum computational cost is , where ™ is the number of trees. As ™ is

2
385very small compared with the number of points, a final cost can be taken of 0 (” ) The

386process of generation of sets from the geodesic graph has a cost O(n)’ while the

O(nxlog(nb))

387clustering algorithm employed (Méndez et al., 2014) has a cost . Finally,

388the process of obtaining the branches from the Level Sets graph is O(nb*log[nb )) In

2
389conclusion, the proposed algorithm has a processing cost O (” )

390
391Table 4 should be placed here
392



3932.7 Test against simulated tree and cloud

394The algorithm was tested against a virtual model. An apple tree model was obtained
395using a HMT model (Méndez et al., 2013). The different internode structures evolve
3%96according to a probability matrix (Durand et al. 2005, p. 818), which allows realistic
397models of trees to be obtained. A point cloud is extracted from the virtual apple tree,
398which permits an absence of noise and occlusions. The point cloud is obtained selecting
399a mesh or envelope over the cylindrical surface. In this point cloud, it is possible to
400verify that the choice of the dual matrix of connectivity does not affect the result of the
401reconstruction due to the non-existence of occlusions.

402

403Simulated MTLS operations were also obtained (Méndez et al., 2012 & 2013) with a
404guarantee of the non-existence of noise, but not of occlusions. In these simulations, the
405extended connectivity matrix allows isolated point subsets to be reconstructed.

406

407A leafless virtual apple tree is chosen of sufficient complexity to include small size
408branches (shoots). The number of terminal apices is known, as well as total branch
409length and volume, when the virtual apple tree is generated. These indices are compared
410with those generated in the reconstruction and are used as KPI to validate the model
411since they may be relatively easy to measure in field conditions. The simulated apple
412tree can generate small overlapping branches, which implies indeterminacy when
4130btaining the reconstruction. Two small and very close branches cannot be accurately
414differentiated, which will mean the same number of terminal apices as in the original
415model will not always be reconstructed. The total length of the estimated branches is
416derived from the reconstructed apices and this, together with the diameter, enables an
417evaluation of the volume.

418

4192.8 Testing against real models

420The present study was based on measurements obtained with an MTLS of various pear
421and peach fruit trees which were central-leader and open-vase trained, respectively, as is
422common practice in commercial fruit orchards (see Fig. 3). The measurements were
423only of the ligneous structure (that is, without leaves or fruits) as they were taken during
424winter (at plots run by the School of Agrifood and Forestry Science and Engineering of
425the University of Lleida).

426

427Figure 3 should be placed here

428

429A time-of-flight 2D LiDAR (Light Detection and Ranging) sensor, model UTM30-LX-
430EW (HOKUYO, Osaka, Japan) was used to scan the pear and peach orchards. The
431LiDAR has a range of 30 m, a scanning window of 270° with an angular resolution of
4320.25° providing 1081 first-return signal measurements per scan at a scanning frequency
4330f 40 Hz, which results in more than 43,000 points s™. It also has multi-return
434capabilities, providing up to 3 distance measurements associated with partial impacts of
435the same emitted laser pulse on different objects (Escola et al., 2014 & 2015). An RTK
436GPS 1200+ receiver (Leica geosystems AG, Heerbrugg, Switzerland) was used to
437geolocate the LiDAR sensor to subsequently geolocate the measurement points.
438Additionally, the LiDAR sensor was mounted on a gimbal to dynamically stabilise it in
439%a horizontal position. The MTLS scanned each side of specific row sections, including
440various trees with no leaves, before and after pruning. After data processing, several 3D
441georeferenced point clouds were obtained from the sampled row sections: a point cloud



4420btained when scanning from the right hand side of the row, a second point cloud
443obtained when scanning from the left hand side, and a third point cloud fusing both
444previous point clouds. A reconstruction of the ligneous structure was undertaken,
445separating the ligneous formation into individual trees.

446

447The selection of an extended matrix allows the extension of the reconstruction to point
448subsets of the cloud which would otherwise remain isolated.

449

4503 RESULTS AND DISCUSSION

4513.1 Test of algorithm performance

452A test was performed using cylinder-based models of virtual trees with different
453branching degrees (4, 11, 24 and 92 terminal apices). Taking points directly from the
454enveloping surfaces of the cylinders (E) generates a point cloud without occlusions, as
455shown in Fig. 4 (top). Besides, another point cloud is generated by simulating the
456performance of a one-sided MTLS lateral scan (LS) where occlusion problems appear.
457

458Figure 4 should be placed here

459

460The number of generated terminal apices, the length and total volume of the branches
461are used as KPI for reconstruction validation purposes. Reconstruction from the cylinder
462enveloping points enables testing the correct implementation of the model of Verroust
463and Lazarus (2000). The point clouds obtained with simulated LS allow the effect of the
464use of a dual connectivity to be verified in the case of occlusions. The results obtained
465are shown in Table 5. The enveloping point clouds allow us to conclude that, without
4660cclusion problems, the reconstruction provides good results in terms of identification
4670of the number of free apices and the total branch length.

468

469Table 5 should be placed here

470

471However, branch volume, which is affected by diameter estimation, shows high levels
4720f discrepancy. The reconstructed volumes are systematically lower than reference
473virtual tree volumes. The clustering applied with the Lloyd’s iteration compacts the
474point sets, tending to give volume underestimation. Additionally, when there is a large
475number of shoots, they are superposed and the probability to assign points to wrong
476branches is high. Furthermore, the error in the volume estimation may be of importance
477since wrong assignments can greatly affect shoot diameters, which are originally small.
478Moreover, diameter mis-estimations are quadratic in the volume calculation. That is
479why a debugging process was implemented to ensure that all branches have smaller
480diameters than their predecessors. When the debugging process is applied, the
481reconstructed model tends towards reality. Despite this, the reconstructed volumes can
482be used as relative values (i.e. qualitatively) in pruning operations or fertilisation
483activities, or to estimate potential yield, allowing relative comparison studies in a first
484stage. On the other hand, future efforts will be devoted to refine the developed method
485in order to improve the accuracy of the computed volume of reconstructed trees.

486

487The reconstruction process requires handling of a series of parameters which, a priori,
488are unknown. The possible contrast with the virtual model enables their determination.
489The basic tuning parameters are the number of sets and the intervals of connectivity.



490The way to calibrate the number of sets is to start from a value and reduce it if the
491internodes are seen to clump together or are easily resolved. In the trunk area it is better
492to use a low number of sets, while in smaller branches, a high number of sets allow
493more detailed reconstructions. The local connectivity interval is adjusted considering
494the point cloud density (related to the scanning settings), whereas the extended
495connectivity interval is found increasing the local parameter value to avoid occlusion
496until a value that permits the reconstruction of all the point cloud. Firstly, a
497reconstruction is performed using the same interval for local and extended
498connectivities. The initial selected value is small and it is increased in subsequent
499%reconstructions until a significant part of the tree is built. Secondly, the local interval
500value is frozen and subsequent reconstructions are undertaken increasing the extended
501interval until the tree is totally reconstructed.

502

5031t has been observed in the tests that, once the exact number of apices to reconstruct has
504been attained, further adjustment may cause variations in the resultant number of apices.
505Transferring this experience to the reconstruction of MTLS-acquired point clouds of
506real trees, suggests the use of simulated MTLS to virtually calibrate the parameters of
507the reconstruction.

508

509In the point clouds without occlusions, obtained from the cylinder enveloping meshes, it
510can be verified that the choice of the dual matrix of connectivity does not affect the
511result of the reconstruction due to the non-existence of occlusions (Fig. 4 bottom). Only
512in clouds derived from simulated MTLS with complex and multi-branched virtual
513models the use of dual connectivity is required. Dual connectivity improves
514reconstruction without the need to implement a process of occlusion-filling.

515

516In addition, real MTLS measurements were made of different types of tree training
517systems: open-vase trained peach trees and central-leader trained pear trees. A structure
518of polylines is extracted from the reconstruction which makes up the skeleton
519framework shown together with the point cloud in the CloudCompare v2.6.2 software
520(Girardeau-Montaut, 2006); at their side the cylinder-based reconstructions are also
521shown (Fig. 5). Finally, the result is shown of the multi-tree reconstruction of a row of
522five central-leader trained pear trees (Fig. 6). MTLS measurements were made before
523and after tree pruning. The MTLS operations were also made along one side of the row
524and along the other, left and right, with separate reconstruction of the plants based on
525each lateral point cloud. A bilateral reconstruction was also made based on the fusion of
526the two point clouds. The result is shown in Table 6.

527

528Estimation of the mass of pruned wood of each tree was used as numerical test of the
529reconstructions. The existence of high overlapping between terminal branches, as has
530been seen to occur in the simulated models, as well as the typical errors of LiDAR
531sensor-based systems, cause uncertainty in branch radius estimations. Pruned branch
532length is also calculated as the difference in total branch length before and after pruning.
533Given that branch length estimation is more stable, pruned branch length together with a
534proposed average radius allow the pruned branch mass to be estimated from an
535estimated density of 0.6 kg dm™ in peach (Prunus persica; Meier 2007) and 0.69 kg dm"
536 in pear (Pyrus communis; Meier 2007). Experimentally obtained pruned branch mass
537values were 1.463 kg and 0.716 kg, for peach and pear trees, respectively.

538

539Figure 5 should be placed here



540Figure 6 should be placed here
541

542Table 6 should be placed here
543

5444 CONCLUSIONS

545

546The algorithm that is presented allows reconstruction of multi-tree structures with
547abundant small-sized branching and occlusions in the point cloud. Accuracy of the
548algorithm was verified against simulated clouds, and was tested according to the three
549KPI: the number of terminal apices and total branch length and volume. The
550fundamental parameters in the reconstruction process are the two connectivity matrix
551intervals and the distribution of sets.

552

553The use of the dual matrix of connectivity has been shown to favour reconstruction in
554the case of occlusions in the point cloud. When the distribution of terminal branches
555shows no clumping together, the obtained KPI indicate a reconstruction of good quality,
556with reliable measurements of length, volume and total number of apices in the ligneous
557structure. If terminal branches overlap, the clustering process erroneously assigns points
558from one apex to the adjacent one. This affects the determination of total branch
559volume.

560

561The complexity (cost) of the algorithm is of the potential order (O(n?)).

562

563Potential lines for future research that have been identified include optimisation of the
564algorithm of grouping into highly populated branch formations. Such optimisation
565would allow the reliable computation of both total branch length and volume. A first
566approach has been made to the determination of branch order. Further investigations
567into this aspect will be undertaken in future studies given the great interest in KPI
568distribution by branch order. We consider these KPI to be a useful tool for following the
569evolution of a tree over its lifetime with respect to, for example, pruning operations or
570fertilisation activities, or to estimate potential yield.

571

s572Table Captions

573 Table 1. Implementation of Dijkstra’s algorithm for calculation of multi-tree

574  geodesic graph.
575¢ Table 2. Implementation of Dijkstra’s algorithm for calculation of the multi-tree

576  geodesic graph. Version including management of a matrix of dual connectivity.
577¢ Table 3. Implementation of the algorithm to obtain the Predecessor Group.

578¢ Table 4. List of functions used in the algorithm with estimated cost, where O is the

579  upper limit of growth of the algorithm time cost with the increase of " (number of

580  points in cloud), nb (number of branches) and ™ (number of trees).
581 Table 5. Reconstructions of virtual trees. The point cloud type used is generated

582 from an enveloping mesh on the cylinders without occlusions (E) or from a
583  simulated one-sided MTLS lateral scan with occlusions (LS). Connectivity shows



584
585

586
587e

588
589
590
591
592

593

whether dual connectivity was used (two values shown). Debugging shows whether
it was necessary as a result of the detection of branch diameters larger than those of
their predecessors.

Table 6. Reconstruction of peach tree (Prunus persica) with connectivity matrix
50/300 and k-level sets 16;32 and pear tree (Pyrus communis) with connectivity
matrix 50/150 and k-level sets 1;4;8;16. Pruned branch volume is estimated from
measured branch length and an average radius of 7 mm. For pruned wood mass
estimations, a density of 0.6 kg dm™ and 0.69 kg dm™ is considered in peach and
pear trees, respectively.

594Figure Captions

595¢ Figure 1. Construction of the geodesic root from the root vertex to a leaf vertex. The
596  solid arrows represent the oriented geodesic path. In red and thick line the choice of
597  vertices of extended scope.

598e Figure 2. Local (blue circle) and extended (dashed red circle) neighbourhood graph.
599¢ Figure 3. Pictures of the pear (a) and peach (b) trees before (1) and after (2)
600  pruning.

601 Figure 4. Simulated point cloud (top) and cylinder reconstruction result (bottom).
602¢ Figure 5. Views of the point clouds with skeletons generated in the form of
603  polylines and of their respective cylinder-based reconstructions.

604 Figure 6. Simultaneous reconstruction of a hedgerow of five central-leader trained
605  pear trees.
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Figure 1. Construction of the geodesic root from the root vertex to a leaf vertex. The
solid arrows represent the oriented geodesic path. In red & thick line the choice of
vertices of extended scope.
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Figure 2. Local (blue circle) and extended (dash & dot red circle) neighbourhood graph.




Figure 3. Pictures of the pear (a) and peach (b) trees before (1) and after (2) pruning.




Figure 4. Simulated point cloud (top) and cylinder reconstruction result (bottom).




Figure 5. Views of the point clouds with skeletons generated in the form of polylines and of
their respective cylinder-based reconstructions.
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Figure 6. Simultaneous reconstruction of a hedgerow of five central-leader trained pear trees.




Table 1. Implementation of Dijkstra’s algorithm for calculation of multi-tree geodesic

graph.
Functio  GeodesicGraphTree
n
Input iTree
Output  Geodesic Graph
1: Imin = GetIndexRoot(iTree) //Return the root vertex of a Tree
2: GeoDist[iTree][Imin] «~ 0 //The distance of the root to itself must be zero
3: GeoDone[iTree][Imin] « true //The vertex of the root is done
4: RelaxVertex(iTree, Imin) //Set the distance from closed connected vertex to
the root
5: Iter From I = 1 To length(List_CloudPoints)
6: iCur — MinimumVertex(iTree) //
7: If iCur = -1 Then Break(Iter) End(If) //End Iteration
8: GeoDone[iTree][iCur] « true
9: RelaxVertex(iTree, iCur) //Calculating distance to root using
distance to new vertex
10: End(I)
11: Return
Functio Minimum Vertex
n
Input iTree
Output  IMin
1: DistMin ~ -1
2: IMin ~ -1
3: Iter From I = 1 To length(List_CloudPoints)
4: If GeoDone[iTree][I] = false and GeoPredec[iTree][I] > -1 Then
5: 1f DistMin = -1 Then
6: IMin ~ I
7: DistMin « GeoDist[iTree][I]
8: Else GeoDist[iTree][I] < DistMin Then
9: IMin 1
10: DistMin — GeoDist[iTree][I]
11: End(If)
12: End(If)
13: End(I)
14: Return IMin
Functio RelaxVertex
n
Input iTree, iCur
Output  Void
1:  VertCurr « List CloudPoints[iCur]
2: Iter From I = 1 To length(List_CloudPoints)
3: If NeighBMatrix[iCur][I] = 1 Then
4: VertAdyacen — List_CloudPoints[I]
5: Dist « Distance(VertCurr , VerAdyacen)
6: If Dist + GeoDist[ITree][iCur] < GeoDist[ITree][I] Then



7: GeoDist[ITree][I] — GeoDist[ITree][iCur] + Dist
8: GeoPredec[ITree][I] « iCur

9: End(If)

10: End(If)

11: End(I)

12: Return




Table 2. Implementation of Dijkstra’s algorithm for calculation of the multi-tree
geodesic graph. Version including management of a matrix of dual connectivity.

Function GeodesicGraphTree

Input iTree
Output Geodesic Graph

1: Imin = GetIndexRoot(iTree) //Return the root vertex of a Tree

2:  GeoDist[iTree][Imin] « 0 //The distance of the root to itself must be zero

3:  GeoDone[iTree][Imin] « true //The vertex of the root is done

4: RelaxVertex(iTree, Imin) //Set the distance from closed connected vertex to the root

5: Iter From I = 1 To length(List_CloudPoints)

6: iCur — MinimumVertex(iTree) // Find next local vertex to process

7: If iCur = -1 Then //There is no local next vertex

8: iCur « MinimumExtVertex(iTree) // Find next extended vertex

9: If iCur = -1 Then Break(Iter) End(If) //End Iteration
10: SetGeodesicDistance(iTree, iCur) //Set Geod. Distance and parent of iCur
11: GeoDonel[iTree][iCur] « true
12: RelaxVertex(iTree, iCur) //Distance to root using distance to new vertex
13: Else //There is a local connect vertex to process
14: GeoDonel[iTree][iCur] « true
15: RelaxVertex(iTree, iCur) //Distance to root using distance to new vertex
16: End(If)
17:  End(I)

18: Return




Table 3. Implementation of the algorithm to obtain the Predecessor Group.

Function MeanGroupPredecessor

Input Groupld
Output Predecld

1: Predecld — NULL //Empty pointer for predecessor group
2:  wGeoDist « o
3:  Iter From I = 1 To Groupld.IndexPoints //Go through every vertex of Groupld
4: PredVer — GeoPredec[Groupld.iTree][I] //Get predecessor in Geodesic Graph
5: otherGrld — GeoGroup[PredVer] //Get the Group of a Vertex
6: If otherGrId # Groupld and GeoDist[PredVer]<GeoDist Then //A vertex
predecessor of a different group and shorter geodesic distance
7: Predecld ~ otherGrId
8: wGeoDist «— GeoDist[PredVer]
9: End(If)
10:  End(I)
11: Return




Table 4. List of functions used in the algorithm with estimated cost, where O is the

upper limit of growth of the algorithm time cost with the increase of " (number of

points in cloud), nb (number of branches) and ™ (number of trees).

Function Cost

O(n*log|n|)
KTree()

O(nxlog|(n))
NeighbourMatrix()

O(mxn’)
GeodesicGraph()
O(n)

LevelSets()

O(nxlog|nb)
Clustering() ‘

O|(nb|+0(nb|+0(nb|*O|log|nb)|=

O(nx*log(nb))
FinalCylinders()
MainFunction() O(”z)




Table 5. Reconstructions of virtual trees. The point cloud type used is generated from an
enveloping mesh on the cylinders without occlusions (E) or from a simulated one-sided
MTLS lateral scan with occlusions (LS). Connectivity shows whether dual connectivity
was used (two values shown). Debugging shows whether it was necessary as a result of
the detection of branch diameters larger than those of their predecessors.

Virtual tree Scan Reconstruction
Length Volume | Apices | Cloud | Connectivity | Length | Volume | Apices | Debugging
(m) (dm’) type (mm) (m) (dm’)
1.56 0.60 4 E 20 1.53 0.45 4 No
LS 15 1.54 0.29 4
E 20 2.32 0.62 1
240 0.75 s 15 2.35 0.36 10 No
LS 15/30 2.38 0.36 1
E 20 6.73 0.98 24
7.02 1.27 241Ls 15| 134 0.22 5 No
LS 15/40 5.41 0.86 22
E 20 23.60 0.92 93
24.81 1.89 92 LS 20 3.52 0.37 13 Yes
LS 20/60 17.21 1 75
LS 20/70 20.88 1.02 105




Table 6. Reconstruction of peach tree (Prunus persica) with connectivity matrix 50/300 and k-level
sets 16;32 and pear tree (Pyrus communis) with connectivity matrix 50/150 and k-level sets
1;4;8;16. Pruned branch volume is estimated from measured branch length and an average radius of
7 mm. For pruned wood mass estimations, a density of 0.6 kg dm™ and 0.69 kg dm™ is considered in
peach and pear trees, respectively.

Actual MTLS Pre-pruning Post-pruning Pruned
Scanned | mass of . Number | Branch | Number| Branch | Wood Wood
derived
tree type | pruned oint cloud of length of length | volume | mass
wood (kg) | P apices (m) apices (m) (dm?) (kg)
Peach Left scan 365| 112.30 228 69.59 1.64 0.98
Right scan 387| 113.14 211 66.81 1.78 1.06
(open- 1.463 S -
vase) canning 502| 144.97 284 80.32 2.48 1.49
both sides
Pear Left scan 156 49.27 93 30.10 0.74 0.51
(central- 0.716 Rslght s.can 157 44.98 95 29.31 0.60 0.42
leader) canning 176|  54.76 93|  32.71 0.85 0.59
both sides




