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Abstract 

Vertical Greenery Systems (VGS) are promising contemporary Green Infrastructure 

which contribute to the provision of several ecosystem services both at building and 

urban scales. Among others, the building acoustic insulation and the urban noise 

reduction could be considered. Traditionally vegetation has been used to acoustically 

insulate urban areas, especially from the traffic noise. Now, with the introduction of 

vegetation in buildings, through the VGS, it is necessary to provide experimental data 

on its operation as acoustic insulation tool in the built environment. In this study the 

acoustic insulation capacity of two VGS was conducted through in situ measurements 

according to the UNE-EN ISO 140-5 standard. From the results, it was observed that a 

thin layer of vegetation (20-30 cm) was able to provide an increase in the sound 

insulation of 1 dB for traffic noise (in both cases, Green Wall and Green Facade), and 

an insulation increase between 2 dB (Green Wall) to 3 dB (Green Facade) for a pink 

noise. In addition to the vegetation contribution to sound insulation, the influence of 

other factors such as the mass factor (thickness, density and composition of the 

substrate layer) and type of modular unit of cultivation, the impenetrability (sealing 

joints between modules) and structural insulation (support structure) must be taken into 

account for further studies.  

 

Keywords: Acoustic insulation, vertical greenery systems, green walls, green façades, 

green infrastructure, ecosystem services, urban noise reduction, buildings.  
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1. Introduction 

 

The acoustical environment in and around buildings is influenced by numerous 

interrelated and interdependent factors associated with the building planning – design- 

construction process. The architect, the engineer, the building technologist, and the 

constructor all play a part in the control of the acoustical environment. With some 

fundamental understanding of basic acoustical principles, how materials and structures 

control the sound, many problems can be avoided altogether or, at least, solved in the 

early stages of the project at greatly reduced cost. “Corrective” measures are inevitably 

more costly after the building is finished and occupied [1].  

 

On the other hand, Green Infrastructure (GI) is a successfully tested tool for providing 

ecological, economic and social benefits through natural solutions for the built 

environment. Compared to single-purpose grey infrastructure, GI has many benefits, 

offering sometimes an alternative or being complementary to standard grey solutions. 

Generally, GI could be defined as a strategically planned network of natural and semi-

natural areas with other environmental features designed and managed to deliver a wide 

range of ecosystem services. It incorporates green spaces (or blue if aquatic ecosystems 

are concerned) and other physical features in terrestrial (including coastal) and marine 

areas. On land, GI is present both in rural and urban settings [2]. Among the multiple 

eco-system services provided by GI in the built environment, such as runoff control, 

energy savings, support to biodiversity, roof materials protection, etc., it is said that 

some acoustic insulation at building scale whilst also some city noise reduction at urban 

scale are provided [3]. 

 

The types of physical features that contribute to GI are diverse, specific to each location 

or place and very scale-dependent. On the local scale, biodiversity-rich parks, gardens, 

green roofs and green walls, ponds, streams, woods, hedgerows, meadows, restored 

brownfield sites and coastal sand-dunes can all contribute to GI if they deliver multiple 

ecosystem services. Between those GI features, Vertical Greenery Systems (VGS) and 

Green Roofs for buildings are promising contemporary construction systems which 

contribute to the provision of ecosystem services both at building and urban scales [3]. 
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reference to the plant species used. Generally speaking VGS can be classified into two 

clearly differentiated groups, the Green Façades and the Living Walls [11]. Green 

façades are Green Vertical Systems in which climbing plants or hanging port shrubs are 

developed using special support structures, mainly in a directed way, to cover the 

desired area. Green façades can be divided into three different systems. Traditional 

green façades, where climber plants use the façade material as a support; double-skin 

green façade by means a light structure that serves as support for climbing plants, with 

the aim of creating a double-skin or green curtain separate from the wall; and perimeter 

flowerpots, when as a part of the composition of the façade, hanging shrubs are planted 

around the building to constitute a green curtain. Living walls are made of geotextile 

felts and/or panels, sometimes pre-cultivate, which are fixed to a vertical support or on 

the wall structure. The panels and geotextile felts provide support to the vegetation 

formed by upholstering plants, ferns, small shrubs, and perennial flower, among others. 

 

In view of this classification, and considering the possibility of sound insulation 

provision from VGS, it must be considered the fact that in the case of Green Façades the 

insulation can been provided by the vegetation layer, whereas in the case of Green 

Walls other factors must be taken into account, such as the substrate, the module box, 

the geotextile felts, etc. depending on the system used. In addition and for any case, 

Green Façades and Green Walls, it must be also considered the impact on the acoustic 

behaviour of the different types of support structure. 

 

From the results of the scarce previous experimental studies about the acoustic 

behaviour of VGS no strong conclusions could be drawn due to both the different 

experimental methodologies as well as the different construction systems evaluated. It 

must be highlighted that only one in situ experiment was found, being the others 

laboratory studies with small samples or simulations.  

 

Wong et al. [12] evaluated the soundproofing potential of different VGS by means of 

the in situ measurement of their provided insertion loss. The insertion loss was defined 

as the difference, in decibels, between two sound pressure level (SPL) which are 

measured at the same point in space before and after an object is inserted between the 

measurement point and the noise source. Hence, “before an object is inserted” refers to 

the control wall while “after an object is inserted” refers to the VGS. Their difference in 



7 

SPL is the insertion loss due to the addition of VGS. The most important conclusions 

were that those systems that use substrate in the structure showed a stronger attenuation 

of the insertion loss for middle frequencies, due to the absorption effect of substrate 

(reductions around 5 to 10 dB). In addition, a smaller attenuation is observed at high 

frequency spectrum due to the scattering effect of greenery (reductions from 2 to 3.9 

dB). Moreover, in this study it could be confirmed that absorption coefficient increases 

with higher frequencies as well as with greater greenery coverage. On the 

recommendations of this study the authors emphasize that, to further advance the 

research, acoustics studies of VGS should be performed on actual building façades in an 

attempt to reveal more acoustics insight. 

 

Other studies deal with more detail the sound insulation properties of substrates and 

plants used in VGS rather than with the whole system performance. Thus Van 

Renterghem et al. [13] in a numerical study highlight that usually used substrates for 

green walls have high porosity and low density and consequently show a complex 

acoustic behaviour. Moreover, the presence of water inside the substrate could strongly 

affect its absorption properties so that in the extreme case, when the porous medium is 

fully water-saturated, similar effects as for a rigid material could be expected. On the 

other hand, according to Horoshenkov et al. [14], the absorption coefficient of plants is 

controlled predominantly by the leaf area density and the angle leaf orientation. On the 

other hand, light-density soils exhibit very high values of acoustic absorption whereas 

the absorption coefficient of high-density clay base soil is low. 

 

From these studies, the need to homogenize the way of studying the acoustic behaviour 

of VGS can be deduced. In this regard, is necessary to consider that ISO 140 describes 

the standards to measure the buildings and construction elements acoustic insulation.  

 

In a recent previous study [15], the potential of a Green Wall as passive acoustic 

insulation system for buildings was evaluated under laboratory conditions. The studied 

parameters were the airborne sound insulation and the measured sound absorption in 

reverberation room. The tests were performed according to UNE-EN ISO 10140-2 

standard. The calculated weighted sound reduction index was Rw = 15dB, and the 

correction terms were Ctr = -1 dB for traffic noise and C = -1 dB for pink noise. These 

values, although lower than those for other common construction systems, are very 
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promising. From the measurement of the sound absorption in the reverberation room 

according to UNE-EN ISO 354 standards, the calculated value of the weighted sound 

absorption coefficient was αw = 0.40. Comparing these results with those of previous 

studies, it can be concluded that the introduction of the green wall specimen into the 

reverberation room implies a reduction in the reverberation time (from 4.2 to 5.9 in this 

study), highlighting and quantifying the sound absorption capacity of this construction 

system.  But, the values obtained in the laboratory are characteristic of that material or 

construction system under controlled conditions, and only gives an idea about the 

potential sound insulation capacity, but not about its final performance in real 

conditions, i.e. when the material or system is a part of a building.  

Consequently, it is important to highlight the necessity to perform in situ measurements 

of the acoustic insulation capacity of these new construction systems. Specifically, in 

the case of building facade elements, the reference standard for measuring their acoustic 

behaviour is the UNE-EN ISO 140-5 Acoustics. Measurement of sound insulation in 

buildings and of building elements. Part 5: Field measurements of airborne sound 

insulation of façade elements and façades. 

 

Therefore, this paper aims to provide in situ measurements of acoustic insulation 

capacity of two VGS according to the UNE-EN ISO 140-5 standard. For this purpose a 

representative construction system of Green Walls group and another representative one 

of Green facade type were chosen. The selected Green Wall was an existing one, which 

is currently in the market, and which was previously tested in laboratory in order to 

measure its acoustic performance under controlled conditions [16]. As for the Green 

Façades, a simple Double-skin Green Facade typology was built and tested. 

 

2. Materials and methods 

The experimental set-up consists of two cubicles (Figure 3) located in Puigverd de 

Lleida, Spain, with the same external dimensions (3 x 3 x 3 m). Their bases consist of a 

mortar base of 3 × 3 m with crushed stones and reinforcing bars. The walls present the 

following layers from inside out (Figure 4): gypsum, alveolar brick (30 × 19 × 29 cm), 

and cement mortar finish. No additional insulation was used in the walls of these 

cubicles. The roof is a conventional flat roof (precast concrete beams and ceramic floor 

arch 25 cm) with 8 cm of extruded polystyrene insulation layer above, concrete relieved 

pending formation of 2%, double waterproofing membrane, and finished with a single 
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The measurement procedure consisted of generating a normalized noise from the 

omnidirectional source placed as detailed in the previous paragraph and measured the 

following parameters: 

- The equivalent sound pressure level outside (transmitter) taking measurements 

in third octave bands in various positions in front of the facade to be analysed. 

- The equivalent sound pressure level inside (receiver) taking measurements in 

third octave bands in various positions inside the cubicle. 

- The level of background noise in third octave bands, measured inside the cubicle 

with the source without working. 

 

Subsequently, the omnidirectional source was placed inside the cubicle and the 

reverberation time of the receiving room was determined. The method used was the 

abrupt interruption of emission. 

For each frequency band, the "standardized difference of levels" D2m, nT was determined 

by the following expression: 

 

D2m,nT = L1,2m – L2 + 10 log    [dB] 

where: 

L1,2m   is the equivalent sound pressure level measured outside (emitter) and 2m 

from the façade 

L2   is the equivalent sound pressure level measured inside (receiver) corrected 

by the level of background noise 

Tr  is the reverberation time measured in receiver room 

T0  is the reference reverberation time of 0.5 s value according to UNE-EN ISO 

140-5 for in situ measurements of airborne sound insulation for facade elements 

and façades 

 

The overall value assigned to the isolation of the different elements, D2m, nT, w (C; Ctr) 

was calculated according to the guidelines of the UNE-EN ISO 717-1 standard, where C 

and Ctr correspond to the spectral correction terms for adaptation to traffic noise and 

pink respectively. 

 

3. Results and discussion 



The t

level

A co

the re

 

F

 

Thes

insul

Hz, 

reduc

due 

reflec

resul

impr

 

More

studi

are c

 

tests results

ls D2m, nT in 

omparison b

esults from 

Figure 8. Stan

se results ag

lation capac

due to the

ction of aco

to focusing

ctions and s

lting in a 

rovement of

eover, in F

ied systems

considered, w

s are present

third octave

between the

the second 

ndardized dif

gree with th

city increase

e absorption

oustic insula

g effect of 

scatterings m

negative i

f insulation 

Figure 9 the

s, Green Wa

with and wi

ted in four g

e frequency

e results obt

phase, with

fference of le

hose obtain

es in the int

n effect of

ation capac

VGS. Thu

may focus s

nsertion lo

acoustic cap

e results ar

alls and Gr

ithout foliag

14 

graphic whi

y bands as st

tained in th

h foliage, ar

evels D2m, nT

ned in 2010 

termediate 

f the substr

ity takes pl

us, due to t

sound energ

oss. Finally

pacity is du

re shown so

reen Façade

ge. 

ich show th

tablished in

he first phas

re shown in 

T. With and w

by Wong 

frequency r

rate. In ad

lace which, 

the periodic

gy onto cert

y, in the h

ue to the sca

o that a co

es, can be d

e standardiz

n the ISO 14

se, i.e. with

Figure 8. 

without foliag

et al. in wh

reaching a p

ddition, arou

according t

c arrangeme

tain region n

high freque

attering by g

omparison b

done. Again

zed differen

40. 

hout foliage

ge compariso

hich the aco

peak around

und 2000 

to the autho

ment of gree

near the sur

encies zone

greenery. 

between the

n the two p

nce of 

e, and 

 

on 

oustic 

d 800 

Hz a 

ors, is 

enery, 

rfaces 

e the 

e two 

phases 



 

This 

Faça

facad

much

perfo

possi

More

acou

impr

throu

midd

frequ

found

Won

the s

On th

for G

of ve

 

Figure 9.

graphic sh

ade differed 

de showed a

h more def

ormance is 

ible improv

eover, it ca

ustic behavi

rovement in

ughout the p

dle frequen

uencies. It c

d, with a re

ng et al. this

ound wave 

he other ha

Green Façad

egetation. 

. Standardize

how that th

significant

a profile mu

fined. This 

very impo

vements of t

an be obser

iour of bot

n the sound

profile, with

ncies, and 

can be also 

eduction on 

s effect may

bends arou

and, more v

de, though a

ed difference 

he acoustic 

ly througho

uch more ir

fact reveal

rtant and it

these system

rved that du

th systems

d insulation 

h special em

the increm

observed th

the insulati

y be the res

nd an obsta

variability th

also improv

15 

of levels D2m

performan

out the frequ

rregular tha

s that the e

t should be

ms. 

uring the s

was again

capacity f

mphasis on 

ment due t

hat in the lo

ion capacity

sult of soun

acle. 

throughout 

ves especial

m, nT. Green 

nce of the G

uency spect

an the Green

effect of th

e considere

econd phas

n different. 

for the Gree

the peak d

o the vege

ow frequenc

y. Accordin

nd diffractio

the frequen

ly at high f

Wall vs Gree

Green Wall

trum, in ter

n Wall prof

he substrate 

d in future 

se, i.e. with

Thus, it c

en Wall tak

ue to the su

etation effe

cies the opp

g to the stu

on in low fre

ncy profile 

frequencies 

en Facade  

l and the G

rms of the G

file, which 

 on the aco

e studies an

h vegetation

can see tha

kes place a

ubstrate eff

fect in the 

posite effec

udy conduct

requencies w

can be obs

due to the e

Green 

Green 

had a 

oustic 

nd for 

n, the 

at the 

lmost 

fect in 

high 

ct was 

ed by 

where 

erved 

effect 

 



16 

Finally, Table 1 summarizes the single-number quantities obtained for the standardized 

levels difference, which is the value used to express the acoustic insulation between a 

room and the outdoor.  

 

As the standardized difference of levels is a frequency dependent magnitude, the 

acoustic insulation capacity of a construction system always must be assessed by means 

of the analysis of its profile. But, in order to assess and to compare results, the acoustic 

insulation can be characterized by an unique value, the weighted single-number 

quantity, which can be identified by the subscript w (e.g D2m,nT,w). The single-number 

quantity represents the value in dB, at 500 Hz of a reference curve which is shifted to fit 

insulation values obtained experimentally, by the method specified by the standard EN 

ISO 717. 

 

Single-number quantities depend on the sound spectrum of the noise source, so they are 

usually accompanied by a spectral correction term (C, Ctr): 

 

- C is the adaptation spectral term for the sound reduction index for pink 

noise incident or rail traffic noise, in dB. It will be used when talking 

about building elements and acoustic insulation between two homes. The 

index of insulation from pink noise is more realistic against traffic noise 

at high speeds, both road and rail, living activities (talking, music, radio, 

and TV), or noise that is generated within dwellings. 

 

- Ctr is the adaptation spectral term for the sound reduction index for noise 

of cars and aircraft, in dB. It will be used in the construction elements 

and facade insulation. The normalized traffic noise spectrum gives more 

weight to low frequencies, allowing the gathering of more realistic noise 

indices against urban traffic, railway traffic at low speeds, disco music or 

certain industrial noises 
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Table 1. Standardized levels difference D2m,nT,w (dB). Single-number quantities 

  D2m,nT,w 

[dB] 

Corrected value to 

pink noise  

(C 

Corrected value to 

traffic noise  

(Ctr) 

With 

foliage 

Green Façade 

 

46 (-1)  45 (-3)  43 

Green Wall 

 

46 (-2)  44 (-5)  41 

Without 

foliage 

Green Façade 

 

44 (-2)  42 (-2)  42 

Green Wall 

 

44 (-2)  42 (-4)  40 

 

As it can be seen in Table 1, no big differences between the two VGS on the 

soundproofing values were found, neither with nor without vegetation. 

In both cubicles, the presence of  vegetation implies an increase on the soundproofing of 

1 dB regarding the situation without vegetation, in the case of normalized traffic noise 

spectrum, and 2 dB for the Green Wall and 3 dB for the Green Façade, in the case of 

consider pink noise. 

At low frequencies (≤315 Hz) the cubicle with Green Wall presents smaller sound 

insulation than the Double-skin Facade Green cubicle, resulting in a single-number 

quantity of 41 dB, i.e. 2 dB lower than the single-number quantity for the cubicle with 

Double-skin Green Façade. 

Although measurements about the leaf area density and the possible influence of the 

type of plant used on the acoustical insulation were not carried out, the differences on 

these results between the two systems could have been influenced by the leaves 

morphology, as stated Horoshenkov [14], because a broadleaf climber plant was used 

for the Double-skin Green Facade (Parthenocissus Tricuspidata), whereas two shrub 

species with narrow and small leaves were used for the Green Wall system (Rosmarinus 

officinalis and Helichrysum thianschanicum).  
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It is evident that these results despite being positive do not correspond to the promising 

results obtained in laboratory tests. As mentioned previously, in the tests carried out in 

order to calculate the airborne sound insulation, following the UNE-EN ISO 10140-2 

standards, the measured weighted sound reduction index was Rw = 15dB, and the 

correction terms were Ctr = -1 dB for traffic noise and C = -1 dB for pink noise. In this 

study, the calculated value of the weighted sound absorption coefficient was αw = 0.40 

(UNE-EN ISO 354 standards) [15]. 

 

This fact reveals that, despite it can be confirmed that a small thickness of vegetation 

already provides a certain acoustic insulation, the construction of VGS on the cubicles 

generated changes which cause a worsening on its acoustical performance when 

compared to laboratory experiments. 

 

In this regard, it must be kept in mind that the improvement of a single partition is not 

enough to achieve a good sound insulation in a building, because the sound can find 

indirect ways to be transmitted. Therefore, working in situ the main method to improve 

the acoustic insulation of a building is usually to control the sound transmission, being 

the most important parameters to consider the mass, the impenetrability, and the 

structural insulation. 

 

Regarding to the mass, is necessary to consider that the heavier (more mass) the 

partitions surrounding us have, the more difficult is that they vibrate with sound, 

decreasing in consequence its transmission. Therefore, it would be necessary to provide 

much more mass to the support structures to achieve better behaviour in front of the 

sound. This measure can be achieved in the case of Green Walls by improving the 

composition of substrates used for this purpose. Usually the substrate composition in 

green walls responds to plant survival necessities (i.e. the provision of water, nutrients 

and physical support) as well as weight constraints, but not to supply other ecosystem 

services such as thermal or acoustic insulation. Taking into account the thermal or 

acoustic insulation properties of substrate could improve the Green Wall performance as 

an insulating structure. This option can hardly be applied to Green Façades due to their 

own design, because plants usually are placed in pots at the bottom of the facade or in 

middle positions, being the support structure mesh or wire in front of the wall facade. 
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Another aspect to consider is the possibility of gaining mass in the vegetation layer, 

either by increasing the thickness or by using plant species with higher foliage density. 

That measure could be applied to both main typologies of VGS, to the Green Walls and 

to the Green Façades (Figure 5 and Figure 6). It should be taken into account that one of 

the main factors to consider when plants are used as soundproofing around the roads is 

just the thickness and density of green screens [7-9]. This is also according to the study 

conducted by Van Renterghem et al. [8], in which by studying the road traffic noise 

shielding by vegetation belts already highlighted the importance of the amount of 

biomass in the noise attenuation. Also, in the study of Wong et al. [12], one of the main 

conclusions was that with greater greenery coverage there is an increase in the sound 

absorption coefficient. 

 

In the case of impenetrability, it is known that small fissures can cause big effects on 

global acoustic insulation. Thus, in the case of a building it is necessary to ensure the 

sealing of doors and windows, as well as conduits for passing tubes and cables, plugs, 

etc., because they can be a source of sound transmission spoiling a good acoustic 

insulation of the entire facade. This issue can unlikely be improved in a Double-Skin 

Facade system which is fully permeable and in where the whole function of acoustic 

insulation is provided by the vegetation layer, On the contrary, in the case of the Green 

Wall, the complete sealing of the joints between modules and in the façade edges would 

lead to an improvement on sound insulation in terms of impenetrability (Figure 5 and 

Figure 6). 

 

Finally, regarding the so-called structural insulation, it is necessary to consider that a 

certain physical separation between building elements must be guaranteed in order to 

prevent the sound transmission. For example, the existence of a simple nail can spoil the 

sound insulation between two wall layers separated by an air chamber. For this reason 

usually it is recommended that the air chambers used in buildings should be the widest 

as possible and even filled with insulating material to prevent that the air acts as a 

bridge between the two layers.  

 

This can be the main aspect to improve for the two analyzed VGS because in both 

cases, Green Wall and Double-skin Green Facade, lightweight structures anchored 
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directly to the building facade wall were used resulting probably in the existence of 

acoustic bridges (Figure 5 and Figure 6). 

 

4. Conclusions 

By studying the in situ acoustic insulation capacity of two VGS for buildings under 

controlled conditions, according to the UNE-EN ISO 140-5 standard, it can be 

concluded that: 

- In quantitative terms, a thin layer of vegetation (20-30 cm) was able to provide 

an increase in the sound insulation of 1 dB for traffic noise (in both cases, Green 

Wall and Green Facade), and an insulation increase between 2 dB (Green Wall) 

to 3 dB (Green Facade) for a pink noise. 

- The acoustic insulation contribution from both greenery systems (scattering) in 

high frequencies, as well as from substrate (absorption) in the middle 

frequencies by Green Walls, were verified in the standardized difference of 

levels profiles. 

- In the case of the studied Green Wall, the differences between the good results 

obtained in previous laboratory studies and the obtained in situ measurements, 

suggest that it is necessary to consider other factors, in addition to the 

vegetation, in order to improve the acoustic insulation capacity of VGS, such as 

the mass (thickness and composition of the substrate and vegetation layers), 

impenetrability (sealing joints between modules) and structural insulation 

(support structure). 

 

In general it can be concluded that vegetation can really contribute to the sound 

insulation of the building, in the design of VGS all the factors that influence their 

acoustic behavior must be considered. Concerning this, studies regarding to the types of 

plants, the thickness of the vegetation layer, the thickness and composition of the 

substrate layer, the type of support structure and materials to be used, as well as to take 

measures to prevent transmission of sound on the early design phase (structural 

impenetrability and insulation) should be made. 

 

In addition, future experiments should be made following international standards of 

measurement in order to compare experiments and results relating to the different VGS. 
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