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Abstract 9 

 10 

The present paper provides on one hand, a literature review of the different studies available in 11 

the scientific literature where the concept of multiple phase change materials (PCM) 12 

configuration, also named cascaded or multi-stage, has been presented and on the other hand, an 13 

experimental evaluation of the advantages of using the multiple PCM configuration instead of 14 

the single PCM configuration in thermal energy storage (TES) systems at pilot plant to fill the 15 

gap of experimental and high scales studies on this concept in the literature. Two PCM with 16 

melting temperatures in a temperature range of 150-200 ºC were selected due to their high value 17 

of heat of fusion and compared: d-mannitol and hydroquinone. Three configurations were 18 

evaluated: (1) single PCM with hydroquinone, (2) single PCM with d-mannitol and (3) multiple 19 

PCM with hydroquinone and d-mannitol. A discussion regarding the results on the specific 20 

energy stored and effectiveness as well as the evolution of the PCM and heat transfer fluid 21 

(HTF) through the time and at different and representative locations of the facility is presented. 22 

Results showed that the multiple PCMs configuration introduced an effectiveness enhancement 23 

of 19.36 % if compared with single PCM configuration as well as a higher uniformity on the 24 

HTF temperature difference between the inlet and outlet. 25 
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 30 

Nomenclature  31 

A Heat exchanger surface, m2 

D Diameter, m 

DMA D-mannitol 

f Friction factor, - 



 2

h Enthalpy, J/kg·K 

H Melting enthalpy, J/kg 

HTF Heat transfer fluid 

HYD Hydroquinone  

k Thermal conductivity, W/m·K 

L Average pipe length, m 

Nu Nusselt dimensionless number, - 

PCM Phase change material 

Pr Prandtl dimensionless number, - 

Qሶ  Heat transfer rate, W 

R Thermal resistance, K/W 

Re Reynolds dimensionless number, - 

S Shape factor, m 

T Temperature, ºC 

U Global heat transfer coefficient, W/m2·K 

W Distance between pipes, m 

%wt Weight percent 

 32 

Greek symbols 33 

∆݄ Variation of enthalpy, J/kg·K 

∆ܶ Variation of temperature, ºC 

α Convective heat transfer coefficient, W/m2·K 

 Effectiveness ߝ

μ Fluid viscosity, Pa·s  

 34 

Subscripts 35 

b Bulk 

eff Effective 

ext External 

f Final 

i Initial 

in Inlet 

int Internal 

LMTD Logarithmic mean temperature difference 

m Melting 

mid Middle  
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Fig. 1. Suitable multiple PCMs configuration for “n” PCMs considering their melting temperature (Tm) and 60 

the melting enthalpy (H).  61 

 62 

The following advantages of the use of multiple PCMs configuration have been numerically and 63 

experimentally proven in previous studies: 64 

 65 

- Increase in the heat transfer rate during charging and discharging, especially when 66 

change of phase is occurring [3-6]. The heat transfer rate in a TES system depends on 67 

the temperature difference between the HTF and the PCM. If these PCMs are arranged 68 

in a decreasing order of their melting points, then nearly a constant temperature 69 

difference can be maintained along the flow direction during all the process and 70 

therefore a more uniform heat transfer rate. On the other hand, if a single PCM 71 

configuration is used, the temperature difference between the PCM and the HTF 72 

decreases along the flow direction and therefore a heat transfer rate with a decreasing 73 

tendency is obtained. Farid and Kanzawa quantified numerically [7] and experimentally 74 

[8] an increase up to 10% and 15 %, respectively in the latent heat period. Moreover, 75 

this increase of the heat rate can lead to a volume and mass decrease of the storage 76 

system and consequently the economical investment [9]. 77 

- Uniform and lower outlet HTF temperature for a longer period during the charging and 78 

discharging process [7,10,11]. Solar based thermal power plants [3] and solar heat 79 

receivers [9] can benefit from this nearly isothermal working fluid conditions.  80 

- Faster charging and discharging processes [4]. Chiu and Martin [12] accounted for 20% 81 

and 40% of reduction in the discharging and charging time, respectively and Seeniraj 82 

and Lakshmi Narasimhan [3] found that the amount of melted fraction in the same 83 

period of time increased in multiple PCM configurations. 84 

- Increase of exergy efficiency by reducing the exergy losses of the system [4,5,13]. 85 

 86 

However, most of these advantages are only proven by numerical studies. Moreover, in the few 87 

experimental cases available in the literature [4,7,10] less advantages than expected are found 88 

due to the limitation of the modelling tools and the way that PCMs are considered (as a pure 89 

material, implying a single melting temperature instead a melting temperature range). 90 

 91 

In the present paper, the experimental performance at pilot plant scale of a multiple PCMs 92 

system using hydroquinone and d-mannitol is shown, representing the highest experimental 93 

scale studied until this moment. Moreover, this work scale allows a detailed study of the 94 

temperatures in several and representative locations of the facility. Melting temperatures of the 95 

studied PCMs make them suitable in such diverse applications as solar refrigeration systems 96 
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coupled with concentrating solar collectors [14] and industrial waste heat recovery systems [15]. 97 

The advantages of using multiple PCMs configuration systems versus using single PCM 98 

configuration storage system are expected to be shown in this study when regarding the 99 

following parameters over the time: PCM and HTF temperatures profiles of the TES tank, 100 

energy stored per unit of mass and effectiveness. 101 

 102 

2. Materials and methodology  103 

 104 

2.1 Phase change materials 105 

 106 

The PCMs studied were hydroquinone, commercialized by QUIMIVITA with a purity of 95 107 

%wt, and d-mannitol, commercialized by QUIMIVITA with a purity of 96 %wt and 108 

characterized as ߜ-phase. In this study the melting temperature of each material and the melting 109 

enthalpy were obtained with differential scanning calorimeter (DSC) analysis. The equipment 110 

used to obtain these data was a DSC822e commercialized by Mettler Toledo. The DSC results 111 

analysis for hydroquinone and d-mannitol are shown in Table 1. 112 

 113 

Table 1. Materials selected as PCMs: melting temperature range and melting enthalpy obtained with DSC 114 

analysis.   115 

Material Formula 
Melting temperature range 

[ºC] 
Melting enthalpy  

[kJ/kg] 

hydroquinone C6H6O2 165-172 235.2 

d-mannitol (ߜ-phase) C6H14O6 155-162 260.8 

 116 

Besides, the authors performed previous studies concerning the characterization of these 117 

materials and their performance at pilot plant scale [14,16-19]. The correct selection of 118 

materials to ensure the appropriate operation of the multiple PCM system is essential. For that, 119 

it is important to perform accurate laboratory tests regarding the enthalpy and melting and 120 

solidification temperature ranges.  121 

 122 

2.2 Description of the pilot plant 123 

 124 

The experimentation was performed at the pilot plant designed and built at the University of 125 

Lleida which allows experimentation with different storage systems and materials. This facility 126 

is mainly integrated by an electrical boiler of 24 kWe to heat the HTF up, acting as energy 127 

source during the charging process, and an air heat exchanger of 20 kWth to cool the HTF down 128 
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The following assumptions were introduced to simplify the mathematical model: 244 

- The model is simplified to one tube and the PCM influenced by it.  245 

- Thermopyhisical properties remain constant during the melting process. 246 

- For the HTF side: the flow is hydrodinamically developed. During the melting process 247 

the fluid is considered to flow under steady state 248 

- For the pipe side: the temperature of the pipe is considered constant along the pipe and 249 

equal to the average value between the inlet and the outlet HTF temperature.  250 

- For the PCM side: adiabatic boundary conditions. Reference temperature at TPCM8. 251 

During the melting process, the temperature was considered as the average value of the 252 

temperature melting range and the natural convection was considered as well. 253 

 254 

kୣ୤୤ ൌ
1

R୔େ୑ ൉ S
 Eq. 3

 255 

Where R୔େ୑ is the thermal resistance of the PCM and S is the shape factor of the present 256 

model. Solving Eq. 4 for the thermal resistance of the PCM leads to: 257 

 258 

R୔େ୑ ൌ R୲ െ Rୌ୘୊ െ R୮ Eq. 4

 259 

Where R୲, Rୌ୘୊ and R୮ are the thermal resistances of the system, HTF and pipe respectively.  260 

 261 

The thermal resistance of the system (R୲) is calculated according to Eq. 5: 262 

 263 

R୲ ൌ
1

U ൉ A
 

 

Eq. 5

Assuming the storage tank as a heat exchanger, then the value of U ൉ A can be calculated by 264 

isolating it from the equation used to obtain the power transferred from the HTF to the PCM 265 

(Eq. 6). It shows the power absorbed by the PCM (Qሶ ୔େ୑ሻ, which is calculated with an energy 266 

balance between the above-mentioned PCM absorbed power, the power released by the HTF, 267 

the losses to the environment and the accumulated energy in both the HTF and metal parts of 268 

the tank. 269 

 270 

Qሶ ୔େ୑ ൌ U ൉ A ൉ ∆T୐୑୘ୈ Eq. 6

 271 

On the other hand, the logarithmic mean temperature difference (∆T୐୑୘ୈ) is calculated as 272 

shown in Eq. 7: 273 
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 274 

∆T୐୑୘ୈ ൌ
ሺTୌ୘୊୧୬ െ T୔େ୑.୫ሻ െ ሺTୌ୘୊୭୳୲ െ T୔େ୑.୫ሻ

ln ቀ
Tୌ୘୊୧୬ െ T୔େ୑.୫
Tୌ୘୊୭୳୲ െ T୔େ୑.୫

ቁ
 Eq. 7

 275 

The thermal resistance of the pipe (R୮) is calculated according to Eq. 8: 276 

 277 

R୮ ൌ
1

2 ൉π ൉ L ൉ k୮
൉ ln ൬

Dୣ୶୲
D୧୬୲

൰ Eq. 8

 278 

The thermal resistance of the HTF (Rୌ୘୊) is calculated taking into account the forced 279 

convection in a pipe with internal flow according to Eq. 9: 280 

 281 

Rୌ୘୊ ൌ
1

αୌ୘୊ ൉ ௜௡௧ܣ
ൌ

1
Nu ൉ kୌ୘୊
D୧୬୲

൉π ൉ D୧୬୲ ൉ ܮ
 Eq. 9

 282 

Where the thermal conductivity of the HTF (kୌ୘୊) was obtained with the data provided by the 283 

manufacturer and the Nusselt number (Nu) is obtained with the correlation provided by Sieder 284 

and Tate [23] an presented in Eq. 10 in case the Reynolds number showed laminar flow and 285 

with the Gnielinski correlation [24] and presented in Eq. 11 in case the Reynolds number 286 

showed turbulent flow. 287 

 288 

Nuୖୣஸଶଷ଴଴ ൌ 1.86 ൉ Reଵ/ଷ ൉ Prଵ/ଷ ൉ ቆ
μୠ

μ୵
ቇ
଴.ଵସ

൉ ൬
D୧୬୲
L
൰
ଵ/ଷ

 Eq. 10

 289 

	Nuୖୣஹଶଷ଴଴ ൌ
ሺRe െ 1000ሻ ൉ Pr ൉ ቀ

f
8ቁ

1 ൅ 12.7 ൉ ሺPrଶ ଷ⁄ െ 1ሻ ൉ ቀ
f
8ቁ

ଵ/ଶ  Eq. 11

 290 

For a fully developed turbulent flow, the correlation which approximates the friction factor (f) 291 

was developed by Petukhov [25] and is of the form that Eq. 12 shows: 292 

 293 

f ൌ
1

ሺ0.79 ൉ ln	ሺReሻ െ 1.64ሻଶ	
 Eq. 12

 294 

On the other hand, the shape factor (S) is calculated as Eq. 13 shows and taking into account the 295 

parameters described in Fig. 9 and Table 4. 296 
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of the multiple PCMs configuration, HTF and PCM temperatures profiles in an exhaustive way 416 

are studied. Results showed that the multiple PCMs configuration introduces a higher 417 

uniformity on the HTF temperature difference between the inlet and outlet and, as a 418 

consequence, higher heat transfer rates during a higher period can be achieved. Moreover, in 419 

terms of effectiveness, an average enhancement of 19.36 % in comparison with the single PCM 420 

configuration can also be obtained. 421 
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