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Abstract 

 

Solar power plants have been deployed in the last 20 years, so the interest in evaluating their 

performance is growing more and more. In these facilities, thermal energy storage is used to 

increase dispatchability of power. The two-tank molten salts storage system with “solar salt” 

(60 wt.% NaNO3 and 40 wt.% KNO3) is the one commercially used today. To be able to achieve 

a deep understanding of the two-tank solar storage systems with molten salts, in 2008 a pilot 

plant was built at the University of Lleida (Spain) and the experimental evaluation of the 

temperature distribution inside the tanks and their heat losses are presented in this paper. 

Therefore, this pilot plant is equipped with several temperature sensors inside the tank as well as 

in the different layers of external insulation. As expected, temperature is lower at the external 

part of the tank (near the cover, at the bottom and near the walls) and no stratification is seen. It 

is found that the influencing parameters in the temperature distribution of the salts inside the 

tank are: insulation, and the existence of different electrical resistances and the orientation and 

surroundings of the tank. Heat losses were measured and compared both with a simulated 1-D 

steady state model and previous literature. Measured heat losses were from 61 W/m2 through 

the bottom to 80 W/m2 through the walls (with 73 W/m2 through the cover). 
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Nomenclature 

AConcrete Heat transfer area of concrete [m2]

Acyl Heat transfer area of tank walls [m2]

Asphere Heat transfer area of top tank wall [m2]

Cp Specific heat of salts [J/kg·ºC] 

h Convection heat transfer coefficient between tanks and ambient [W/m2·ºC] 

kconcrete Thermal conductivity of refractory concrete [W/m·ºC] 

kRockwool Thermal conductivity of Rockwool [W/m·ºC]

L Height of the tank wall [m] 

QConcrete Heat losses through concrete base [W] 

QFG Heat losses through Foamglass base [W] 

QTop Heat losses through the top of the tank [W] 

QWall Heat losses through the wall of the tank [W] 

r1 Outer radius of the tank [m]  

r2 Radius of the tank with Rockwool [m] 

T Temperature [ºC] 

TBottom Temperature of the bottom of the tank [ºC] 

TGround Temperature of the ground [ºC] 

Tsalt Temperature of the salt in the hot and in the cold tank [ºC] 

TWall.ext Temperature of the Rockwool surface wall of the tank [ºC] 

TWall.in Temperature of the external wall surface of the tank [ºC] 

V Volume of storage tanks [m3] 

ΔX.Concrete Thickness of concrete base [m] 

ρ Density of salts [kg/m3] 

ΔT  Thermal gradient between wall of storage tanks and sorrounding 

air [ºC] 

 

1. Introduction 

Sustainable and low-carbon energy technologies will play a crucial role in the energy revolution 

to change current trends in energy supply and use. Generation of solar thermal electricity from 

concentrating solar power (CSP) plants has grown strongly worldwide. In fact, CSP components 

and systems are coming to commercial maturity, holding the promise of increased efficiency, 

declining costs and higher value through increased dispatchability (International Energy Agency 

2014). Four main elements are required in these plants: concentrator, receiver, transport/storage 

system, and power conversion block (Gil et al. 2010, Medrano et al. 2010). Among them, 

thermal energy storage (TES) is recognised as the technology that increases the energy system 

reliability, increases the generation capacity, and reduces the cost of generation. Moreover, TES 
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tank, respectively. Based on the same facility, Hermann et al. (2004) performed a regression 

analysis to develop an empirical heat loss equation from the measured values. Suarez et al. 

(2015) calculated numerically the heat losses of the tank depending on the volume of salts 

inside the tank and compare it with similar numerical studies performed by Zaversky et al. 

2013, Rodriguez et al. 2013 and Schulte-Fischedic et al. 2008. Those simulations reveal a very 

homogeneous temperature distribution in the tank where the minimum temperatures are reached 

near the tank surfaces, especially near the free surface and the bottom. Thus, similar results are 

expected in the experimental analysis presented in this study. Moreover, the heat losses are 

validated both with a mathematical model using EES and with a correlation published by 

Herrmann et al. 2004. 

 

2. Materials and method 

2.1. Materials 

The storage material used in this analysis is a mixture of sodium nitrate and potassium nitrate 

(60 wt.% NaNO3 and 40 wt.% KNO3), known as ‘solar salt’. Both NaNO3 and KNO3 are 

commercialized by SQM® and have a purity of 98% and 99.3%, respectively. The main 

properties of such materials are presented in Table 1. 

Table 1. Properties of the solar salt used (Kearney et al. 2003). 

Property Value 

Composition, wt.% 

NaNO3 

KNO3 

 

60 

40 

Freezing point, °C 220 

Density @ 300 °C, kg/m3 1899 

Dynamic viscosity @ 300 °C, kg/m·s 3.26 10-3 

Heat capacity @ 300 °C, J/kg K 1495 

 

2.2. Experimental set-up 

2.2.1. Pilot plant description 

The experimentation was carried out at the experimental facility designed and built at the 

University of Lleida with the purpose of simulating the operation of the TES system of a solar 

power plant at a lower scale (Fig. 2). Therefore, the design is as similar as possible to real 

facilities regarding materials, dimensions, etc., and it is integrated by a primary and a secondary 

circuits. The primary circuit consists on a two-tanks storage system where the molten salt 

charging and discharging process take place.  The secondary circuit consists on: (a) a 24 kWe 

electrical heater which heats up Therminol-VP1 as heat transfer fluid (HTF), simulating the 
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solar collector field; (b) a  20 kWth air-HTF heat exchanger which cools the HTF down 

simulating the cooling technology to discharge the energy stored.  The heat exchange between 

both molten salts and Tehrminol-VP1 fluids takes place in a plates heat exchanger (76H 

ALFANOVA supplied by Alfa-Laval). Measuring equipment to control, register and measure 

relevant variables such as flow, pressure and temperature has been integrated in the facility.  

 

2.2.2. Storage system description 

The two-tanks storage system consists of two identical tanks designed and built by GREA 

(Universitat de Lleida, Spain). The tanks design consists on a cylinder-shaped vessel closed 

with a flat circular plate at the bottom and a Klöpper cover on top, where the storage material is 

housed. All the elements of the tanks are made of stainless steel 316 L in order to withstand the 

elevate temperatures, to avoid galvanic corrosion, as well as to avoid compatibility problems 

between the storage material and the tank itself (Goods and Bradshaw, 2004). The cover of the 

vessel is manufactured with some openings in order to place the measuring devices and the 

molten salts pump. Table 2 shows the main geometrical characteristics of the tanks as well as 

some of the geometric characteristics of a commercial plant (Andasol-1 [16]. Notice that the 

pilot plant at the University of Lleida was designed with an aspect ratio (height per diameter 

ratio) as similar as possible to the commercial plants.    

 

Table 2. Main geometrical characteristics of the storage tanks at the pilot plant and at a commercial plant 

  Pilot plant at the 
University of Lleida 

Andasol-1 [16] 

Parameter Units Value 
Material Stainless steel 316L - 
Internal Diameter [m] 1.20 35.99 
Cylinder height [m] 0.50 14.00 
Aspect ratio [-] 0.41 0.39 
Klöpper cover height [mm] 267 - 

Total height [mm] 767 - 
Thickness of the walls [mm] 4 - 

 

To minimize heat losses, 0.24 m of rock wool (Spintex 342G from Isover) is located around the 

walls and cover of the vessels. Moreover, 0.20 m of refractory concrete (Hormirefra) and 0.45 

m of Foamglass ONE® are located under the tanks. Foamglass ONE® was selected because of 

its high compressive strength and mechanical stability at temperatures up to 481 ºC, quite higher 

than the maximum working temperature in the tank. The conductivity and thickness of these 

materials is specified in Table 3 and it is based on manufacturer data.  
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3. The tank has been geometrically considered as a perfect cylinder with a bottom base 

and a sphere in the top (with surface correction factors shown in Eq. 3). Metal sheath 

containing electrical resistances have not been considered.  

4. The whole system is considered in steady state. In this case the conduction heat losses 

should be the same as the convection and radiation ones and have not been considered. 

Conduction heat losses all along the experiment are also plotted.  

5. The heat flow is considered unidirectional and normal to every exchange surface. Thus, 

the effect of the heat transfer along every material on the thermal behaviour of the tank 

is considered negligible.  

 

Heat losses are quantified both during the homogenization of the temperatures and during the 

period without external salts heating (Fig. 5).  

 

Then, heat losses from the tank walls to the ambient are calculated as shown in Eq. 1:  
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Heat losses from the Klöppler cover to the ambient are calculated as shown in Eq. 2: 
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Heat losses in the concrete are calculated as shown in Eq. 3: 
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Eq. 3  

Moreover, how the heat losses vary depending on the scale of the facility is discussed 

comparing the pilot plant of the University of Lleida with higher scale commercial plants. 

 

3. Results 

3.1. Temperature distribution tests 

The temperature distribution test lasts 17.13 hours which represents the time after the 

homogenization of the salts and until they are about to reach solidification temperature 

(transient state). The temperatures are evaluated in three dimensional sets: by level, by branch 

and by radial distance to the centre. The temperature profiles recorded in the three different 
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3.2. Heat losses  

The temperature recorded by the surface sensors in the different parts of the tank as well as the 

energy profile of the electrical resistance are shown in Fig. 10 in order to show the temperature 

increases or decreases when the electrical heaters are switched on or off, respectively. This 

time-line corresponds to both the homogenization (steady state) period and the period without 

electrical heaters. The change from one period to the other is clearly shown in the sensors TWall.in 

and in TBottom. The rest of the temperature sensors are slightly affected by the heat losses and 

remain almost constant throughout the experimentation time. 

 

 

Fig. 10. Walls and bottom temperatures of the tank. 

 

Moreover, in order to validate the experimental heat losses in the steady state part, a 1-D 

mathematical EES model has been performed. Constant thermophysical properties 

(conductivity, specific heat and density), homogeneous temperature in the tank (380 ºC), 

ambient temperature, and maximum level of salts (50 cm) have been assumed.  

 

Table 2 summarizes results from the experiment, from the EES model and from a correlation 

published by Herrmann et al. 2004. These authors obtained this correlation from the Solar Two 

molten salts facility (Eq. 4) which is also composed of a two-tank TES facility configuration 

similar to the one in the pilot plant at the University of Lleida.  

 

012.0·00017.0  saltloss Tq         Eq. 4  
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Table 4 shows that the top and wall experimental results have a good agreement with the data 

obtained in the EES model and the correlation found in the literature. The small differences seen 

can be due to the assumptions made in the model or to differences in insulation in the real 

plants. In the case of the bottom losses, the complexity of the model because of the refractory 

concrete and the lack of literature make impossible the comparison.  

 

Table 4. Comparison of heat losses values, in W/m2 

 Experimental data EES model According to Herrmann et al. 2004 

Top 72.70 72.25 - 

Walls 79.13 79.60 76.00 

Bottom 61.00 - - 

 

Regarding to the temperature evolution in the transient state, it can be seen that the temperature 

decrease is proportional to the distance to the heated part of the tank. Therefore the temperature 

sensors which show the most pronounced decrease are TWall.in, and Tbottom. Due to the thermal 

inertia of the refractory concrete, heat losses through the Foamglass® show a slightly decrease.  

 

In order to discuss the effect of the scale in the heat losses, three different plants are compared: 

Solar Two, Andasol-1 and the pilot plant at the University of Lleida. For that an energy balance 

in transient state of a tank is presented (Eq. 5 and Eq. 6).  

ௗொ

ௗ௧
ൌ ߩ ൉ ܸ ൉ ݌ܥ ൉

ௗ்

ௗ௧
         Eq. 5  

 

ௗொ

ௗ௧
ൌ ݄ ൉ ௖௬௟ܣ ൉ ∆ܶ         Eq. 6 

 

Assuming that all the heat losses to the surroundings are in form of convection and that ΔT, h, 

cp and ρ are the same for the different plants considered; it is observed that heat losses are 

proportional to the shape factor (which is the surface are to volume ratio) of the storage tank 

(Eq. 7). 

 

ௗ்

ௗ௧
ൌ

௛൉஺೎೤೗൉∆்

ఘ൉௏൉஼௣
ൌ

஺೎೤೗
௏
൉  Eq. 7        ݐ݊ܿ

 

The geometric characteristic of these three different scale TES tanks are listed in Table 5 The 

shape factor of the three plants belong to, in descending order, to the pilot plant of the 

University of Lleida, the Solar Two plant and Andasol-1 plant. So, the heat losses are expected 

to be higher in the pilot plant of the University of Lleida. 
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Table 5. Geometric characteristics of three different scales of TES systems for solar power plants 

  Pilot plant University of 

Lleida 

Solar Two 

[14] 

Andasol-1 

[16] 

Parameter Units Value 

Surface [m2] 1.90 306.12 1583.36 

Volume  [m3] 0.57 769.51 18904.42 

Shape factor  [m-1] 3.33 0.40 0.08 

 

4. Conclusions 

Two-tank storage system with molten salts used commercially in solar power plants is evaluated 

experimentally through temperature distribution inside the tanks and heat losses analysis at pilot 

plant scale. This pilot plant was designed and built at the University of Lleida (Spain).The 

advantages of using this facility is, first, that it has a design very similar to real commercial 

facilities and, second, that the facility is equipped with many temperature sensors and other 

measurement equipment which makes possible an exhaustive study of the processes and which 

has not been found in the literature yet.  

 

The thermal behaviour of a tank of salt will be very conditioned by two factors; the thermal 

losses through walls or foundations and thermal distribution inside the tank that occurs due to 

these losses. Therefore, this pilot plant is provided of several temperature sensors both inside 

the tank and in the different layers of external insulation. 

 

On one hand, temperature distribution evolution is measured in transient state conditions, once 

the electrical resistances are switched off after a temperature stabilization period. The 

temperature distribution is evaluated in the different levels measured it may be seen that losses 

through the bottom by conduction and losses through the top (because of direct contact with air) 

are higher than in the middle of the tank. When the orientation of the tank is taken into 

consideration (by comparing the different branches of instrumentation), it can be seen that the 

more unprotected part has lower temperatures. It has been observed that the influencing 

parameters in the distribution temperature in the tank are: suitable and uniform insulation of the 

tank and the existence of different electrical resistances (direct contact and with sheath).   

 

On the other hand, experimental heat losses have been calculated in steady state conditions 

(with the electrical resistances switched on) and then compared to those simulated with a 1-D 

model and to those obtained with a correlation published previously in the literature in a similar 

facility. Calculated heat losses were of about 80 W/m2 through the walls, 73 W/m2 through the 

cover, and 61 W/m2 through the concrete located at the bottom of the tank. The calculated 
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values agree with the simulation and the correlation. As expected, the heat losses through the 

walls, cover and concrete decrease when the heating system of the tank is stopped, but those 

through the foam glass remain nearly constant. 
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