*Manuscript
Click here to view linked References

1 Variable rate sprayer. Part 2 — Vineyard prototype: Design,

2 implementation, and validation

3 E.Gil® J. Llorens? J. Llop 2, X. Fabregas®, A. Escold”, J.R. Rosell-Pold’
4  “Department of Agri-Food Engineering and Biotechnology
5 Universitat Politécnica de Catalunya
6 Parc Mediterrani de la Tecnologia - Campus del Baix Llobrega
7 Esteve Terradas, 8 08860 Castelldefels (Barcelona) Spain
g ° Department of Agricultural and Forest Engineering
9 Universitat de Lleida
10 Av. Rovira Roure, 191, 25198 Lleida, Spain

11

Y Corresponding author: Tel.: +34 935 521 099; F&¢ 935 521 121;
e-mail: Emilio.Gil@upc.edu

Parc Mediterrani de la Tecnologia

Campus del Baix Llobregat UPC

Edifici ESAB — Esteve Terradas, 8

08860, Castelldefels (Barcelona), Spain



http://ees.elsevier.com/compag/viewRCResults.aspx?pdf=1&docID=2953&rev=2&fileID=129331&msid={CCCB12EB-AD44-4AFF-A4C6-CCF9877FB4A0}

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33
34
35
36
37

Abstract

The structural characteristics of the canopy are a keydasyasion for
improving the efficiency of the spray application process & trops. However,
obtaining accurate data in an easy, practical, andegffigvay is an important problem
to be solved. This paper describes the technical charéicenosa sprayer prototype
developed for vineyards, following the principles and previous |ayrégests
described in the complementary pafariable rate sprayer. Part 1 - Orchard
prototype: design, implementation and validation. This prototype can modify the
sprayed volume application rate according to the target gephyetrsing an algorithm
based on the canopy volume inspired by the tree row volume (FRYI. Variations
in canopy width along the row crop are electronically measused) several ultrasonic
sensors placed on the sprayer and used to modify the enuttechfe from the nozzles
in real time; the objective during this process is to naairnthe sprayed volume per unit
canopy volume (L i). Field trials carried out at different crop stages forlvteand
Cabernet Sauvignon vine¥itis vinifera) indicated a good relationship between the
applied volume and canopy characteristics. The potentiatigessavings were
estimated to be 21.9% relative to the costs of a convehappécation. This
conclusion is in accordance with the results of similseaech on automated spraying

systems.
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Nomenclature

pmi n
Gi
On

r

S
\Y

Vi n
Vout

Canopy height at sectpfm)

Canopy volume to spray per unit time at sep(or® min™)
Canopy width (semi-width) for sectpfm)

Sprayer output, amount of product per unit row length of application*{jL
Measured distance from sensor to the external layout oatiegpg (m)
Maximum measured distance by ultrasonic sensor (m)
Volumetric diameter percentile 1Qrf)

Volumetric diameter percentile 90rf)

Distance between sensor and central axis of sprayer (m)
Sampling frequency of the system (Hz)

Application coefficient - actual (L 1)

Application coefficient - objective (L i)

Numeric median diametenrf)

Pressure on sectp(bar)

Maximum working pressure of the system (bar)
Minimum working pressure of the system (bar)

Flow rate at section(L min™)

Individual nozzle flow rate (L mif)

Row spacing (m)

Canopy slice length at secfaim)

Forward speed (km™

Electrical output signal emitted by ultrasonic sensor (V)
Electrical output signal sent to electromagnetic valve (V)

VMD Volume median diametepih)

1 INTRODUCTION

In the last few years, improvement of the pesticide agitic process has been

established as a major objective of the official reguiabodies of the European

countries. The European Union legislation for the sustainablefysesticides was

implemented with the publication of Directive 128/2009/CE (fpean Parliament,

2009), which established the reduction of risk during the pdstagplication process

as the main objective.

During the pesticide application process, risk as a functigesticide dose and

harm to sensitive non-target areas are both related totdil@mount of plant protection

products (PPP) and the spraying efficiency during the distribptioress over the

entire canopy. However, for orchard and vineyard applicationsljffieeent methods
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commonly used to determine the most suitable amount of RiPEha corresponding
application volume rate are difficult to understand in mosésaA direct consequence
of this complexity is that different methods have been proposeddastablishment of
label dose expression; these different methods make various ¢taithe improved
efficiency of pesticide use (Koddt al., 2001; Walklateet al., 2003; Walklatest al.,

2006; Koch, 2007; Walklatet al., 2011). In all cases, the proposed alternative for dose
expression has been linked to one or several canopy chasticsesiith great

differences in the measurement difficulty. Among the alblarop parameters, the
canopy volume is one of the most commonly used for dose expressens¢Bsl.,

1971; Byers, 1987; Furness and Magarey, 2000; Bjugstad and Steriz8@2d,
Monterminiet al., 2007; Viret and Hohn, 2008). However, in most cases, establishing
method for canopy measurements has been the most difficutt a$p@proved
methodologies for PPP application. Once the canopy characthstie been

measured and introduced in the dose adjustment process,utiésradiomogeneous
and uniform dose distribution per canopy unit.

Advances in electronics and in information and communicatidmt#ogies
have permitted new developments in specialty crop productiamdrthe world (Leet
al., 2010), with a wide range of purposes and applications. In theipartcase of PPP
application, ultrasonic sensors began to be used in crop productioan 1980s
(McConnellet al., 1983). Gilest al. (1988 and 1989a) used commercial ultrasonic
sensors to estimate the tree canopy volume in apple and greheinds. This
information was used to adapt the application volume ratestoahopy characteristics.
Through the use of this method, savings ranged from 28% to 52é&. t8en, the use
of electronic devices for canopy characterisation has iredeéaghe last few decades.

Different authors have used sensors for canopy charactemnisdititrus trees (Tumbo
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et al., 2001; Whitneyet al., 2002; Zaman and Salyani, 2004), fruit trees (Baktai.,
2008; Escolat al., 2011; Hocevaet al., 2011), and vineyards (Landers, 2008). In all of
these cases, a high degree of concurrence between the suathaaitomated
measurements was reported. The potential savings in pestsadéetermined during

the tests are of interest.

The use of electronic devices for canopy characterisatiorhanteed to clarify
the dose expression concept have given rise to the concepivafidigle application
method (Zhengt al., 2005). Several groups have developed prototypes to adapt the
application volume rate to the variations in canopy charatitsrissing ultrasonic and
LIDAR sensors (Balsast al., 2008; Browret al., 2008; Doruchowsket al., 2009;
Escola, 2010). Relevant benefits in terms of dose reductioncdniftol, and uniform
deposition were achieved by all of the proposed methods.

The objective of this research is to develop a prototiyaedan apply a variable
amount of liquid according to the canopy variability along the ooepfor PPP
applications in vineyards. This paper has two parts: a}aleld description of the
electronic system for canopy measurements and the calcubétioa adapted flow rate;
and b) an evaluation of the benefits one of the variable apiplictmethod over the

conventional method.

2 MATERIAL AND METHODS
2.1. Description of the principle

According to the recently developed Pesticide AdjustmetitddCrop
Environment (PACE) tool (Cross and Walklate, 2008) one of tlegean methods of
label dose rate expression is based on the tree row volume €DRbept, which is

defined as the amount of product applied per unit ground areaieeratree row
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volume per unit ground area. The typical unit used in this meshdce per hectare of
ground area for a TRV of 10,000 ma’. The TRV concept was also considered as an
alternative in the conclusions of the Dose Expression Grolngiafirst meeting
(Wohlhauser, 2009), where the major agrochemical manufacturetg@be proposed
to harmonise data submissions in support of the leaf wall BYéA) dose rate for
evaluating the efficacy of pesticide registration. TR/ expression method has been
previously adopted for pesticide registration in some Europaantrees, and some
website tools have been developed to calculate the totalrdrof pesticide per unit

ground area based on this principleviv.agrometeo.ch

However, different dose expression methods are used in diffetemember
nations and even within the same country. Assumingtatm™ or kg m?), as the
sprayer output, expresses the amount of product per unit row lerayplafation
(Walklate and Cross, 2011), the influence of every single caramayneter in the dose
expression is clear (Table 1). The establishment oa#iaekhip among the different
options is also of interest. These relations are linkedetaahopy structure and
principal parameters, and determining them seems to be@okd to achieving an
accurate spray application process.

According to Table 1, among the other dose expression methoadyaineuse
in Europe, the TRV concept requires a standard measurementoainiygy width
(Walklateet al., 2011). Some attempts to improve the electronic measureofents
canopy parameters, such as canopy width, to adapt the aypgliede to the variable
characteristics of the canopy have already been developkoh€¢Beset al., 2006). The
prototype developed in this research is based on the electnetinod for canopy width

measurements; the variability along the crop line is coreil@nd the amount of spray



149 liquid is modified accordingly in order to achieve a proportiona\splistribution

150 based on canopy geometry.

151 The control algorithm (explained in Part 1 of this reseachpsed on the

152 measurement of canopy widti{) at sectior), and its variations along the crop line.
153 Once that parameter is electronically determined, infoamabout the tractor forward
154 speed along the row)(and canopy heighCy;) of every single sectionis added; the
155 algorithm was developed in order to calculate the canopy wtarbe sprayed per unit
156 time (Cy), which is expressed in cubic metres per minute (see raatere). Equation

157 [1] indicates the relationship applied for this process:

158 Cyj = “22X Cyj X Cyy X v [1]

159 whereCy; is the unit canopy volume to be sprayed per unit tinfengim™); Cw;, the
160 canopy width at a certain position (n®;, the canopy height (m);is the intended
161 section; and, the tractor forward speed (krihh

162 The main objective of the algorithm was to modify the exditiozzle flow rate
163 based on the measurements of canopy volume along the cropdiite gariations in
164 order to maintain a constant (as named in part 1) objectivecajph coefficientig). In
165 this research, the objective was to maintain a consédunt ¥or the application

166  coefficient (o) of 0.095 L m¥, which was selected according to previous research
167 (Byersetal., 1971; Gil, 2001). Equation [2] indicates the established oal&ietween
168 parameters:

169 q; = Cy; X i, [2]

170 wheregq; is the flow rate (L miff); Cy;, the canopy volume to be sprayed per unit time
171  (m*min™) at sectiorj; andi,, the objective application coefficient (L

172 The prototype was developed to be capable of a variable applicate

173 according to the canopy variations along the crop line by proper weidfi of the



174 nozzle flow rate. This fundamental concept is opposite tontitly used in the

175 conventional spray application process, where the nozzle flowsrataintained

176 constant along the track independent of the canopy characgeridie conventional
177 spray application process produces an uneven liquid distributioratiorewith canopy
178 variations to result in different values of the actual apptioacoefficient {;) and to
179 generally create an overdose where the canopy volume is low feidrazes when it
180 is high.

181

182 2.2. Sprayer design

183 A conventional air-blast orchard sprayer (Hardi LE-600 BK/2 aittentrifugal
184 fan having a 400-mm diameter) was used as the prototyperfableaapplication. The
185 sprayer was equipped with a 600-L tank capacity and six indivahdéhhdjustable

186 outlets (three on each side of the machine); up to five roepléd be arranged on each
187 outlet. A stainless steel mast was fitted in the fpart of the sprayer as close as

188 possible to the centre axis of the machine (Figure 1).eThlteasonic sensors were
189 fitted to the mast, and the distance between them ¢®uédijusted according to the
190 canopy dimensions. A GPS antenna was also installed on toproasieso that a GPS
191 receiver could be used to evaluate the uniformity of thedoi speed along the track
192 and to record geographical coordinates. The sensors continuoursigtedtthe canopy
193 width from only the left side of the sprayer. All the sensggse connected to a

194 controller placed in a waterproof box located on the rear siglkt of the sprayer. The
195 controller was a Compact Field Point (National Instrumentsti\uEX, USA)

196 equipped with analogue and digital input/output modules (see partrigged

197 computer and wireless router were also connected to remodeligyamand control the

198 system. A box containing three sets of electrovalves (proportémuabn-off), an
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electronic flow meter, and a general pressure sensor wéadddon top of the sprayer

at the rear. Individual pressure sensors were also plaexeéry single manifold.

FIGURE 1

The operational parameters for each intended spray applicatierfivee
selected and transmitted wirelessly to the system thraugptop placed in the tractor
cab (Figure 2). Specific software programmed in Labview@tigwal Instruments,
Austin, TX, USA) was developed to control and program theeesjistem. The
technical specifications of the components (Table 2) welexted according to the
particular working conditions in the field (e.g. working tempamtvibration,
protection against liquids and dust) and their capacity far aaquisition and

management. Figure 3 shows the connection scheme for athtifgonents.

FIGURE 2 AND FIGURE 3

2.3. Function of the prototype

The principle of functioning is as follows. The entire candpycsure was
divided into three levels: low, medium, and high. For each iddalilevel (Figure 4),
variations in the canopy width were measured and recordedafiad¢ions in canopy
width for half of the row were measured by every singlesidinic sensor at different
heights following Equation [3]:

Cwj =T/p—di—e [3]
whereCy is the canopy width (m) for half of the row at heiglrt the distance between

crop rows (m)d;, the distance measured from the sensor to the external laytbet of



224  canopy (m) at height ande, the distance between the sensor and central axis of the
225 sprayer (m), assuming an equidistant displacement of theesgraetyveen two adjacent

226 crop lines.

227

228 FIGURE 4

229

230 According to the principle for functioning of the ultrasonic sesisthe electrical

231 output signal for each single measurement was transforneedigtance based on an
232 calibration curve (see Part 1) obtained experimentally uatleratory conditions.

233 Equation [4] presents that relation:

234 dj = —14,215 X V;, + 181,21 [4]

235 whered; is the measured distance from the sensor to the extayoaitlof the canopy
236 (m) at heighf andVi,, the electrical output signal (V) emitted by the ultras@ansor.
237 The sampling frequency of the senddm@as adapted to 12.5 Hz (80 ms between
238 two consecutive measurements) in order to obtain an averagéeakt 10

239 measurements per metre of travel distance for proper adjtstinthe sprayer (Balsari
240 etal., 2002). This sampling frequency resulted in a canopy volumelstigéh § ) of
241 0.1 m for an average forward speed of 1.25tnsaximum: 1.38 m§ minimum: 1.11
242 m s% CV: 4.06%) according to the GPS data. This value wasttbet to estimate the
243 canopy volume to be sprayed for each single measurement.drosiegle value, the
244 system then calculated the canopy volume at different hei@lis Consequently, the
245 independent flow rate to be delivered individually by each oftttee manifolds is

246  shown in Equation [5]:

247 qj = 60 X Cyj X5 Cy X Spj X f X i 5]

10



248  whereq is the individual flow rate (L mif) at manifoldj (two nozzles)Cy;, the

249  canopy width (m) for half of the row at heighCy, the total canopy height (m;, the
250 canopy length according to the sampling resolution (m) corresponding sampling
251 frequencyf, the sampling frequency (Hz); angithe objective application coefficient
252 (0.095 L m®). The principle of the variable rate application prototyjas to adapt the
253 emitted flow rate for every manifold to the variationsanopy geometry along the vine
254 row. To assess the capabilities of the prototype, alldh@bapplication coefficients
255 (iy) were compared with the objective coefficiag} for the entire range of canopy
256  width measurements.

257 Variations in the flow rate for each manifold were contblyy three

258 electromagnetic high frequency solenoid variable rate valNgs.valve modified the
259 flow rate in a continuous manner according to an external corgra!gj0—10 V)

260 provided by the controller depending on the canopy volume (all voltgaesaring in
261 this paper are DC quantities). The chosen valve was a ngrohaded Posiflow ¥4

262 (ASCO/JOUCOMATIC S.A., Rueil-Malmaison, France) placedtop of the sprayer at

263 the rear (Figure 5).

264

265 FIGURE 5

266

267 The solenoid of the valve was supplied with a 300 Hz Puls¢hvWMddulate

268 (PWM) 24-V signal with a duty cycle proportionally modified aating to the external
269 control signal. This operation was performed by the drivenef/alve to result in a
270 continuous variation of the position of an internal plunger causiagiation in the

271 flow rate. The intended flow rate, calculated according totemugb], was then

272 converted into an electrical control signal to be delide¢oseach variable rate

11



273 electrovalve. The conversion of the desired flow ratetimcelectrical control signal
274 was performed according to the calibration curve (Figura/iich is represented by
275 equation [6], experimentally obtained for the solenoid valvesgaet 1):

276 Vour = 0.2354 x e>43044; [6]

277 whereVy is the electrical control signal sent to the electrav\) andg; is the

278 desired flow rate to be delivered at manifp(dl min™).

279

280 FIGURE 6

281

282 Because of the technical characteristics of the elecgoet& valves and

283 ultrasonic sensors and their locations relative to the cefthe sprayer (see Figure 1),
284 the maximum ranging distance of the sensayg) was limited to 0.7 m for a row

285 spacing () of 3.0 m. The system could not estimate the distanceafaes higher than
286 0.7 m (corresponding to thin row semi-widths) because this excéeeletkasurement
287 range of the ultrasonic sensors. In these situations, theostves turned off

288 automatically to interrupt the spray emission. All measdisthnces below 0.7 m were
289 then transformed into the required flow ratg following equation [5], and the

290 corresponding working pressure was then calculated. Because lofdraulic

291 requirements of the solenoid valves, the differential pressnax/Ap = 8.0 bar) had to
292 be limited so that the system could be turned off completbgn no vegetation was
293 detected. This meant that the maximum working presgusg (vas initially set at 8.0
294  bar. On the other hand, the lower limit working presspig)(on the system was

295 established at 3.0 bar in order to guarantee that theasogeherated an adequate spray
296 pattern and droplet size spectrum. As a consequence of weebmitations and with

297 the aim of maintaining the working pressure within the masalsle range for optimal

12
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actuation of the solenoid valves, three pressure intemeaks established in order to
adjust the final emitted flow rate to the crop width: lowean 3.0 barg,n), between
3.0 and 11.0 bar, and higher than 11.0 pas). The system was implemented with
three on-off electrovalves to allow the complete closutb@tystem for locations
without a canopy. Canopy width measurements obtained with tleeuhrasonic
sensors and the working pressure detected by the three presmoessn the system
were automatically recorded and related in pairs. In dodguantify the ability of the
system to modify the applied volume according to the canopy deowaiations, the
measured canopy volumes and corresponding working pressure selettted by
prototype were compared separately for each individual ultrasensgor in every test.

Based on this scenario, the theoretical and practicagsamigactuation for the
two brown hollow cone Albuz ATR nozzles on each manifold are shiowigure 7.
For the pressure range between 3.0 and 11.0 bar, the combofati@nozzle flow rate
for the selected nozzles, technical characteristicseofithasonic sensors, and objective
application coefficientig) resulted in a crop width rang€;) of 25.0-40.0 cm, which
is equivalent to a canopy volum@) of 0.22—0.525 rh Thus, the prototype was
adjusted so that the nozzle flow rate could be automigtizaldified only for a canopy
width (Cwg) of 25.0-40 cm. Crop zones with a measured crop wli}) (ess than 25.0
cm but more than 0 cm (no crop) were sprayed at a constaninergs,) of 3.0 bar;
crop zones with a measured canopy width greater than 40n@&oersprayed at a

constant pressur@qay) of 11.0 bar.

FIGURE 7

2.4. Flowchart and system management process

13
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The system starts to run when the control unit is turned on (Fejued
prompts for the introduction of specific spraying parameteage@lto the crop
characteristics (row distance, objective application cdefit, forward speed, and
maximum crop height). The data acquisition system begins éoveemformation from
the ultrasonic sensor¥if), electronic flow meter, and pressure sensors installdekin
system. All data are then managed and processed in thellewntvhere signals
acquired from each of the ultrasonic sensors are transfdirsethto canopy volume,
then into intended flow rate, and finally into an eliectontrol signal Yo.:) to be sent to

the corresponding solenoid valve.

FIGURE 8

The algorithm flowchart (Figure 9) illustrates the follownhgscription. A
reading of the ultrasonic sensors is performed every Olbmg ¢he row. At an average
forward speed of = 4.5 km-H, the period of the software loop is t = 80 ms. For each
measured data, the system determines the distance fewaribor to the nearest vine
foliage. According to equation [3], this value is transformed anop width Cyy). All
conversions are based on a defined vine row-to-row spacitagnckst) and the
assumption that the sprayer travelled along the centreditveeen rows (Gilest al.,
1989b); potential errors were assumed to derive from the diffiouthaintaining the
tractor in the exact centre of the row (Zanetal., 2007). Once the distanod)(has
been determined by each of the ultrasonic sensors and tleeresatings are converted
into crop width Cy;), the system transforms those values into the requiredréiaper
manifold @;) according to equation [5] in order to apply the required amafuiguid in

proportion to the vine row width variations. As every manifets equipped with two

14
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Albuz ATR brown hollow cone nozzles (Saint-Gobain Ceramiques Adesnc
Desmarquest, Evreux, France), the flow rate for a singldenaas calculated
according to equation [7]:

qn = 0.2262 x p}**®7 [7]
whereqy is the individual flow rate per nozzle (L m’lhandpj is the working pressure
on sectoy (bar).

The previously described pressure range of actuation of the petaiy the
pre-established maximum and minimum values need to helettin the mathematical
expression to convert the intended flow rate into the neededngagokéssure for the
selected nozzles. Equation [8] indicates this relationsidpazas the criterion in the
software for selecting among the different options regardingréssure range for
actuation of the prototype (Figure 7):

pj = 24.336 X q70%° [8]
wherep; is the working pressure on sectdbar) and, is the individual flow rate per

nozzle (L mirt).

FIGURE 9

2.4. Characterisation of droplet size spectrum

In order to evaluate the influence of pressure variations odrtipdet size
spectrum generated by the prototype, a replicate of a siegheet of the sprayer
composed of a manifold, two brown ATR hollow cone nozzles, one proportional
electromagnetic valve, and one on-off valve was assembleigsted at the
Department of Agriculture, forestry and Food (DiSAFA) of Bwiversity of Turin. A

Malvern Spraytec (Malvern Instruments Ltd., Worcestershikg, was used to measure

15
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the droplet size (Dodg# al., 1987). The purpose was to determine the droplet size
variations in the previously defined range of variable workimggure of the prototype.
The entire replicate was installed in the centre of therlahamber and fed with water
at different working pressures (3.0-11.0 bar). The working presgas adjusted in
stepwise fashion (1.0 bar increments) by modification oéteetric signal (V) received
by the electromagnetic valve. The measurements were pedahmee times at every
pressure value with the objective of determining the dropkattsa and its variation for

the entire pressure range.

2.6. Fieldtrials

In order to evaluate the performance and accuracy of tlebaged prototype,
different field trials were arranged @astell del Remei, a 70-ha wine farm, in Lleida,
Spain. A conventional application procedure at a constant applicatiome rate (L ha
) according to the most commonly adopted practices at thewiasntompared with the
variable application volume rate using the prototype. Two vinetiesiéMerlot and
Cabernet Sauvignon) were sprayed in 2009 and 2010 at two diffgosvth stages:
BBCH- 75 and BBCH-85 (Meier, 2001). Both the variable applicgtimtedure and
the conventional procedure were carried out using the saotertead sprayer. The use
of the same sprayer was possible because the device tedieihsn the control system
of the prototype, which allowed the proportional or conventional egapdn procedure
to be selected. Table 3 lists the working parameters fdietlaetests. In addition to the
engineering and electronic parameters explained and discuskedirevious sections,
the spray deposition on the canopy was comprehensively evaluaitegl tther field

trials (Gilet al, 2007; Llorent al., 2010).

16



398 3 RESULTS AND DISCUSSION

399 3.1 Droplet size measurements

400 The results (Table 4) showed a uniform droplet sid) with a narrow

401 variation from 109.7um (3.0 bar) to 88.7Qim (11.0 bar). The droplet sizes for the
402 entire measured range were from fine-F (3.0—4.0 barpfine-VF (4.0-11.0 bar)
403 according to BCPC classification (Doldeal., 1985). Table 4 lists additional

404 information abouDv0.1 andDv0.9 the relative span values to characterise the vamniati
405 in droplet size for the spray spectrum. The obtained resultsaiedihat the working
406 pressure influenced the average droplet size but was nopagamt as initially

407 expected.

408

409 3.2. Accuracy of measurements and system response

410 The theoretical working pressure range on the circuit wablisstad according
411 to the technical characteristics of the ultrasonic sermswselected nozzle type. The
412  prototype was developed with the aim of modifying the working ¢mmdi based on
413 the ultrasonic sensor’'s measurements. The delay betwedatthacquisition from the
414 sensor and the system response (solenoid electrovalve actiuafiell an elapsed
415 time during which the theoretical pressure was different flahihtended (see the
416 explanation about laboratory measurements in part 1). Evereafterimental

417 calibration of the system, which included this calculatadsed time on the software,
418 some deviations were observed and quantified. These differeanebe represented as
419 the comparison between the electrical signal sent to éetr@inagnetic valve and the
420 measured pressure achieved in the system (Figure 10nénadjea small diminution in
421 the obtained pressure was detected during the process. @sinas the high

422 variability of the pressure in the system compared wintbre stable electrical signal

17
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received by the electrovalves, as a consequence of Hikzation time required by the

prototype.

FIGURE 10

3.3. Distribution of canopy measurements obtained with ultrasonic sensors

Figure 11 graphically represents all the measurements sepdeately for each
vine variety, crop stage, and year. In all cases, a gmaditude was observed with the
expected theoretical curve (Figure 7) independent of the seasenmnt (bottom,
middle, or top). Most of the actual working pressure valabgesaed in the system
during the variable application process were close to thedteadrline established in
Figure 7. This effect is shown in Figure 11, where only femisare far away from the
intended curve. It is also interesting to note that tblke ¢d differences in the amount of
‘failed points’ can be attributed to the different placermeaifithe sensors (top, middle,
or bottom). In terms of the measurement distribution, thetsesoiresponding to the
early canopy stage, BBCH 75 in 2009 and 2010, indicated a losumegaent density
in the zones corresponding to high canopy width (over 0.40 m widthjvilest
measurement density occurred at the upper and lower |ldvbks canopy. The
differences in slope in the variable segment of the c{nessure range of 3.0-11.0
bar) indicated that there was less variability in the canagihvin the early stages of
the 2009 and 2010 field trials for the two vine varietiegdRding the relative
distribution of the measurement points in the defined interifable 5), around one-
fourth of the points (23.14%) were classified in the vagahhge of actuation of the

prototype, and around one-half of the measurements (46.0%) \&es#ied with
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narrow canopy geometry (canopy width < 25 cm). The percentaggraf/alues (zones

without vegetation) was very similar among all varietied erop stages.

FIGURE 11

3.4. Application coefficient: actual versus objective

Results were grouped according to the sensor placement (top, raioidlle,
bottom positions); for each group, the values of the actuditappn coefficient ()
were compared with the intended values, i.e. objective apipliccoefficientsif). This
comparison was done not only with the results obtained with thetypetusing
variable rate technology but also with the actual applicatiorficestlt values i)
generated during the conventional application process. Figurets2ipd results for
every variety, crop stage, and year. A detailed amabf those curves indicates that, in
all cases, the resulting application rate for conventionay/sravas close to the
intended value ( horizontal line on the graphics) only fordaa@nopy widths (right-
hand side part of the curves). Meanwhile, the actualagtn coefficienti) delivered
with the prototype acting as a variable rate technology (pauots) was much closer
to the objective, especially in the previously defined cawagih range corresponding
to the variable application. Differences among variedies crop stages were observed
in the zones corresponding to very low and very high canopy wieflksand right-
hand side parts of the curves, respectively). For tbases, a spray overdose was
detected in the narrow canopy areas as a consequence ahtioeigly established
minimum working pressure of the system (3.0 bar). Howekerdifferences were
much smaller than those observed for the conventional applic&tmothe other hand,

the pre-established maximum working pressure on the sypten=(11 bar) resulted,
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in some cases, in a deficit of the spray delivereggh{ihand side part of the curves) with

some values under the horizontal line representing the olgjexqtplication coefficient

(io).

FIGURE 12

3.5. Quantification of potential pesticide saving

A mathematical analysis of these results was used toastihe potential
pesticide savings. These savings were represented byethbetween the curve formed
by the actual application coefficienf)(for conventional application and the curve
plotted with thd, generated with the proportional application method. Because of the
influence of the canopy geometry on the obtained results, twareatitf zones were
independently evaluated (Figure 13): the first correspondeditppgavolumes smaller
than 0.22 n'ﬁ(CV,- < 0.22 i) and the second corresponded to zones with canopy
volumes greater than 0.22 1tCy; > 0.22 ﬁ). These intervals in canopy volunte)
were respectively linked to canopy widtlgg < 0.25 m andCy; > 0.25 m) measured
by ultrasonic sensors. The mathematical expression of thescwias obtained for these
two intervals (Table 6), and the potential savings were attuirby integration of the
area between these two curves using the basic staiskage R® (R Development
Core Team, 2010). The results indicated an average potentiad €& 21.9% (Figure
14). There was a higher saving potential in the narrow canopy a2b@gs< 0.22 m
(upper graphic), which had average savings of 31.4%. This dabpged to 12.5%
average for zones with a canopy width of over 0.22 m (lovagtge on Figure 14).
These results indicated a similar response by the prototypedkahdependent of the

canopy variation; instead, it was influenced by the crop stadesensor position. In
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497 general, these estimated saving values correlated witlesh#s of previous research
498 (Escolaet al., 2007; Llorenst al., 2010), and can be directly related with more precise
499 and safe use of plant protection products in accordance witiethé&uropean

500 Directive for the sustainable use of pesticides (Europediafant, 2009).

501

502 FIGURES 13 AND 14

503

504 4. Conclusions

505 Canopy characteristics have a substantial influence on dppmgition, and

506 some of the main parameters in the crop structure mustdaeto define the optimal
507 application volume rate. The prototype developed in this rdsediows ‘real-time’

508 quantification of the canopy volume being sprayed during the apphagarocess. Our
509 results demonstrated that this prototype can measure the cambpystantly modify
510 the working parameters (pressure and nozzle flow rate) for @ acourate and safe
511 liquid distribution.

512 The sensing and control systems of the developed prototypdieienéfand

513 reliable enough to detect minor variations in canopy strucaimethese measurements
514 can be used to establish a more suitable amount of pesterideding to the target

515 characteristics. Based on the results of this study, a coaBideamount of pesticides
516 can be saved using available new technologies for charactdhsicgnopy structure
517 along the row. This conclusion is in concordance with those obtanaher similar
518 works (Jeoret al., 2011; Zamamt al., 2011).

519 Difficulties encountered during canopy measurements becausshofdal

520 limitations of the devices (principally, the ultrasonic sgrend solenoid valves) can be

521 avoided by replacing them with similar tools with higher accyur®ther external
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545

factors such as the maintenance of the driving path alengrie row (Zamaet al.,
2007) or the influence of external conditions (Jetoal., 2011) can have a greater
influence in some instances than the internal error raguitbm the instrument itself.
Further development of the prototype should consider implementatibra\grecise
guidance tool such as RTK GPS.

The potential savings in the amount of PPP when using théogedeprototype
were demonstrated. However, the system needs to be iegpimwrder to achieve a
more robust and user-friendly sprayer for variable dosage of*i@Fhroblems
encountered during the field trials demonstrated a need folog@wvg an easy-to-use
and low-cost commercial unit that growers can adopt withoutntoy difficulties (Lee

etal., 2010).
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Table 1 Canopy parameters and their relationship with divdirse expression models.

Relationship among diverse dose expression models

GA LWA? TRV
Factors affecting dose expression
r DGA =D/,
C D _ D
h LWA — Ch DTRV = C C

Cw nX Ly
Relation between dose expression modes
GA
LWA Doy = Dywa x Cy

T

D

TRV Dgp = Drry x G X Cw TRV = Lwa

r CW

! itres per hectare of ground area
’Litres per hectare of leaf wall area
3Litres per hectare of ground area for a tree volume of 10,50@im
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