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Abstract

Relocatable, transportable or off-site constructed lightweight buildings typically
undergo sharp indoor temperature fluctuations in the heating and cooling seasons due to
the lack of sufficient thermal mass in their envelopes, resulting in high energy
consumption to provide the zone with comfort temperature. The application of phase
change materials has been suggested as a promising solution to control the indoor
thermal condition in buildings. This work is an attempt to support the application of
PCM technology in lightweight relocatable buildings as a passive alternative to save
energy under different weather conditions. The numerical results highlighted the
potential of using PCM-enhanced gypsum boards in lightweight buildings to increase
the energy performance during both heating and cooling seasons in arid and warm

temperate main climate areas.

Keywords: Thermal energy storage (TES); phase change material (PCM); passive
heating and cooling; simulation; energy efficiency; relocatable building; weather

conditions.
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1. Introduction

More than one-third of the global energy consumption comes from the building sector
(residential and commercial) [1] which is estimated to 20-40% of the total final energy
consumption in developed countries [2]. It also accounts for about 8% for direct energy-
related CO, emissions from final energy consumers [3]. It is expected that without
applying any energy efficient solutions, global energy demand will increase by 50 % in

2050 [4].

Improving the building envelope is considered as an appropriate design solution for
reducing the space heating and cooling energy consumption and increasing the thermal
comfort [5,6]. In buildings, a major part of the energy is consumed by the air
conditioning system, on this basis, several technologies have been developed to
decrease the energy consumption and to maintain the thermal comfort of occupants.
Examples of such technologies are insulation materials [7], development of heat
insulation solar glasses [8], double-glazed window reversible systems [9], use of hybrid
wall integrated with heat collectors, and solar thermal power generators [10]. Enhancing
the building envelopes with thermal insulation has been extensively used as a basic
strategy to diminish the heat dissipation from the building environment to the outdoor
environment specifically in lightweight buildings [11]. However, major factors affecting
the long-term performance of lightweight buildings correspond to the ability to
adequately regulate the internal environment since the energy performance in such
buildings can be limited because of the overheating problem coming from the high heat

gains from internal sources and solar radiation [12,13].

The application of thermal mass has been highlighted as a promising technology for
designing high efficient buildings [14—16]. However, traditional thermal mass materials
(bricks, stone, etc.) are not appropriate choices for relocatable lightweight buildings
since, on one hand, their transportation and implementation would not be feasible due to
their massiveness, and on the other hand, they occupy more space because of their
higher volume. The building envelope regulates the heat exchange between outdoor and

indoor environments and highly affects the energy requirements and comfort of the
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occupants, besides, it has a high potential to be integrated with new building materials

and systems.

Thermal energy storage (TES) systems can create a balance between diurnal and
nocturnal energy demand using latent heat thermal energy storage [17]. A considerable
amount of literature has been published on the application of phase change material
(PCM) in buildings [18-21]. Further on, a great effort has been made by Cabeza et al.
[19] and Barreneche et al. [22] in recent years to classify PCM for thermal energy
storage (TES) in buildings. The PCM is distinguished from typical thermal mass
materials because of its capability to store higher amounts of energy in small
temperature interval due to its high heat of fusion [23]. PCM is a unique alternative to

improve the energy efficiency and thermal comfort in buildings [24-28].

PCM can be incorporated into building construction materials in different ways to
provide passive cooling and heating; such as, gypsum plasterboard with
microencapsulated paraffin [29] which is a promising solution to enhance thermal
capacity of lightweight buildings, plaster with microencapsulated paraffin [30] that
could be applied on the surface of the walls, concrete with microencapsulated paraffin
[31], shape-stabilized paraffin panels [32], PCM bricks [33], and wood with PCM [34].
Additionally, the PCM has vast applications for building components such as slabs [35],
floors [36], blinds and windows [37-39].

For example, Cabeza el al. [31] experimentally investigated the impact of using
microencapsulated PCM in concrete walls to improve the thermal performance of a
concrete building. It was shown that the indoor temperature of the PCM-enhanced
concrete building was 1 °C lower than the reference building without PCM inclusion,
also, the maximum temperature in the PCM-enhanced wall was shifted two hours. In
addition, it was shown by Lee et al. [40] that the integration of a thin PCM layer into the
residential building walls can moderate the temperature and heat flux fluctuations. The
experimental results showed 30-50% of peak heat flux reductions, 2 to 6 hours delay in
peak heat flux, and the maximum daily heat transfer reductions were estimated as 3-

27%. Besides, through an optimization-based simulation Soares et al. [13] found that
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the application of PCM drywalls in lightweight steel-framed buildings can improve the
energy efficiency of buildings by 10-60% depending on the climate zone.

The PCM passive system (passive cooling and heating) is a sustainable solution to
improve the comfort quality and the energy performance by reducing the cooling and
heating demands in lightweight buildings. Passive cooling plays an important role in the

sustainable development of the building industry [41-43].

Off-site constructed buildings such as prefabricated lightweight buildings came into
practice as an alternative to the on-site method in order to manufacture and preassemble
building elements, components or modules before being installed in the building site
[44]. Off-site construction is often referred as a modern method of construction which is
more environmentally friendly since repeatable performance, minimal waste and high
levels of quality can be guaranteed [45]. Other advantages associated with such
buildings are rapid construction, minimal handling and lower need for resources which

have led to growth of pre-fabricated (off-site) construction [41,45].

Portable, relocatable or transportable buildings are those which could be easily moved
and relocated. They may be modular (made up of a number of modules) or single
volumes (where there are transported as complete buildings) [46]. Such types of
buildings are feasible alternatives for mining camps (Figure 1), rapid post-disaster
sheltering in regions with high vulnerability to natural disasters [47], refugee camps,
temporary accommodation, and also they could be used in developing countries where
there are problems of house delivery due to the lack of skill and housing quality [48].
Lightweight pre-fabricated buildings could be delivered to the job site at any time of the
year and any place (on the mountains for example) regardless of the weather condition.
As already mentioned herein, overheating or overcooling problems of the indoor
environment is the main challenge in such buildings [49] due to their lightweight nature
where high cooling and heating loads might be imposed to the HVAC system.
Thermally enhancing the envelopes of these buildings using PCM could be an
innovative solution to overcome the uncomfortable indoor condition in these buildings
considering that a poor-conditioned zone may negatively affect the occupants and may

cause sick building syndrome [50].
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Figure 1. Fully self-sufficient mining camp for workers [46].

With this knowledge the authors would like to address the high energy consumption in
Chile. The mining industry is a major consumer of energy and electricity in Chile. This
country is the world largest producer and exporter of copper and it consumes 11% of the
total country energy use, 32% of total electricity and 6% of total fuel [51]. These mining
camps have their own residential, medical, leisure and sport areas which are built of
single or modular prefabricated lightweight buildings such as the modular pre-fabricated
construction. Also, the development of new mining projects demand the installation of
temporary camps with this type of construction, such as Escondida mine located in the
desert of Atacama, with the altitude of 3100 meters and a capacity of inhabiting more

than 5500 persons which was constructed in only 8 months (Figure 2) [52,53].

|
)

Figure 2. Escodid mining camp [52,53].
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In the extreme summer and winter weather conditions these buildings (modular or
single) consume a huge amount of energy for air conditioning purposes both in cooling
and heating season, especially in regions with high altitudes because of high irradiance
all over the year. Due to this reason, PCM-based passive cooling and heating system
can play an important role to control the air quality in these lightweight residential
buildings. Further on, if sufficient energy saving is attained in such rapidly-built
buildings the payback period of the PCM technology is feasible [5]. In the literature,
little attention has been paid to such buildings despite to their wide-range application.
For this sake, in the present paper, the feasibility of reducing the HVAC energy
consumption and the extreme indoor temperature fluctuations in relocatable lightweight
buildings will be studied numerically in major Chilean climates for both cooling and
heating periods. Moreover, the thermal performance of such buildings will be

investigated under other climate conditions.

2. Methodology

2.1.Building energy simulation

The heat transfer in the building envelope is a complex phenomenon. Indoor and
outdoor conditions highly influence the thermal comfort and the energy performance in
buildings especially when the PCM is incorporated into the building envelope. Building
performance simulation gives us the possibility of evaluating a wide range of scenarios
to enhance the building energy performance and the indoor thermal comfort [54].
Further on, it is the cheapest and the fastest way to analyze the effects of different
architectural designs, innovative building materials, control strategies, etc. on the energy
performance and the indoor air quality of buildings; otherwise, constructing different
building prototypes without early-stage design would be expensive and time-

consuming.

A significant number of studies have been published on the building energy modeling
[55]. Several building and system energy simulation tools have been developed to assist

engineers and policy makers to implement their energy-efficient scenarios [56];
6
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nonetheless, there are few building energy simulation programs which can simulate the
impacts of the PCM technology on the heating, cooling and air conditioning quality of
buildings [57]. EnergyPlus [58—61] and TRNSYS [62—-64] are extensively used for the
PCM modeling in buildings. Due to distinguished capabilities of EnergyPlus building

energy simulation software [43], it has been chosen in the present study.

2.2.Numerical model

The numerical simulations were carried out using EnergyPlus v8.1 dynamic building
energy simulation software [58—60]. In EnergyPlus, PCM can be simulated by using a
Conduction Finite Difference (CondFD) solution algorithm which discretizes the
building envelope into different nodes and numerically solves the heat transfer
equations using a finite difference method (FDM) which could be selected between
Crank-Nicolson or fully implicit [65,66]. In the present study, the fully implicit

discretization has been used.

To simulate PCM and to consider the specific heat change due to phase change process,
the CondFD method is coupled with an enthalpy-temperature function which reads the
user inputs of enthalpies at different temperatures [61]. Then, the enthalpies in each
node get updated in each iteration, and then they are used to develop an equivalent
specific heat C, at each time step. This model is a modified version of the enthalpy

method which was developed by Pedersen [61,67].

In order to ensure the accuracy of the CondFD model and the simulation, the time step
of the simulation was set to one minute and the space discretization was set to 3 [67].
Additionally, PCMs with strong hysteresis cannot be accurately simulated, so that, a

PCM with negligible hysteresis should be used to achieve acceptable results [67].

2.3.Validation

The PCM and CondFD models of EnergyPlus were verified and validated against
different test suites by Tabares-Velasco et al. [67,68], which consist of analytical

verification, comparative testing, and empirical validation [31]. In addition, PCM

7
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algorithm of EnergyPlus was validated against experimental data by other researchers
[69—71]. The CondFD solution and PCM algorithms of EnergyPlus were verified and
validated against analytical verification (Stefan problem), comparative testing (against
Heating v7.3) and empirical validation (DuPont Hotbox) by Tabares-Velasco et al.
[67,68]. Moreover, the EnergyPlus PCM model was validated [72,73] against the
experimental data of Kuznik and Virgone [71] where strong agreement was achieved
between the experimental data and the numerical simulation results for zone air
temperature. Additionally, the EnergyPlus simulation model was validated against field
data by other researchers [74—77] and good consistency between the numerical

simulation and the experimental data was shown from their results.

2.4. Building model

A single-zone building prototype with 5.76 m” of floor area (2.4 m width x 2.4 m length
% 2.4 m height) with no internal partitions and 1 m? (1 m width x 1 m height) of glazing
and 1.6 m> (0.8 m width x 2 m height) of door located on the north wall, has been
selected which is very similar to transportable or relocatable buildings (Figure 3).
Additionally, it is supposed that all exterior walls and roof are exposed to the outdoor
environment and colored in grey to enhance the solar absorptivity, and the exterior floor
is separated from the ground. The building model is considered as a residential living
space. To investigate the effects of PCM on the heating and cooling energy
performances and the thermal comfort, two building prototypes have been considered.
A reference model without PCM inclusion is compared to another one with PCM
incorporated into its envelopes. The PCM plasterboard (Knauf comfortboard) [78] filled
with about 18% of Micronal® PCM microcapsules was installed on the interior surfaces
of the exterior walls and the roof enclosure. The physical properties of the utilized PCM

are listed in Table 1.
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Figure 3. Building model geometry.

Table 1. Properties of Knauf comfortboard as provided by the manufacturer [78].

Thickness 0.0125 [m]

Peak melting temperature 25 [C]
Thermal conductivity 023 [W/mK]
Latent heat capacity 200  [kJ/m?]
Specific heat capacity 13 [kJ/m®-K]
Density 800  [kg/m’]
Specific heat 1625 [J/kgK]

The construction details of the lightweight building model as well as the thermophysical

properties of the used materials are shown in Tables 2 to 4.

Table 2. Exterior walls and roof construction

Material d [m] A [W/m-K] p [kg/m’] C, W/kgK]
Galvanized steel 0.008 40 7824 500
Insulation 0.04 0.038 32 835
PCM gypsum board 0.0125 0.23 800 1625
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Table 3. Door and floor construction

Material d [m] A [WmK] p [kg/m’] G, [VkgK]
Plywood door 0.04 0.12 510 1380
Plywood floor 0.018 0.12 510 1380

Table 4. Window construction.

Optical data type Spectral Average
Thickness [m] 0.003
Solar Transmittance at Normal Incidence 0.837
Front Side Solar Reflectance at Normal Incidence 0.075
Back Side Solar Reflectance at Normal Incidence 0.075
Visible Transmittance at Normal Incidence 0.898
Front Side Visible Reflectance at Normal Incidence 0.081
Back Side Visible Reflectance at Normal Incidence 0.081
Infrared Transmittance at Normal Incidence 0
Front Side Infrared Hemispherical Emissivity 0.84
Back Side Infrared Hemispherical Emissivity 0.84
Thermal conductivity [W/m-K] 0.9

2.5. Air conditioning system

A packaged terminal heat pump (PTHP) (Figure 4) with an electric supplemental
heating coil was selected to provide air conditioning to the building zone. This type of
air conditioning system is commonly used in relocatable buildings [79]. The PTHP is a
compound component made up of an outdoor air mixer, direct expansion (DX) cooling
coil, DX heating coil, supply air fan, and a supplementary electric heating coil [65]. The
supply fan total efficiency and motor efficiency are 0.7 and 0.9, respectively.
Furthermore, the cooling coil has an Energy Efficiency Ratio (EER) of 2.52 (Wh) and
the heat pump heating coil gross rated coefficient of performance (COP) is 2.75 as
recommended by ASHRAE 90.1 standard [80]. Also, it should be added that the HVAC

system operates 24-hours per day throughout the year.

10
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Figure 4. PTHP with supplemental electric heating coil, adopted from [65]. Note: DX, direct
expansion; OA, outdoor air.

The single-zone building is considered to be a residential space with high thermal
comfort (Category I). On this basis, a dual setpoint thermostat with deadband was
selected according to the recommended indoor temperatures for energy calculations of
BS EN 15251 [81]. Accordingly, the indoor temperature is maintained between 18 °C

for heating and 25 °C for cooling, during the occupancy period.

2.6. Operational conditions

The impact of climate condition on the energy performance of buildings has been the
center of attention of many researchers, notably in buildings with passive PCM system
[13,24,82]. In fact, the PCM performance in the buildings is very depended to the
weather conditions and geographical location. For instance, a particular type of PCM
which has the potential of increasing the cooling energy savings in a specific climate
zone, might decrease the cooling energy performance in another climate [83]. Under
these circumstances, it seems essential to analyze the energy performance in relocatable
buildings due to the incorporation of PCM under different climate conditions and to find
out the degree in which the passive PCM solution could be influential. In the current
study, the Koppen-Geiger (Figure 5) [84] climate classification was used. In this
classification, the main climates are categorized in A: equatorial, B: arid, C: warm

11
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temperate, D: snow, and E: polar. Additionally, the level of precipitation is defined as
W: desert, S: steppe, f: fully humid, s: summer dry, w: winter dry, and m: monsoonal.
Moreover, further details are provided regarding temperature as h: hot arid, k: cold arid,
a: hot summer, b: warm summer, c¢: cool summer, d: extremely continental, and F: polar

frost.

The weather data files for building simulations were mostly obtained from the
EnergyPlus Weather (EPW) database [85] which includes weather data provided in
EnergyPlus format from 20 sources [86]. However, in the case of Calama, in situ

measurements were used. Table 5 presents a summary of the studied climates.

Table 5. Selected locations and climate characteristics according to Képpen Geiger

classification.
Time Annual Annual
Koppen . Latitude | Longitude * Elevation CDD HDD
) City zone
climate [m] base 10 base 18
(GMT) 0 0
C C
S 15°
Aw Brasilia 5 W 47° 55 -3.0 1061 4207 8
Af Kuala Lumpur | N 3° 7' | E 101° 33’ 8.0 22 6262 0
Af Singapore N 1°22' | E 103° 58' 8.0 16 6374 0
W 106°
BSk Albuquerque | N 35° 2' - -7.0 1619 2157 2303
N 19°
BSk Mexico 55 W99° 4 -6.0 2234 2503 547
N 28°
BSh New Delhi ” E 77° 11" +5.5 216 5363 278
N 24°
BWh Abu Dhabi o E 54°39' +4.0 27 6254 24
S 22°
BWk Calama 50 W 68°90' -4.0 2312 2109 1919
S 27°
Cfa Brisbane oy E 153° 6' +10.0 5 3652 329
N 40°
Cfa Madrid - W 3°32 +1.0 582 2057 1965
N 36°
Cfa Tokyo o E 140° 25' +9.0 35 1911 2311
Cfb Berlin N 52° E 13°23 +1.0 49 1125 3156

12




319
320

321

28

Cfb Johannesburg | S26° 7' | E 28°13' +2.0 1700 2216 1052
S 23°
Csb Antofagasta 55 W 70°25' -4.0 120 2557 598
Csb Auckland S37° 1' | E 174° 48 +12.0 6 1909 1163
Csb Bogota N 4°41' | W 74° 7' -5.0 2548 1165 1755
S 36°
Csb Concepcion 16 W 73° 3 -4.0 16 1207 1843
Csb Quito S 0°9 | W 78°28' -5.0 2812 1366 1554
N 37° W 122°
Csb San Francisco -8.0 2 1681 1504
37 24
Santiago de S 33°
Csb W 70° 46' -4.0 476 1784 1570
Chile 22!
N41°
Dfa Chicago 16 W 87°45' -6.0 186 1964 3106
N 45°
Dfb Montreal 58! W 73°45 -5.0 36 1185 4493
N 55°
Dfb Moscow 45 E 37°37 +3.0 156 862 4655
N 59°
Dfb Stockholm 39 E 17°57 +1.0 61 683 4239
N 39°
Dwa Beijing 47 E 116° 28" +8.0 32 2321 2750

NB: *Hours from universal coordinated time. *CDD, cooling degree days; HDD, heating degree days.

13
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Figure 5.World Map of Képpen—Geiger climate classification [27].

3. Results and discussion
3.1 Thermal response under controlled temperature conditions

The annual overall electrical energy consumed for heating and cooling of the studied
building model and the achieved electrical savings due to the use of PCM in the
building envelope are shown in Figure 6 for each analyzed city. Results show that the
inclusion of PCM has a significant potential in arid (B) and warm temperate (C) main
climate areas, except in Tokyo (Cfa) and Berlin (Cfb), where PCM does not provide any
energy benefit. On the other hand, in equatorial (A) and snow (D) main climates the
inclusion of PCM has negligible impact, with the exception of Brasilia, which
corresponds to equatorial main climate and presents a 49% of energy consumption

reduction due to the use of PCM.

14
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The highest energy savings achieved due to the use of PCM are found in Calama
(BWKk), Johannesburg (Cfb), Santiago de Chile (Csb) and Mexico DF (BSk) presenting
271, 169, 155 and 150 kWh of reduction per year, respectively. These cities achieve this
high reduction because the PCM is able to reduce significantly the HVAC consumption

during both heating and cooling periods, as shown in Figure 7.

On the other hand, there are cities that provide significant benefits due to the use of
PCM but limited to one period, either heating or cooling seasons. The melting
temperature of the used PCM (25°C) is appropriate to reduce both heating and cooling
loads, however, it could be the case that in certain locations, it would be more beneficial
to select the PCM melting temperature to reduce either heating and cooling loads
instead of trying to reduce both. Within this context, Bogota and Quito (both Csb)
presented high potential for energy consumption reduction for heating, being able to
achieve a yearly reduction of 85 and 57 kWh, respectively, as they can only reduce 25
and 13 kWh the electrical consumption during the cooling season. This indicates that
the melting temperature of the PCM might have not been well selected in those cities,
since a PCM with lower melting temperature would even maximize the benefits during
heating season. On the other hand, Brasilia (Aw) and Brisbane (Cfa) could reduce
significantly the cooling loads, achieving energy reductions of 114 and 85 kWh, while
the load reduction during heating period is limited to values around 40 kWh, which
indicates that a PCM with higher melting point would maximize the benefits during the
cooling period, and might increase the economic benefits. Moreover, there are some
cases, especially in arid areas, in which the heating demand is very limited, and hence
there is a weak potential for its reduction, such as, Albuquerque (BsK) and Abu Dhabi
(BWh). In these cases, as well as for Brasilia and Brisbane, a PCM with higher melting

temperature would lead to higher benefits.
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Figure 7. Annual heating and cooling energy consumption reduction in each analyzed city.
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As shown in Figure 8, Calama (BWk) is the analyzed city which achieves the highest
reduction both for heating and cooling period. The arid conditions achieved due to its
high altitude (2312 m) makes necessary the use of cooling and heating during the whole
year. Furthermore, the high thermal gradients achieved during both, winter and summer
periods, makes suitable the use of PCM in the building envelope in the Atacama Desert
climate conditions. As it can be seen in Figure 8, there is a cooling and heating demand
during the whole year (temperature would be higher than 25°C and lower than 18°C in
case of not having any HVAC system) and the inclusion of PCM can reduce effectively
both loads during each season. For instance, during winter, the lightweight building
without PCM requires cooling at around 11:00, the use of PCM delays significantly this
load until (14:00 or 17:00 depending on the day), which reports significant reduction on
energy consumption for cooling. Moreover, in winter, a heating supply is required at
nighttime, which is significantly delayed due to the use of PCM. Similar trends can be
found in spring, summer and autumn, which lead to important energy savings during the
whole year as shown in Figure 9. Thus, highlights the potential of the PCM of reducing
both heating and cooling loads during the whole year in this kind of extremely

lightweight buildings.
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Figure 8. Indoor temperature in case with and without PCM in Calama (BWk) during each
season.
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Figure 9. Energy consumption for heating and cooling during each season in Calama.

3.2 Thermal response under free floating conditions

As it was previously stated, the aim of the paper is to test the impact of using PCM in
the envelopes of lightweight relocatable buildings. In section 3.1 the results presented
the influence of PCM in the energy consumption of the installed HVAC of this sort of
buildings, however, the relocatable nature of the buildings could imply the absence of
any HVAC system (naturally ventilated buildings) [87]. Within this context, it is
important to determine how the inclusion of PCM can provide benefits in the
performance of the building in case there is no HVAC. In this case, same dual set-point
used in the controlled temperature simulations are used to define the upper and lower

limits of the comfort range, 25°C and 18°C respectively [24].

Figure 10 shows the influence of PCM in the time that the indoor temperature of the
building is inside comfort range for each analyzed climate conditions. There is a clear
positive effect of using PCM in all cities, except in Kuala Lumpur and Singapore, both
tropical areas, in which the use of PCM reduces the amount of yearly hours inside
comfort range. Moreover, as occurred in the case of controlled temperature cases, there
is a limited potential in snow main climate areas (D according to Koppen-Geiger
classification [23]). Figure 10 also highlights that the lightweight nature of the

buildings, makes that the indoor temperature is only inside comfort conditions between
18
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10-30% of the time in case of not using PCM depending on the climate. The use of
PCM improves significantly the performance of the buildings in most of the analyzed
climates; however, there is still an important period when indoor temperature is out of
comfort conditions, which has to be taken into consideration for engineers and
architects involved in the design of this sort of buildings when used without HVAC

systems.
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Figure 10. Annual percentage of time inside comfort conditions with and without PCM.
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4. Conclusions

This study intends to support the application of PCM technology in lightweight building
as a passive alternative to save energy and evaluates its influence on the building energy
performance under different weather conditions. Moreover, the use of numerical models
provides a faster tool to evaluate the applicability of specific technologies and/or
materials in the building sector regarding to each specific boundaries such as weather

conditions and energy requirements.

The numerical results presented in this study highlight the potential of energy
consumption reduction due to the implementation of PCM in the gypsum board used in
the lightweight building envelopes both for heating and cooling periods in arid and

warm temperate main climate areas. On the other hand, the potential of energy
19
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reduction is very limited in tropical and snow main climate areas. The PCM
implemented in the gypsum board used in the envelopes presents a melting point of
25°C, which allows achieving important reductions of energy consumption for heating
and cooling in several weather conditions. Furthermore, it was noticed that the PCM
used in certain cities should have been selected with a lower or higher melting point and
hence focus its performance of heating or cooling reduction, respectively. Within this
context the authors identify as a future work, the optimization of the PCM melting
temperature depending on the weather conditions, which could lead to maximize the
benefits, as well as opening the possibility of having benefits in areas in which they
were not achieved with the studied PCM (25 °C) such as tropical and snow main climate

arcas.

The impact of using PCM in the building envelopes is maximized when applied to
extremely lightweight buildings, as the one used in this research. Application of the
gypsum board with PCM in other buildings with more thermal mass would provide less

energy savings than the highlighted in the analyzed relocatable lightweight building.

Throughout the use of computational software now it is possible to evaluate several
weather conditions at the same time. This means that now it is possible to assess several
materials using their thermal properties and have a better idea about the thermal
material performance. The previous evaluation of building materials with thermal
properties, such as PCM could provide substantial evidence about the economic and
environmental improvements, in terms to persuade potential implementations that are

currently discarded because of their high cost of production.
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