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Abstract 

 

Despite the fact that there are some commercial concentrated solar power plants worldwide, 

there is currently a lack of experimental reports about the operational characteristics of this type 

of plants. Therefore, a two-tank molten salts thermal energy storage (TES) pilot plant at the 

University of Lleida (Spain) was used to analyse charging and discharging processes under real 

conditions. In this facility, 1000 kg of molten salts are used as TES material and Therminol VP-

1 is used as heat transfer fluid (HTF). This facility is equipped with measurement equipment 

which allows an exhaustive analysis of the processes. In this study, the fact of varying the flow 

arrangement in the heat exchanger (parallel and counter flow arrangements) and the temperature 

difference between the molten salts and the HTF have been studied and discussed in terms of 

temperature profiles, energy and power stored/released from/to both HTF and molten salts, 

efficiencies and effectiveness. The best working conditions found were counter flow 

arrangement with a temperature grading of about 65 ºC. 

 

Keywords: Concentrated solar power; sensible heat storage; two-tank; molten salts; heat 

exchanger; parallel flow arrangement; counter flow arrangement. 
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Nomenclature 

C Heat capacity, J/K 

cp Specific heat, J/kg·K 

E Energy, J 

ሶ݉  Mass flow rate, kg/s 

Q Power, W 

 

Greek symbols 

∆ܶ Temperature difference, ºC 

 Process length, s ݐ∆

 - ,Effectiveness of the heat exchange ߝ

 - ,Efficiency of the heat exchange ߟ

 

Subscripts 

act Actual 

HTF Heat transfer fluid 

in Inlet 

max Maximum  

min Minimum  

out Outlet 

salts Molten salts 
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1 Introduction  

 

Since 2010, generation of solar thermal electricity from concentrating solar power (CSP) plants 

has strongly grown worldwide. These plants generate electricity from renewable energy sources 

while producing no greenhouse gas (GHG) emissions, so it is considered to be a key technology 

to mitigate climate change and to achieve the reduction goals of GHG. In addition, the 

flexibility of CSP plants enhances energy security. Tomislav et al. [1] reviewed the existing 

CSP plants worldwide in order to identify their technical characteristics and operation 

conditions, and to extend their construction and use. Moreover, Reddy et al. [2] presented a state 

of the art of solar thermal power plants. They technically and economically compared three CSP 

plants case studies with different solar collection technologies in Indian tropical climates: 

parabolic through collector, parabolic dish collector and solar power tower. They concluded that 

parabolic dish with Stirling engine generates electricity at lower cost than the other technologies 

because of its higher efficiency, but has a lower yearly power output. In both studies [1,2], the 

parabolic through collector technology is highlighted as the most developed and mature 

technology in current commercially operating plants. 

 

According to the International Energy Agency [3], when combined with thermal storage 

capacity of several hours of full-capacity generation, CSP plants can continue producing 

electricity when power demand steps up even when clouds block the sun, after sundown or in 

early morning. This effect is known as peak shaving (Figure 1). Zhang et al. [4] studied how 

thermal energy storage (TES) improved the competitiveness of the CSP technology in 

comparison with different fossil fuel fired backup systems. Those authors highlighted that 

accurate estimation of the direct daily solar irradiation is needed in order to design CSP and size 

TES or backup system, and concluded that in the future the solar energy contribution will 

increase due to technical improvement in solar collection and, in consequence, the required 

backup will be smaller. 
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The behaviour of all main components of the two-tank storage system, such storage tanks, have 

been widely simulated [7] and tested at different scales pilot plant [8, 9] and at commercial scale 

[10] but not the heat exchanger. Hermann et al. [11] stated that heat exchanger should be 

designed within a small approach (3-10ºC) to maintain HTF supply temperature to the collector 

field during the charging process and minimize the performance penalty in the power block 

during the discharging process. Moreover, the heat exchanger should correctly operate under 

differential pressures between the HTF and molten salts side. Hence, it is crucial to understand 

the heat transfer process in HTF-molten salts heat exchanger in order to improve the 

performance and efficiency of the TES system and CSP plants.  

 

Heat transfer processes in heat exchangers have been widely studied in the literature. Kakaç and 

Liu [12] showed the most common methods for the design, selection and sizing of different 

types of heat exchangers for different applications. The most widely used heat exchanger in 

commercial CSP plants is the shell-and-tube heat exchanger because of economic aspects [13]. 

Experimental and numerical work found in literature studied different features of performance 

of molten salts and HTF in shell-and-tube heat exchangers [14]. However, current CSP plants 

are starting to use plate heat exchangers because of their high thermal efficiency, compactness 

and flexibility against changes in load operation [15]. Walraven et al. [16] realised a comparison 

of shell and tube with plate heat exchangers in organic Rankine cycle for low temperature 

power generation applications and established that plate heat exchangers have a better 

performance under the same conditions but one disadvantage of plate heat exchangers is that the 

geometry of both sides is the same. Therefore, there is no available literature studying the 

performance of a plate heat exchanger under real CSP conditions. Hence, the objective of this 

article is to fill such knowledge gap since it represents the first experimental work in the 

literature regarding this topic. Its originality lies in the fact that the present work studies the 

reliability of a plate heat exchanger with thermal oil and molten salts as working fluids under 

real operation conditions in two-tank molten salts TES system. 

 

In the facility used to perform this study, 1000 kg of molten salts are used as TES material and 

Therminol VP-1 is used as heat transfer fluid. Moreover, this facility is equipped with 

measurement equipment which allows an exhaustive analysis of the processes. The effects of 

varying the flow arrangement in the heat exchanger and the inlet temperature difference 

between the salts and the HTF during the charging and discharging processes have been studied 

and discussed based on: temperature profiles, energy and power stored/released from/to the 

HTF and molten salts, efficiencies and effectiveness. These variations aimed to simulate real 

working conditions at commercial CSP plants.  
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2 Materials and methodology 

2.1 Materials 

 

Synthetic thermal oil Therminol VP-1 was used as HTF in the present experimentation because 

of its thermal stability at high temperatures. Therminol VP-1 is a clear, water white sediment 

free liquid HTF which consists of a eutectic mixture of 73.5% diphenyl oxide (C12H10O) and 

26.5% diphenyl (C12H10). Table 1 shows the main thermophysical properties of Therminol VP-

1. 

 

Table 1.Thermophysical properties of Therminol VP-1 [17]. 

Properties Units Values 

Thermal stability [ºC] 430  

Boiling point [ºC] 257  

Crystallization point [ºC] 12  

Flash point [ºC] 110 - 124  

Autoignition temperature [ºC] 621 

Density [kg/m3] 
ߩ ൌ െ2.835 ൉ 10ି଺ ൉ ܶଷሺ௢ܥሻ ൅ 1.235 ൉ 10ିଷ ൉ ܶଶሺ௢ܥሻ

൅ 1.037 ൉ ܶሺ௢ܥሻ ൅ 1094 

Specific heat [kJ/kg·K] 

݌ܿ ൌ 4.908 ൉ 10ିଵଵ ൉ ܶସሺ௢ܥሻ െ 3.960 ൉ 10ି଼ ൉ ܶଷሺ௢ܥሻ

൅ 1.107 ൉ 10ିହ ൉ ܶଶሺ௢ܥሻ ൅ 1.439 ൉ 10ିଷ

൉ ܶሺ௢ܥሻ ൅ 1.556 

Thermal conductivity [W/m·K] 
ߣ ൌ െ1.687 ൉ 10ି଻ ൉ ܶଶሺ௢ܥሻ െ 8.885 ൉ 10ିହ ൉ ܶሺ௢ܥሻ

൅ 0.138 

Kinematic viscosity [m2/s] 

߭ ൌ െ9.565 ൉ 10ିଵଽ ൉ ܶହሺ௢ܥሻ ൅ 1.417 ൉ 10ିଵହ ൉ ܶସሺ௢ܥሻ

െ 8.435 ൉ 10ିଵଷ ൉ ܶଷሺ௢ܥሻ ൅ 2.574 ൉ 10ିଵ଴

൉ ܶଶሺ௢ܥሻ െ 4.197 ൉ 10ି଼ ൉ ܶሺ௢ܥሻ ൅ 3.318

൉ 10ି଺ 

Vapor pressure [kPa] 
௩ܲ ൌ 7.394 ൉ 10ିହ ൉ ܶଷሺ௢ܥሻ െ 3.527 ൉ 10ିଶ ൉ ܶଶሺ௢ܥሻ

൅ 5.744 ൉ ܶሺ௢ܥሻ ൅ 3.064 ൉ 10ଶ 

 

On the other hand, a eutectic mixture consisting of a 60 % of sodium nitrate (NaNO3) and a 40 

% of potassium nitrate (kNO3), widely known as solar salts, was the TES material used in this 

study. This salts mixture is the most studied and used TES material in commercial applications. 

The main properties of the solar salts obtained from laboratory analyses performed by Abengoa 

[18] are shown in Table 2. 
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Table 2. Properties of molten salts [18]. 

Properties Units Values 

Composition [-] NaNO3/ KNO3 (60/40 wt%) 

Appearance [-] White crystalline in solid and clear yellow in liquid 

Melting point [ºC] 238-241  

Density [kg/m3] ߩ ൌ 0.636 ൉ ܶሺ௢ܥሻ ൅ 2089.905 

Specific heat [kJ/kg·K] ܿ݌ ൌ 1.723 ൉ 10ିସ ൉ ܶሺ௢ܥሻ ൅ 1.443 

Thermal conductivity [W/m·K] ߣ ൌ 1.9 ൉ 10ିସ ൉ ܶሺ௢ܥሻ ൅ 0.443 

Kinematic viscosity [m2/s] 
߭ ൌ െ6.557 ൉ 10ିଵସ ൉ ܶଷሺ௢ܥሻ ൅ 1.05 ൉ 10ିଵ଴ ൉ ܶଶሺ௢ܥሻ

െ 5.706 ൉ 10ି଼ ൉ ܶሺ௢ܥሻ ൅ 1.112 ൉ 10ିହ 

 

2.2 Experimental setup 

 

The high temperature pilot plant facility located at the University of Lleida (Spain), whose 

overview can be seen in Figure 2, was the experimental setup used to carry out the 

experimentation presented in this study. The goal of this experimental setup is to simulate the 

charging and discharging processes of a real two-tank molten salts TES system for CSP plants 

but at lower scale. Therefore the same elements and instrumentation than the ones used in a real 

scale plant are placed in this facility, which are gathered into the following main systems: (1) 

The heating system, which consists of a 24 kWe electrical heater that on the one hand heats up 

the HTF simulating the energy source during the charging process and on the other hand it 

pumps the HTF through the piping of the HTF loop. In a real CSP plant this function is 

accomplished in the solar field by the solar collectors or the solar tower. (2) The cooling system, 

which consists on a 20 kWth air-HTF heat exchanger that cools down the HTF simulating a 

power block during the discharging process. In a real CSP plant this function is accomplished 

by the steam generator, where the steam to drive the different turbines is produced. (3) The 

storage system consists of two 0.57 m3 molten salts storage tanks (the so-called hot and cold 

tanks due to its thermal level) made of stainless steel 316L and with an identical shape than the 

storage tanks of commercial plants. 2.5 kW molten salt pumps located at the top of each tank 

are the responsible to move1000 kg of molten salts through the molten salts loop. (4) The heat 

exchange system consists of a multiple pass plate heat exchanger (HP 76-38H supplied by 

Alfanova) and its objective is to carry out the heat exchange between the molten salts and the 

HTF. Its main characteristics are listed in Table 3. (5) The electrical tracing system consists of 

different metallic wires installed along the piping of the molten salts loop, which provide heat 

by the Joule effect in order to maintain the molten salts piping at a desired temperature (above 

the molten salts melting point) and therefore avoid solidification problems. (6) Finally, the data 

acquisition system, which consists of all the temperature, pressure and flow rate sensors as well 



 

as th

interv

The 

foam

inform

plant 

 

Figu

(b) A

 

 

In ord

disch

instal

e different d

val of 30 s th

pilot plant 

mglass and re

mation abou

can be foun

ure 2. Overvie

Air-HTF heat 

heat exchang

Table 3

der to analyz

harging proc

lled in well i

dataloggers a

he data from 

facility is i

efractory cem

ut the design

d in Peiró et 

w of the pilot 

exchanger, (c

ger, (f) HTF lo

. Main charac

Character

Design pre
Test pressu
Design tem
Directions
Length x w
Plate mate
Plate thick
Number of
Number of
Heat trans

ze the behav

cesses, four 

insulated tub

and a person

all the system

nsulated wit

ment to min

n, constructi

al. [19]. 

plant facility 

c) Molten salts

oop, (g) Molte

cteristics of the

ristics 

essure 
ure 
mperature 
s of the fluids
width x heigh
erial 
kness 
f passes 
f plates 
fer area, AEx

vior of both t

temperature

e sections at

8 

nal compute

ms and mate

th rockwool

nimize the h

ion, start-up 

used to carry

s hot tank, (d)

en salts loop an

e heat exchan

Ther
oil s
20 
26 
400

s Bo
ht 20

Stai

xch 

the molten s

e probes Pt-

t 83 mm from

er, is the sys

erials to furth

l and the b

heat losses 

and operati

out the exper

) Molten salts 

nd (h) Acquis

nger used in th

rmal 
side s
bar 
bar 

0 ºC 
oth 
08 x 191 x 61
inless steel al

0.40 mm
10 (both sid

38 
3.8m2

salts and the 

-100with an 

m the four te

stem which 

her be proces

bottom of st

to the surro

ion of this e

rimentation. (a

cold tank, (e)

ition and reco

e experimenta

Molten 
salts side 

10 bar 
13 bar 
400 ºC 
Both 

18 mm 
lloy 316 

m 
des) 

HTF during

accuracy o

rminals of th

records at a

ssed and ana

torage tanks

oundings. Sp

experimental

 

a) Electrical b

) HTF-molten 

ording system

al set up. 

g the chargin

of ± 0.1 ºC 

he heat excha

a time 

alyzed. 

s with 

pecific 

l pilot 

boiler, 

salts 

. 

ng and 

were 

anger. 



9 

 

Moreover, the volumetric flow of the HTF was measured using a calibrated orifice plate with 

differential pressure transmitter, with an uncertainty of 0.2 %, located at the outlet of the 

electrical boiler. The molten salts volumetric flow is calculated using a homemade device which 

consists of a metallic tube that measures the molten salts level variation inside the tank during 

time intervals of five minutes.  

 

2.3 Methodology 

 

Four different operational modes are performed at the pilot plant facility depending on if it is a 

charging or a discharging process and on the flow arrangement of both the molten salts and the 

HTF: parallel or counter flow (Figure 3).  

 

The charging process consists of storing the thermal energy in the molten salts by heating them 

up. In this process, the molten salts are pumped from the cold storage tank to the hot storage 

tank through the heat exchanger, where the energy from the HTF is transferred to the molten 

salts (Figure 3-a and Figure 3-c). The discharging process consists of releasing the thermal 

energy stored in the molten salts during the charging process by cooling them down. In this 

process, the molten salts are pumped from the hot storage tank to the cold storage tank through 

the heat exchanger, where the energy from the molten salts is transferred to the HTF (Figure 3-b 

and Figure 3-d). 

 

In a parallel flow arrangement (Figure 3-a andFigure 3-b), the hot fluid and the cold fluid move 

in the same direction, while in a counter flow arrangement (Figure 3-c and Figure 3-d), the hot 

fluid and the cold fluid move in the opposite direction. 
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Before starting each experiment, a recovery process of optimal temperature profiles according 

to the supplier was performed in order, on the one hand, to ensure a uniformity and 

homogeneity of the molten salts and the HTF at the initial temperatures and flow rates 

conditions and, on the other hand, to prepare the experimental setup for the desired flow rate 

arrangement. Once the initial conditions were set, the experiments started and were considered 

to be finished when the molten salts of the storage tank, from which the salts were pumped, 

reached the minimum operation level. 

 

Table 4. Characteristics of the different experiments carried out at the pilot plant facility. 

Experiment 

number 
Process 

Flow  

arrangement 
Temperature ΔT 

#1 Charge Parallel flow 
HTF in: 343 ºC 

Salts in: 297 ºC 

46 ± 3 ºC 

#2 Discharge Parallel flow 
HTF in: 298 ºC 

Salts in: 341 ºC 

#3 Charge Counter flow 
HTF in: 341 ºC 

Salts in: 294 ºC 

#4 Discharge Counter flow 
HTF in: 297 ºC 

Salts in: 346 ºC 

#5 Charge Counter flow 
HTF in: 372 ºC 

Salts in: 303 ºC 
68 ± 1 ºC 

#6 Discharge Counter flow 
HTF in: 308 ºC 

Salts in: 375 ºC 

 

Notice that, regardless of the order in which the experiments are listed, each experiment is 

independent from the rest and their initial and final conditions have no connection between 

them.  

 

2.4 Theory and calculation 

 

In order to analyze and compare the charging and discharging processes described in the 

previous section, the following parameters have been taken into account: temperature evolution 

of the HTF and molten salts at the inlet and outlet of the heat exchanger, power and energy 

stored/released from/to the HTF and molten salts and the efficiency and effectiveness of the 

charging and the discharging processes. 
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The power released/absorbed by the molten salts and the HTF during the charging and 

discharging processes are described as Eq. (1) and Eq. (2) shows: 

 

ܳ௦௔௟௧௦ ൌ ሶ݉ ௦௔௟௧௦ ൉ ௦௔௟௧௦݌ܿ ൉ 	∆ ௦ܶ௔௟௧௦೔೙ష೚ೠ೟  (1)

 

ܳு்ி ൌ ሶ݉ ு்ி ൉ ு்ி݌ܿ ൉ ∆ ு்ܶி೔೙ష೚ೠ೟  (2)

 

where ሶ݉  is the mass flow rate, ܿ݌ is the specific heat obtained with the data shown at section 

2.1, and ∆ܶ is the temperature difference between the inlet and the outlet of the heat exchanger. 

 

The energy obtained by the molten salts and by the HTF during the charging and discharging 

processes are described as Eq. (3) and Eq. (4) show: 

 

௦௔௟௧௦ܧ ൌ ሶ݉ ௦௔௟௧௦ ൉ ௦௔௟௧௦݌ܿ ൉ 	∆ ௦ܶ௔௟௧௦೔೙ష೚ೠ೟ ൉ (3) ݐ∆

 

ு்ிܧ ൌ ሶ݉ ு்ி ൉ ு்ி݌ܿ ൉ ∆ ு்ܶி೔೙ష೚ೠ೟ ൉ (4) ݐ∆

 

where ∆ݐ is the process length. 

 

The efficiency of the heat exchange during the charging and discharging processes is described 

as Eq. 5 and Eq. 6 show: 

 

௖௛௔௥௚௘ߟ ൌ
ܳ௦௔௟௧௦
ܳு்ி

 
(5)

 

ௗ௜௦௖௛௔௥௚௘ߟ ൌ
ܳு்ி
ܳ௦௔௟௧௦

 
(6)

 

And finally, the effectiveness of the heat exchange during the charging and discharging 

processes is defined by Eq. 7: 

 

ߝ ൌ
ܳ௔௖௧
ܳ௠௔௫

 
(7)

 

where ܳ௔௖௧ is the actual heat transfer and is calculated by Eq 8 and ܳ௠௔௫ is the maximum 

possible heat exchanger rate with a given inlet temperatures and is defined by Eq. 9: 
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ܳ௔௖௧ ൌ
ܳு்ி ൅ ܳ௦௔௟௧௦

2
 

(8)

 

ݔܽ݉ܳ ൌ ݊݅݉ܥ ൉ ሺܶ݊݅ܨܶܪ െ (9) (݊݅ݏݐ݈ܽݏܶ

 

where ܥ௠௜௡ is the lowest value between heat capacities of HTF and salts. 

 

3 Results and discussion 

 

3.1 Temperature profile 

 

The temperature evolution along time and the average temperatures distribution of the HTF and 

molten salts at the cold tank side and hot tank side terminals of the heat exchanger for the six 

experiments above-explained are shown from Figure 4 to Figure 6. In these figures, the HTF 

temperature is represented in dotted lines while the molten salts are represented in straight lines. 

Moreover, in the charging process, the hot fluid is plotted in red and corresponded to the HTF 

while the cold fluid is plotted in blue and corresponded to the molten salts. In the discharging 

process, the hot fluid corresponded to the molten salts and the cold fluid corresponded to the 

HTF. 

 

Before starting each charging process, there is no fluid circulation through the heat exchanger 

and therefore the piping, high values of temperature can be observed in both terminals because 

of the influence of the electrical tracing system on the temperature sensors. Similarly, before 

starting the each discharging process, inconsistent values of temperatures are observed because 

of the process preparation. From the HTF point of view, the decrease of temperatures 

corresponded to a fluid recirculation through the heat exchanger at the inlet HTF temperature 

while the variations of temperature on the molten salts side, were caused by the electrical 

tracing system. These periods are represented shaded in the all the figures which discuss the 

temperature profiles. 

 

Regarding parallel flow arrangement, Figure 4 shows the temperature evolution along time and 

average temperature distribution at the two heat exchanger terminals during the experiments #1 

and #2 (ΔT=46 ºC). At the beginning of the charging process (Experiment #1, Figure 4a and 

Figure 4c)a temperature difference of around 40 ºC could be observed at the cold tank side 

terminal of the heat exchanger (represented by the temperature sensors HTF in and Salts in). 

This temperature difference was increased 6 ºC as the process continued due to a decrease of the 

molten salts inlet temperature. The reason for such decrease lies on the fact that the temperature 
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Table 5.Summary of the most important results of the six experiments presented in this study. 

Exp. Process Flow 
ΔT 

[ºC] 

QHTF 

[kW] 

Qsalts 

[kW] 

EHTF 

[kWh] 

Esalts 

[kWh] 

 ࣁ

[-] 

 ࢿ

[-] 

#1 Charge Parallel 

flow 

 

46 ± 

3 

5.34 4.90 3.40 2.97 0.92 0.54 

#2 Discharge 4.72 4.85 2.61 2.72 0.97 0.57 

#3 Charge  

Counter 

flow 

9.35 8.11 5.80 4.94 0.87 0.91 

#4 Discharge 8.16 8.67 4.52 4.83 0.94 0.87 

#5 Charge 68 ± 

1 

13.03 11.59 7.84 6.84 0.89 0.94 

#6 Discharge 11.12 11.75 7.09 7.50 0.94 0.90 
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