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Abstract 18 

19 

Relocatable, transportable or off-site constructed lightweight buildings typically 20 

undergo sharp indoor temperature fluctuations in the heating and cooling seasons due to 21 

the lack of sufficient thermal mass in their envelopes, resulting in high energy 22 

consumption to provide the zone with comfort temperature. The application of phase 23 

change materials has been suggested as a promising solution to control the indoor 24 

thermal condition in buildings. This work is an attempt to support the application of 25 

PCM technology in lightweight relocatable buildings as a passive alternative to save 26 

energy under different weather conditions. The numerical results highlighted the 27 

potential of using PCM-enhanced gypsum boards in lightweight buildings to increase 28 

the energy performance during both heating and cooling seasons in arid and warm 29 

temperate main climate areas.  30 

 31 

Keywords: Thermal energy storage (TES); phase change material (PCM); passive 32 

heating and cooling; simulation; energy efficiency; relocatable building; weather 33 

conditions. 34 
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1. Introduction 38 

 39 

More than one-third of the global energy consumption comes from the building sector 40 

(residential and commercial) [1] which is estimated to 20-40% of the total final energy 41 

consumption in developed countries [2]. It also accounts for about 8% for direct energy-42 

related CO2 emissions from final energy consumers [3]. It is expected that without 43 

applying any energy efficient solutions, global energy demand will increase by 50 % in 44 

2050 [4].  45 

 46 

Improving the building envelope is considered as an appropriate design solution for 47 

reducing the space heating and cooling energy consumption and increasing the thermal 48 

comfort [5,6]. In buildings, a major part of the energy is consumed by the air 49 

conditioning system, on this basis, several technologies have been developed to 50 

decrease the energy consumption and to maintain the thermal comfort of occupants. 51 

Examples of such technologies are insulation materials [7], development of heat 52 

insulation solar glasses [8], double-glazed window reversible systems [9], use of hybrid 53 

wall integrated with heat collectors, and solar thermal power generators [10]. Enhancing 54 

the building envelopes with thermal insulation has been extensively used as a basic 55 

strategy to diminish the heat dissipation from the building environment to the outdoor 56 

environment specifically in lightweight buildings [11]. However, major factors affecting 57 

the long-term performance of lightweight buildings correspond to the ability to 58 

adequately regulate the internal environment since the energy performance in such 59 

buildings can be limited because of the overheating problem coming from the high heat 60 

gains from internal sources and solar radiation [12,13]. 61 

 62 

The application of thermal mass has been highlighted as a promising technology for 63 

designing high efficient buildings [14–16]. However, traditional thermal mass materials 64 

(bricks, stone, etc.) are not appropriate choices for relocatable lightweight buildings 65 

since, on one hand, their transportation and implementation would not be feasible due to 66 

their massiveness, and on the other hand, they occupy more space because of their 67 

higher volume. The building envelope regulates the heat exchange between outdoor and 68 

indoor environments and highly affects the energy requirements and comfort of the 69 
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occupants, besides, it has a high potential to be integrated with new building materials 70 

and systems. 71 

 72 

Thermal energy storage (TES) systems can create a balance between diurnal and 73 

nocturnal energy demand using latent heat thermal energy storage [17]. A considerable 74 

amount of literature has been published on the application of phase change material 75 

(PCM) in buildings [18–21]. Further on, a great effort has been made by Cabeza et al. 76 

[19] and Barreneche et al. [22] in recent years to classify PCM for thermal energy 77 

storage (TES) in buildings. The PCM is distinguished from typical thermal mass 78 

materials because of its capability to store higher amounts of energy in small 79 

temperature interval due to its high heat of fusion [23]. PCM is a unique alternative to 80 

improve the energy efficiency and thermal comfort in buildings [24–28].  81 

 82 

PCM can be incorporated into building construction materials in different ways to 83 

provide passive cooling and heating; such as, gypsum plasterboard with 84 

microencapsulated paraffin [29] which is a promising solution to enhance thermal 85 

capacity of lightweight buildings, plaster with microencapsulated paraffin [30] that 86 

could be applied on the surface of the walls, concrete with microencapsulated paraffin 87 

[31], shape-stabilized paraffin panels [32], PCM bricks [33], and wood with PCM [34]. 88 

Additionally, the PCM has vast applications for building components such as slabs [35], 89 

floors [36], blinds and windows [37-39]. 90 

 91 

For example, Cabeza el al. [31] experimentally investigated the impact of using 92 

microencapsulated PCM in concrete walls to improve the thermal performance of a 93 

concrete building. It was shown that the indoor temperature of the PCM-enhanced 94 

concrete building was 1 ºC lower than the reference building without PCM inclusion, 95 

also, the maximum temperature in the PCM-enhanced wall was shifted two hours. In 96 

addition, it was shown by Lee et al. [40] that the integration of a thin PCM layer into the 97 

residential building walls can moderate the temperature and heat flux fluctuations. The 98 

experimental results showed 30-50% of peak heat flux reductions, 2 to 6 hours delay in 99 

peak heat flux, and the maximum daily heat transfer reductions were estimated as 3-100 

27%. Besides, through an optimization-based simulation Soares et al. [13] found that 101 
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the application of PCM drywalls in lightweight steel-framed buildings can improve the 102 

energy efficiency of buildings by 10-60% depending on the climate zone. 103 

 104 

The PCM passive system (passive cooling and heating) is a sustainable solution to 105 

improve the comfort quality and the energy performance by reducing the cooling and 106 

heating demands in lightweight buildings. Passive cooling plays an important role in the 107 

sustainable development of the building industry [41–43].  108 

 109 

Off-site constructed buildings such as prefabricated lightweight buildings came into 110 

practice as an alternative to the on-site method in order to manufacture and preassemble 111 

building elements, components or modules before being installed in the building site 112 

[44]. Off-site construction is often referred as a modern method of construction which is 113 

more environmentally friendly since repeatable performance, minimal waste and high 114 

levels of quality can be guaranteed [45]. Other advantages associated with such 115 

buildings are rapid construction, minimal handling and lower need for resources which 116 

have led to growth of pre-fabricated (off-site) construction [41,45]. 117 

 118 

Portable, relocatable or transportable buildings are those which could be easily moved 119 

and relocated. They may be modular (made up of a number of modules) or single 120 

volumes (where there are transported as complete buildings) [46]. Such types of 121 

buildings are feasible alternatives for mining camps (Figure 1), rapid post-disaster 122 

sheltering in regions with high vulnerability to natural disasters [47], refugee camps, 123 

temporary accommodation, and also they could be used in developing countries where 124 

there are problems of house delivery due to the lack of skill and housing quality [48]. 125 

Lightweight pre-fabricated buildings could be delivered to the job site at any time of the 126 

year and any place (on the mountains for example) regardless of the weather condition. 127 

As already mentioned herein, overheating or overcooling problems of the indoor 128 

environment is the main challenge in such buildings [49] due to their lightweight nature 129 

where high cooling and heating loads might be imposed to the HVAC system. 130 

Thermally enhancing the envelopes of these buildings using PCM could be an 131 

innovative solution to overcome the uncomfortable indoor condition in these buildings 132 

considering that a poor-conditioned zone may negatively affect the occupants and may 133 

cause sick building syndrome [50]. 134 
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In the extreme summer and winter weather conditions these buildings (modular or 153 

single) consume a huge amount of energy for air conditioning purposes both in cooling 154 

and heating season, especially in regions with high altitudes because of high irradiance 155 

all over the year. Due to this reason, PCM-based passive cooling and heating system 156 

can play an important role to control the air quality in these lightweight residential 157 

buildings. Further on, if sufficient energy saving is attained in such rapidly-built 158 

buildings the payback period of the PCM technology is feasible [5]. In the literature, 159 

little attention has been paid to such buildings despite to their wide-range application.  160 

For this sake, in the present paper, the feasibility of reducing the HVAC energy 161 

consumption and the extreme indoor temperature fluctuations in relocatable lightweight 162 

buildings will be studied numerically in major Chilean climates for both cooling and 163 

heating periods. Moreover, the thermal performance of such buildings will be 164 

investigated under other climate conditions. 165 

 166 

 167 

2. Methodology 168 

 169 

2.1.Building energy simulation 170 

 171 

The heat transfer in the building envelope is a complex phenomenon. Indoor and 172 

outdoor conditions highly influence the thermal comfort and the energy performance in 173 

buildings especially when the PCM is incorporated into the building envelope. Building 174 

performance simulation gives us the possibility of evaluating a wide range of scenarios 175 

to enhance the building energy performance and the indoor thermal comfort [54]. 176 

Further on, it is the cheapest and the fastest way to analyze the effects of different 177 

architectural designs, innovative building materials, control strategies, etc. on the energy 178 

performance and the indoor air quality of buildings; otherwise, constructing different 179 

building prototypes without early-stage design would be expensive and time-180 

consuming. 181 

A significant number of studies have been published on the building energy modeling 182 

[55]. Several building and system energy simulation tools have been developed to assist 183 

engineers and policy makers to implement their energy-efficient scenarios [56]; 184 
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nonetheless, there are few building energy simulation programs which can simulate the 185 

impacts of the PCM technology on the heating, cooling and air conditioning quality of 186 

buildings [57]. EnergyPlus [58–61] and TRNSYS [62–64] are extensively used for the 187 

PCM modeling in buildings. Due to distinguished capabilities of EnergyPlus building 188 

energy simulation software [43], it has been chosen in the present study.  189 

2.2.Numerical model 190 

 191 

The numerical simulations were carried out using EnergyPlus v8.1 dynamic building 192 

energy simulation software [58–60]. In EnergyPlus, PCM can be simulated by using a 193 

Conduction Finite Difference (CondFD) solution algorithm which discretizes the 194 

building envelope into different nodes and numerically solves the heat transfer 195 

equations using a finite difference method (FDM) which could be selected between 196 

Crank-Nicolson or fully implicit [65,66]. In the present study, the fully implicit 197 

discretization has been used.  198 

 199 

To simulate PCM and to consider the specific heat change due to phase change process, 200 

the CondFD method is coupled with an enthalpy-temperature function which reads the 201 

user inputs of enthalpies at different temperatures [61]. Then, the enthalpies in each 202 

node get updated in each iteration, and then they are used to develop an equivalent 203 

specific heat Cp at each time step. This model is a modified version of the enthalpy 204 

method which was developed by Pedersen [61,67]. 205 

 206 

In order to ensure the accuracy of the CondFD model and the simulation, the time step 207 

of the simulation was set to one minute and the space discretization was set to 3 [67]. 208 

Additionally, PCMs with strong hysteresis cannot be accurately simulated, so that, a 209 

PCM with negligible hysteresis should be used to achieve acceptable results [67]. 210 

 211 

2.3.Validation 212 

 213 

The PCM and CondFD models of EnergyPlus were verified and validated against 214 

different test suites by Tabares-Velasco et al. [67,68], which consist of analytical 215 

verification, comparative testing, and empirical validation [31]. In addition, PCM 216 
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algorithm of EnergyPlus was validated against experimental data by other researchers 217 

[69–71]. The CondFD solution and PCM algorithms of EnergyPlus were verified and 218 

validated against analytical verification (Stefan problem), comparative testing (against 219 

Heating v7.3) and empirical validation (DuPont Hotbox) by Tabares-Velasco et al. 220 

[67,68]. Moreover, the EnergyPlus PCM model was validated [72,73] against the 221 

experimental data of Kuznik and Virgone [71] where strong agreement was achieved 222 

between the experimental data and the numerical simulation results for zone air 223 

temperature. Additionally, the EnergyPlus simulation model was validated against field 224 

data by other researchers [74–77] and good consistency between the numerical 225 

simulation and the experimental data was shown from their results. 226 

 227 

2.4. Building model 228 

 229 

A single-zone building prototype with 5.76 m2 of floor area (2.4 m width × 2.4 m length 230 

× 2.4 m height) with no internal partitions and 1 m² (1 m width × 1 m height) of glazing 231 

and 1.6 m2 (0.8 m width × 2 m height) of door located on the north wall, has been 232 

selected which is very similar to transportable or relocatable buildings (Figure 3). 233 

Additionally, it is supposed that all exterior walls and roof are exposed to the outdoor 234 

environment and colored in grey to enhance the solar absorptivity, and the exterior floor 235 

is separated from the ground. The building model is considered as a residential living 236 

space. To investigate the effects of PCM on the heating and cooling energy 237 

performances and the thermal comfort, two building prototypes have been considered. 238 

A reference model without PCM inclusion is compared to another one with PCM 239 

incorporated into its envelopes. The PCM plasterboard (Knauf comfortboard) [78] filled 240 

with about 18% of Micronal® PCM microcapsules was installed on the interior surfaces 241 

of the exterior walls and the roof enclosure. The physical properties of the utilized PCM 242 

are listed in Table 1. 243 

 244 

 245 
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Table 3. Door and floor construction 260 
Material d [m]  [W/m·K]  [kg/m3] Cp [J/kg·K] 

Plywood door 0.04 0.12 510 1380 

Plywood floor 0.018 0.12 510 1380 

 261 

 262 

Table 4. Window construction. 263 
Optical data type Spectral Average 

Thickness [m] 0.003 

Solar Transmittance at Normal Incidence 0.837 

Front Side Solar Reflectance at Normal Incidence 0.075 

Back Side Solar Reflectance at Normal Incidence 0.075 

Visible Transmittance at Normal Incidence 0.898 

Front Side Visible Reflectance at Normal Incidence 0.081 

Back Side Visible Reflectance at Normal Incidence 0.081 

Infrared Transmittance at Normal Incidence 0 

Front Side Infrared Hemispherical Emissivity 0.84 

Back Side Infrared Hemispherical Emissivity 0.84 

Thermal conductivity [W/m·K] 0.9 

 264 

 265 

2.5. Air conditioning system 266 

 267 

A packaged terminal heat pump (PTHP) (Figure 4) with an electric supplemental 268 

heating coil was selected to provide air conditioning to the building zone. This type of 269 

air conditioning system is commonly used in relocatable buildings [79]. The PTHP is a 270 

compound component made up of an outdoor air mixer, direct expansion (DX) cooling 271 

coil, DX heating coil, supply air fan, and a supplementary electric heating coil [65]. The 272 

supply fan total efficiency and motor efficiency are 0.7 and 0.9, respectively. 273 

Furthermore, the cooling coil has an Energy Efficiency Ratio (EER) of 2.52 (Wh) and 274 

the heat pump heating coil gross rated coefficient of performance (COP) is 2.75 as 275 

recommended by ASHRAE 90.1 standard [80]. Also, it should be added that the HVAC 276 

system operates 24-hours per day throughout the year. 277 

 278 
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temperate, D: snow, and E: polar. Additionally, the level of precipitation is defined as 305 

W: desert, S: steppe, f: fully humid, s: summer dry, w: winter dry, and m: monsoonal. 306 

Moreover, further details are provided regarding temperature as h: hot arid, k: cold arid, 307 

a: hot summer, b: warm summer, c: cool summer, d: extremely continental, and F: polar 308 

frost.  309 

 310 

The weather data files for building simulations were mostly obtained from the 311 

EnergyPlus Weather (EPW) database [85] which includes weather data provided in 312 

EnergyPlus format from 20 sources [86]. However, in the case of Calama, in situ 313 

measurements were used. Table 5 presents a summary of the studied climates. 314 

 315 

 316 
Table 5. Selected locations and climate characteristics according to Köppen Geiger 317 

classification. 318 

Köppen 
climate 

City 
Latitude 

 
Longitude 

 

Time 
zone* 

(GMT) 

Elevation 
[m] 

Annual 
CDD 

base 10 
ºC 

Annual 
HDD 

base 18 
ºC 

Aw Brasilia 
S 15° 

52' 
W  47° 55' -3.0 1061 4207 8 

Af Kuala Lumpur N  3°  7' E 101° 33' 8.0 22 6262 0 

Af Singapore N  1° 22' E 103° 58' 8.0 16 6374 0 

BSk Albuquerque N 35°  2' 
W 106° 

37' 
-7.0 1619 2157 2303 

BSk Mexico 
N 19° 

25' 
W 99°  4' -6.0 2234 2503 547 

BSh New Delhi 
N 28° 

34' 
E  77° 11' +5.5 216 5363 278 

BWh Abu Dhabi 
N 24° 

25' 
E  54° 39' +4.0 27 6254 24 

BWk Calama 
S 22° 

50' 
W  68° 90' -4.0 2312 2109 1919 

Cfa Brisbane 
S 27° 

22' 
E 153°  6' +10.0 5 3652 329 

Cfa Madrid 
N 40° 

27' 
W   3° 32' +1.0 582 2057 1965 

Cfa Tokyo 
N 36° 

10' 
E 140° 25' +9.0 35 1911 2311 

Cfb Berlin N 52° E  13° 23' +1.0 49 1125 3156 
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28' 

Cfb Johannesburg S 26°  7' E  28° 13' +2.0 1700 2216 1052 

Csb Antofagasta 
S 23° 

25' 
W  70° 25' -4.0 120 2557 598 

Csb Auckland S 37°  1' E 174° 48' +12.0 6 1909 1163 

Csb Bogota N  4° 41' W  74°  7' -5.0 2548 1165 1755 

Csb Concepción 
S 36° 

46' 
W  73°  3' -4.0 16 1207 1843 

Csb Quito S  0°  9' W  78° 28' -5.0 2812 1366 1554 

Csb San Francisco 
N 37° 

37' 

W 122° 

24' 
-8.0 2 1681 1504 

Csb 
Santiago de 

Chile 

S 33° 

22' 
W  70° 46' -4.0 476 1784 1570 

Dfa Chicago 
N 41° 

46' 
W  87° 45' -6.0 186 1964 3106 

Dfb Montreal 
N 45° 

28' 
W  73° 45' -5.0 36 1185 4493 

Dfb Moscow 
N 55° 

45' 
E  37° 37' +3.0 156 862 4655 

Dfb Stockholm 
N 59° 

39' 
E  17° 57' +1.0 61 683 4239 

Dwa Beijing 
N 39° 

47' 
E 116° 28' +8.0 32 2321 2750 

NB: *Hours from universal coordinated time. *CDD, cooling degree days; HDD, heating degree days. 319 
 320 

 321 
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The highest energy savings achieved due to the use of PCM are found in Calama 340 

(BWk), Johannesburg (Cfb), Santiago de Chile (Csb) and Mexico DF (BSk) presenting 341 

271, 169, 155 and 150 kWh of reduction per year, respectively. These cities achieve this 342 

high reduction because the PCM is able to reduce significantly the HVAC consumption 343 

during both heating and cooling periods, as shown in Figure 7.  344 

 345 

On the other hand, there are cities that provide significant benefits due to the use of 346 

PCM but limited to one period, either heating or cooling seasons. The melting 347 

temperature of the used PCM (25ºC) is appropriate to reduce both heating and cooling 348 

loads, however, it could be the case that in certain locations, it would be more beneficial 349 

to select the PCM melting temperature to reduce either heating and cooling loads 350 

instead of trying to reduce both. Within this context, Bogota and Quito (both Csb) 351 

presented high potential for energy consumption reduction for heating, being able to 352 

achieve a yearly reduction of 85 and 57 kWh, respectively, as they can only reduce 25 353 

and 13 kWh the electrical consumption during the cooling season. This indicates that 354 

the melting temperature of the PCM might have not been well selected in those cities, 355 

since a PCM with lower melting temperature would even maximize the benefits during 356 

heating season. On the other hand, Brasilia (Aw) and Brisbane (Cfa) could reduce 357 

significantly the cooling loads, achieving energy reductions of 114 and 85 kWh, while 358 

the load reduction during heating period is limited to values around 40 kWh, which 359 

indicates that a PCM with higher melting point would maximize the benefits during the 360 

cooling period, and might increase the economic benefits. Moreover, there are some 361 

cases, especially in arid areas, in which the heating demand is very limited, and hence 362 

there is a weak potential for its reduction, such as, Albuquerque (BsK) and Abu Dhabi 363 

(BWh). In these cases, as well as for Brasilia and Brisbane, a PCM with higher melting 364 

temperature would lead to higher benefits.  365 

 366 
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reduction is very limited in tropical and snow main climate areas. The PCM 440 

implemented in the gypsum board used in the envelopes presents a melting point of 441 

25ºC, which allows achieving important reductions of energy consumption for heating 442 

and cooling in several weather conditions. Furthermore, it was noticed that the PCM 443 

used in certain cities should have been selected with a lower or higher melting point and 444 

hence focus its performance of heating or cooling reduction, respectively. Within this 445 

context the authors identify as a future work, the optimization of the PCM melting 446 

temperature depending on the weather conditions, which could lead to maximize the  447 

benefits, as well as opening the possibility of having benefits in areas in which they 448 

were not achieved with the studied PCM (25 ºC) such as tropical and snow main climate 449 

areas. 450 

 451 

The impact of using PCM in the building envelopes is maximized when applied to 452 

extremely lightweight buildings, as the one used in this research. Application of the 453 

gypsum board with PCM in other buildings with more thermal mass would provide less 454 

energy savings than the highlighted in the analyzed relocatable lightweight building. 455 

 456 

Throughout the use of computational software now it is possible to evaluate several 457 

weather conditions at the same time. This means that now it is possible to assess several 458 

materials using their thermal properties and have a better idea about the thermal 459 

material performance. The previous evaluation of building materials with thermal 460 

properties, such as PCM could provide substantial evidence about the economic and 461 

environmental improvements, in terms to persuade potential implementations that are 462 

currently discarded because of their high cost of production. 463 

 464 
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