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Abstract 

 

The use of active thermal energy storage can provide energy savings, cost reduction and 

CO2 mitigation by reducing energy demand for heating and cooling, allowing the use of 

peak load shifting strategies and enhancing the introduction of renewable energies in the 

sector. The high investment cost of these systems makes mandatory an appropriate 

control in order to maximize the energy benefits during its operation. Within this 

context artificial intelligence techniques have been successfully used to control active 

thermal energy storage units. This paper uses an experimentally validated numerical 

tool to study the effect of different control strategies on the performance of one TES 

system applied to the building sector, a ventilated facade with PCM which uses free 

cooling. Three different strategies were designed to control the ventilated facade based 

on cost savings, energy reduction and CO2 mitigation, under different climatic 

conditions. Results show robust benefits in the three tested control strategies, achieving 

average savings in comparison to a manual operation of the system of 4.3%, 7.8%, and 

16.7%. Moreover, the paper shows that when the control strategy is focused on 

optimizing cost, the other two benefits claimed by TES systems (energy and CO2 

mitigation) are significantly reduced.  

 

Keywords: thermal energy storage (TES); phase change materials (PCM); artificial 

intelligence; control system; CO2 mitigation 
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1. Introduction 

 

High consumption of fossil fuels in the past two decades and excessive CO2 emissions 

have resulted in significant environmental problems all over the world. Problems such 

as global warming climate change and the depletion of the ozone layer have made 

governments, scientists and policy makers in the developing and developed countries 

search for a solution to address this problem [1]. Buildings are responsible for 40% of 

global energy consumption, which contributes to production of up to 35% of green 

house gases in European Union. [2]. An increase of 50% in global energy demand is 

expected between 2008 and 2030 [3]. This shows the significance of energy 

consumption in buildings. A reduction in building energy demand can significantly 

reduce the total energy consumption in buildings as well as production of green house 

gasses [4, 5]. 

 

The useful renewable energy resources such as solar heating, PV (photovoltaic) and 

wind turbines also can result in high energy saving and CO2 emission reduction. 

However, due to the intermittent nature of these energy resources their availability 

might not match the demand. For instance, the peak of solar irradiation occurs during 

the day, when the heating demand is low and the highest demand occurs during the 

night when there is no solar irradiation [6]. 

In certain periods of the day, electricity users consume more electricity compared to 

other periods of the day, which is known as peak load period. Supplying sufficient 

amount of electricity to meet the demand puts pressure on the power plants. Moreover, 

electricity generation during this period is less inefficient and results in higher carbon 

emission.  

 

Peak load shifting is a load management technique that aims to move demand from the 

peak hours to off-peak hours of the day. The electricity providers generally use variable 

price scheme (low price during the off peak period and high price during the peak 

period) in order to encourage the electricity consumers to use electricity during the low-

peak period of the day and reduce their electricity consumption during the peak period. 
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Thermal energy storage (TES) materials can be used in order to store heat or cold 

during off-peak periods to be used during the peak period [7, 8]. Phase change materials 

(PCM) offer a good thermal storage due to their high storage density, which make them 

suitable for energy storage applications [9, 10]. There are many reported studies on the 

use of PCM in buildings in both active [11] and passive systems [12]. An active system 

refers to storage systems in which an additional fluid loop is used to charge and 

discharge the stored energy to supply heating or cooling. On the other hand, a passive 

system does not involve any additional heat exchanger. Chilled water tanks and ice 

storage tanks are one of the most common active TES equipment [13]. Underfloor 

heating with PCM and PCM wallboards are examples of passive systems [14].  

 

Various thermal storage techniques have been used in combination with variable 

electricity price scheme in order to both minimize the electricity cost and perform peak 

load shifting. For instance [15] used thermal mass of the building (as sensible heat 

storage) to store cold through precooling in summer. They used day-ahead real time 

electricity rates and used optimal control to minimize the cost. Using a global 

minimization algorithm, they performed simulation studies for different climates and 

they achieved a cost saving of 0-14% depending on the building, climate and 

characteristics of the rate signal. This method demonstrated through simulation [16], lab 

scale measurements [17] and field studies [18].  

 

However, this is not possible in lightweight buildings as these buildings have little 

thermal mass. As a result, latent heat thermal storage was suggested to store energy 

during the off peak period for use during the high peak consumption period. Kummert 

et al. [19], used optimal control theory, building model forecasted electricity price to 

minimise a given cost function over the optimisation horizon. This cost function could 

also combine comfort level and energy consumption. In a similar study, Dehkordi and 

Candanedo [20], have used model predictive control (MPC) algorithm designed using 

time-dependent electricity price profile. They used ice storage for thermal energy 

storage and achieved a total saving of 23% over the period of simulation.  In a similar 

study, performed by Sehar et al. [21] and using ice storage, they achieved 27-31% 

saving for different climates of United States. Different optimal control strategies and 

algorithms were also developed for improving the performance of the ice/water storage 
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systems [22, 23]. However, most of these optimal controls are developed based on day-

ahead electricity prices and operation arrangement. 

A limited number of studies have been reported on the application of PCM in 

combination with variable electricity price scheme to minimize the electricity cost. The 

main focus of previous studies has been on the development of a suitable PCM storage 

and the study of its application in various ways in building envelopes. 

 

In 2011 a research group at The University of Auckland, New Zealand, proposed the 

application of variable online electricity price in combination with PCM (as passive 

latent heat storage) in order to reduce electricity cost while performing peak load 

shifting. They used DuPont wallboards in a test hut and experimentally showed that 

using the proposed method a cost saving of 26.7% (20-30%) can be achieved [24]. They 

also used the same price-based method for combination of PCM impregnated underfloor 

heating and DuPont wallboards resulting 28.7% cost saving [25]. To further increase the 

savings they also employed night ventilation in summer and weather forecast in winter 

in combination with the price-based method resulting to a significant cost saving of 

67% and 40% was achieved [26, 27]. 

 

The system used as a case study in this paper consists of a ventilated facade with PCM 

in its air chamber. A previous study has optimized the control of such active TES 

system using reinforcement learning techniques based on maximizing energy benefits 

[28]. However, this paper compares the performance of this system when applied to the 

building sector, and optimized based on cost, energy reduction, and CO2 mitigation, 

showing the potential of TES systems and the ability of this control algorithms to be 

adaptable to provide different outcomes. Moreover, the paper shows how optimizing 

based on one output can influence the other two benefits claimed by TES systems. 
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2. Methodology 

 

2.1. Operating principle and numerical model 

 

A ventilated facade with PCM in its air chamber is used as a case study to evaluate the 

influence of different control strategies based on reinforcement learning techniques in 

the performance of a TES active system. The system uses low temperatures at night to 

solidify the macro-encapsulated PCM (CSM panels of 450x300x10mm filled with 

RT21 from Rubitherm [29]) installed in the cavity and provides a cooling supply once is 

required by the demand. The PCM is distributed inside the cavity forming 14 channels, 

as shown in Figure 1. 

 

 

Figure 1. PCM panels distribution inside the ventilated facade air chamber 

 

This system has been experimentally tested [30] being equipped with six automatized 

gates to control airflow path, and with fans (52.5 W) at the bottom of the channel so 

mechanical ventilation can be supplied. The sequence of operation starts with the charge 

process (Figure 2a), which occurs during nighttime if the outer temperature is lower 

than the temperature of the PCM. Once the PCM has been fully solidified, the fans are 

stopped and all the gates are closed during the storage period (Figure2b). Finally, once 

required by the demand, the cold stored is discharged to the inner environment as shown 

in Digure2c. The cooling supply will avoid or reduce the use of other cooling system 

such as heat pumps, and the related electrical energy consumption. However, it has to 
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be noticed that in both charging and discharging process the use of mechanical 

ventilation is required, so an electrical consumption of the fans is produced. The 

consumption of the fans as well as the savings provided during the cooling discharge 

have to be taken into account when analyzing the energy, cost and CO2 emissions 

balances of the system, and the optimal control of this technology plays a crucial role. 

 

 

Figure 2. Sequence of operation. a) Charge process, b) Storage period, c) Discharge process 

 

The performance of the system is very sensitive to the outdoor night temperature, since 

it defines the potential for PCM charging. Hence the control of the system have to be 

optimized for each conditions based on a daily weather prediction in order to make use 

of fans as minimum as possible. Reinforcement learning techniques will be applied to 

define the control of this active thermal energy storage system, these techniques 

required several number of cases and scenarios to determine the best control strategy. A 

simple non-iterative numerical model has been used to feed the reinforcement learning 

algorithm. The numerical tool assumes that all the PCM installed in the facade is at the 

same temperature and its phase change is considered using the equivalent heat capacity 

curve [31].  Moreover, in order to quantify the heat transferred during the charging and 

discharging processes between the PCM and the air flow, fully developed internal flow 

is considered inside each of the 14 air channels showed in Figure 1. In addition, heat 
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losses to the environment are taken into account during the storage periods. The simple 

model is suitable to feed the reinforcement learning algorithm, since it does not require 

iterative solvers, and has been experimentally validated showing good accuracy with 

deviations below ±3% [32]. Moreover, it has to be noticed that the model can only be 

applied to systems using PCM without subcooling, hence similar melting and 

solidification temperatures are required. 

 

2.2 Reinforcement learning 

 

Optimal control of real systems arise in several forms, ranging from control of cooling 

and heating systems to scheduling complex  managing operations. These problems are 

solved by iterating the process of taking decisions and observing the effects, being 

called sequential decision problems. In this sense, Dynamic programming [33] has been 

a traditional tool to solve sequential decision problems through the well-known Bellman 

equations, but problems with a high number of variables, decisions and states, make 

inefficient classical approaches. Smart searching strategies overcome this dimensional 

problem avoiding the complete search of dynamic programming algorithms. 

Reinforcement learning [34] is an example of such new techniques, modeling the 

system as a set of states and actions. At each state, one can take an action, obtaining a 

given reward and leaving the system at a new state. In this particular case, the system 

state is only determined by the PCM temperature, using gradient descent methods to 

overcome the problem of having an infinite number of states. The set of actions consists 

in not activating the ventilators or activating them at a set of determined speeds. The 

amount of thermal energy obtained from the PCM (reward) minus the investment in the 

form of electrical energy consumed by the ventilators is maximized. Furthermore the 

cost and CO2 emissions associated to these rewards and investments are computed when 

optimizing based on cost and CO2 mitigation.  

 

Under these considerations, the model considered in this paper is deterministic, in other 

words, a perfect foresight is always expected. As there is no uncertainty, one can 

employ the classical Bellman formulation to solve it. We refer to de Gracia et al. [28] 

for a detailed description of the optimization model as well as the algorithmic 

approaches. 
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2.3 Control strategies 

 

As it was previously stated, different control strategies will be applied to control the 

operation of the ventilated facade with PCM. These control strategies will optimize 

timing and distribution of the charge, storage and discharge processes in order to 

maximize the benefits in terms of net electrical energy, cost and CO2 emissions savings. 

The different control strategies are programmed to determine the operation of the 

system every 15 minutes.  

 

In case of optimizing net electrical energy savings, the system requires an electrical 

energy investment for charging and discharging of the PCM since mechanical 

ventilation is required (fans) to ensure solidification and melting. The reward is 

quantified using the cooling supplied by the system to the indoor environment, which is 

converted from thermal energy to electrical energy using a ratio of 3, simulating a 

standard air conditioning equipment with COP=3. The control system determines the 

charging and discharging process. The discharge is always programmed to start after 

10:00 a.m. until the corresponding cooling provided by the storage system does not 

compensate the electrical consumption of the fans. Moreover, the system controls the 

charging process selecting the most appropriate timing according to weather conditions 

so it can optimize the investment in form of use of the fans. 

 

The cost of electricity at each hour in summer is introduced in the optimization 

algorithm when the control system is programmed to maximize cost savings. In this 

case, the system does not only take into account the weather conditions, but the cost of 

electricity to determine whether to activate the fans or not. The cost of electricity is 

considered both in the investment (fans operation) and reward (electrical energy 

associated with cooling supply). The distribution of electricity cost was computed daily 

according to the Spanish tariff 2.0A [35]. 

 

Finally, the energy consumption and savings provided by the system were linked to the 

corresponding CO2 emissions. The amount of kg of CO2 emitted to the atmosphere per 

kWh varies significantly depending on the one hand on the use and availability of 
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renewables, and on the other hand on the electricity production based on fossil fuels. 

The distribution of the Spanish energy mix during 2012 was registered at 4 hours 

interval according to Red Eléctrica Corporación S.A. [36] and grouped into the 

following categories: nuclear, coal, combined cycle, wind, PV, hydraulics, and special 

(cogeneration and others). Each source for electrical energy production has its 

corresponding emission factor (g CO2/kWh), as shown in Table 1 [37]. The data was 

then interpolated according to the used time step in the control algorithm (15 minutes). 

 

Table 1. Emission factor for each technology used for electricity production in Spain 

Technology Emission factor  

[g CO2/kWh] 

Coal 1039 

Combined Cycle 390 

Wind 0 

PV 0 

Hydraulics 0 

Special 269 

 

The performance of the three described control strategies will be compared against a 

manual operation of the system in order to quantify the benefits of controlling this kind 

of active storage systems according to the different objectives. The manual mode is 

programmed to charge the storage from 04:00 to 06:00 am, and to discharge the cooling 

supply at 10:00 am. 

 

2.4 Worldwide impact of different control strategies 

 

The performance of the ventilated facade is very sensitive to weather conditions; hence 

the control system has to adjust the operation of the ventilated facade to maximize the 

benefits under different conditions. For this purpose, the performance of the previously 

defined control strategies were analyzed when operating under different climatic 

conditions as defined in Köppen-Geiger climate classification [38]. Cities from all 

possible climates with cooling needs were selected, and its outdoor temperature were 

obtained from EnergyPlus Weather Database [39] from June 21st to September 22nd in 
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case of cities located in north hemisphere, and from December 21st to March 20th for the 

selected cities from the south hemisphere. 

 

The authors want to highlight that in this paper, costs and CO2 emissions were 

considered according to Spanish electricity system even when analyzing the 

performance of the ventilated facade with PCM in other countries. Therefore, a more 

accurate evaluation of cost and CO2 emissions would require the analysis of electrical 

energy production of each country, which is out of the scope of this work, focused on 

highlighting the potential of different control strategies, and demonstrating how the 

optimization based on a certain objective can influence the rest of possible outcomes 

from a certain active heat storage technology. 

 

3. Results and discussion 

 

3.1 Performance of the system operating with different control strategies 

 

This section will present the effect of using control strategies based on the previously 

defined reinforcement learning techniques in the performance of the active TES system. 

Figure 3 shows the net energy savings achieved by the system in the different analyzed 

climates when controlled according to artificial intelligence techniques (automatic 

mode) and controlled manually, as described in Section 2.3. The results demonstrate 

that the control algorithm enhances the net energy savings in all climates, increasing the 

benefits in climates which are suitable for the operation of the technology (Warm 

temperate and Snow) and avoiding waste of energy in Equatorial and Arid climates.  

 

Similar results were achieved in de Gracia et al. [28] even though using different time 

step for control decision (having increased it from 10 to 15 minutes in this research for 

computational resource reasons). The use of automatic mode improves averagely 4.3% 

the energy savings when implemented in climates which are proved to have potential 

for the operation of the system (energy savings higher than 1 MJ/day),  
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Figure 3. Net energy savings provided by the system in automatic and manual mode 

 

Similar patterns can be found when comparing the system using manual and automatic 

control mode based on cost, as shown in Figure 4. The average benefits on cost basis 

due to the use of the automatic mode are 7.9% in climatic regions where the use of the 

ventilated facade with PCM is suitable. Furthermore, it can be noticed that the 

influence of the automatic mode differs depending on the climate, having significant 

average savings in cities such as Chicago (14.6%) and negligible benefits in cities such 

as México D.F. (3.2%). This fact can be explained due to the variability of the weather 

conditions, showing that the automatic mode can adapt the operation of the system 

according to daily specific weather conditions. 
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Figure 4. Cost savings provided by the system in automatic and manual mode 

 

In addition, Figure 5 presents CO2 mitigation achieved by the system when operated 

according to automatic and manual modes. Here, the difference is higher than the 

improvements achieved in the control strategies programmed to optimize energy and 

cost, especially in Quito (Cfb), Johannesburg (Cwb), and Antofagasta (Csb) since the 

suitable outer conditions for PCM charging during night are available during more 

hours, and hence the control can decide in a wider range the charging according to the a 

more sustainable energy mix. The average improvement achieved by the automatic 

system is 16.7%, when it is used under suitable climates for the operation of the system. 

As occurred in the energy and cost cases, in the climatic areas where the system cannot 

provide benefits, it avoids the waste of CO2 emitted to the atmosphere. 
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Figure 5. CO2 mitigation provided by the system in automatic and manual mode 

 

3.2 Influence of each control target on the other outcomes 

 

In the previous section, the benefits achieved by the system when it is controlled based 

on optimizing a specific outcome (energy reduction, cost saving and CO2 mitigation), 

however, no information was provided regarding how this optimization influences the 

other two outcomes provided by the system. Figure 6 presents the variation of the 

different outcomes in respect to its optimum when optimizing based on any other 

objective. In this sense, Figure 6a shows how cost savings and CO2 mitigation are 

reduced when the system operates at maximizing energy savings, Figure 6b presents the 

reduction in energy savings and CO2 mitigation when controlled based on cost benefits, 

and finally Figure6c shows the effect on energy and cost savings when the TES system 

is operating to maximize CO2 mitigation. The results are presented in the climates that 

are proved to have potential for the operation of the system (energy savings higher than 

1 MJ/day). 

 

The results demonstrate that when the system is controlled based on optimizing energy 

savings or CO2 mitigation, the benefits of the other outcomes are almost not reduced, 

being always below 9% in case of optimizing based on energy and below 2% in case of 
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optimizing based on CO2. On the other hand, when optimizing based on cost reduction, 

the energy savings and CO2 mitigation are far from their optimum values. The reduction 

of these two outcomes is very similar for each city which indicates that the optimal 

performance for energy savings and CO2 mitigation purposes is very similar. 

Furthermore, these reductions vary among cities between 15% (Bogota) and 40% 

(Madrid).  
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Figure 6. Variation of the different outcomes when optimizing based on other objective. a) Optimization 

based on Energy, b) Optimization based on Cost, c) Optimization based on CO2 mitigation 
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3.3 Required cost and CO2 investment for cooling production of the system 

 

So far, our reinforcement learning strategies optimizes one out of three parameters, 

namely energy, cost and CO2 emissions. At this point we are interested in performing 

multi-point optimization, obtaining the best cost or CO2 emissions savings that our 

system can afford for a given energy savings objective. This is achieved by introducing 

a second state, beside the PCM temperature, that reflects the energy objective.  

 

As previously described, the ventilated facade with PCM before being able to provide 

any cooling supply, it requires an initial investment to charge the PCM in form of 

electrical energy to activate the fans. This electrical energy corresponds to a certain cost 

and CO2 emissions. In this section, the cost and CO2 emissions required to produce 

different levels of cooling are investigated for the case of Bogota [Csb]. The control of 

the system was optimized for each one of the summer days, fixing different levels of 

maximum cooling. Each point corresponds to a double objective optimization result for 

a given summer period day. 

 

Figure7a plots the cooling supply dependency on cost. It can be seen that the system, as 

designed, can provide a maximum cooling supply of 1 kWh/day, even increasing the 

investment. Before arriving to this limit there is a linear relation between cost and 

cooling production, with a ratio of 36.17 kWh/€. Thus mean that the use of the system 

will be equivalent to use a cooling equipment with COP=3 with an electrical tariff 0.083 

€/kWh. 

 

Moreover, the dependency between the provided cooling supply from the system and 

the emitted CO2 to achieve this cooling can be observed in Figure7b. Similarly, this 

design of the system, there is a limit of 0.07 kg CO2/day after increasing the amount of 

CO2 emitted to the atmosphere does not provide more cooling supply. Before achieving 

this limit, the system presents a ratio of 13.3 kWh/kg CO2. 
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Figure 7. Required cost (a) and CO2 emissions (b) investment for cooling production in Bogota (Csb) 

 

 

4. Conclusions 

 

The present paper evaluates the performance of an active TES system when operated 

according to a control system based on reinforcement learning techniques. A ventilated 

facade with PCM in its air chamber is used as a case study. The system is used for 

cooling purposes, being charged using low temperature at night and providing a cooling 

supply to the interior of the building during daytime. The algorithm is used to test 

different control strategies in order to optimize the performance of the system based on 

energy savings, cost reduction, and CO2 mitigation. These benefits were evaluated in 

different climates which require cooling according to Köppen-Geiger climate 

classification [38]. 
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In case of energy savings, the use of an appropriate control strategy based on outdoor 

temperature, increase the energy savings in the cities in which the use of the system is 

suitable due to its climatic conditions and avoids the possible waste of energy in cities 

in which the outdoor temperature is not low enough during the night to solidify the 

PCM. The average energy savings achieved by the automatic mode in comparison to a 

manual operation of the system is 4.3%. In case of cost savings, similar pattern as in the 

energy control strategy was observed. In this case the average savings achieved by the 

system is 7.8%. On the other hand, significantly higher benefits were found when 

optimizing the control based on CO2 mitigation, showing an average savings of 16.7%.  

 

It is claimed that active TES systems can reduce energy usage, and hence cost and CO2 

emissions. The results demonstrated these savings are achieved in all analyzed climates, 

however, they have also proved that they cannot be optimized at the same time. There is 

an important reduction in comparison to the optimal value of the energy savings and 

CO2 mitigation when the system is programmed to increase the cost savings as much as 

possible.  
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