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 30 
Abstract Estimation of grapevine vigour using mobile proximal sensors can provide an 31 

indirect method for determining grape yield and quality. Of the various indexes related 32 

to the characteristics of grapevine foliage, the leaf area index (LAI) is probably the most 33 

widely used in viticulture. To assess the feasibility of using light detection and ranging 34 

(LiDAR) sensors for predicting the LAI, several field trials were performed using a 35 

tractor-mounted LiDAR system. This system measured the crop in a transverse 36 

direction along the rows of vines and geometric and structural parameters were 37 

computed. The parameters evaluated were the height of the vines (H), the cross-38 

sectional area (A), the canopy volume (V) and the tree area index (TAI). This last 39 

parameter was formulated as the ratio of the crop estimated area per unit ground area, 40 
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using a local Poisson distribution to approximate the laser beam transmission 41 

probability within vines. In order to compare the calculated indexes with the actual 42 

values of LAI, the scanned vines were defoliated to obtain LAI values for different row 43 

sections. Linear regression analysis showed a good correlation (R2=0.81) between 44 

canopy volume and the measured values of LAI for 1 m long sections. Nevertheless, the 45 

best estimation of the LAI was given by the TAI (R2=0.92) for the same length, 46 

confirming LiDAR sensors as an interesting option for foliage characterization of 47 

grapevines. However, current limitations exist related to the complexity of data process 48 

and to the need to accumulate a sufficient number of scans to adequately estimate the 49 

LAI. 50 
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 54 

Introduction 55 

The leaf area index (LAI) is defined as the one-side leaf area per unit ground area and is 56 

probably the most widely used index to characterize grapevine vigour. In addition, LAI 57 

is spatially variable and therefore maps of vineyard leaf area could be used for many 58 

purposes such as to optimize site-specific management. In viticulture, there is also a 59 

clear need for developing on-the-go “quality” sensors. This is one of the principal 60 

objectives of precision viticulture. The aim is to be able to estimate parameters to define 61 

grape quality by direct or indirect measurement at pre-harvest or at the time of harvest. 62 

However, direct measurement of grape quality is complicated. Tisseyre et al. (2001) 63 

carried out trials with some degree of success using sensors on grape harvesting 64 

machines to determine average sugar content (refractrometry) and acidity (pH). On the 65 



other hand, there is a well known inter-relationship between production (amount 66 

harvested), vine vigour and quality of the harvested grapes. In fact, a measure of the 67 

grapevine vigour can be obtained (Tregoat et al. 2011) from estimations of the total leaf 68 

area and/or the leaf area of the lateral shoots (Sanchez-de-Miguel 2011), which can 69 

provide another factor to be considered in indirect determinations of harvest quality and 70 

quantity (Hall et al. 2002). 71 

 72 

 It is clear that the provision of an adequate and well-exposed leaf surface affects 73 

the amount of photosynthesis and, therefore, the final synthesis and accumulation of 74 

compounds affecting grape quality (Hidalgo 2006). There are different indexes related 75 

to grapevine vigour. Among these, the total leaf area or LAI can be estimated by direct 76 

measurement which requires the use of destructive leaf sampling methods which are 77 

costly and time-consuming. Faced with this technique, vineyard leaf area can be 78 

indirectly estimated using various types of sensors (Jonckheere et al. 2004) in what has 79 

been called indirect non-contact LAI measurement. Experiments have been carried out 80 

using plant canopy analyzers (e.g. LAI-2000, LI-COR Inc., Lincoln, NE, USA) to 81 

indirectly estimate the LAI in viticulture (Grantz and Williams 1993; Tregoat et al. 82 

2001; Johnson and Pierce 2004). This kind of sensor measures the light extinction 83 

through the foliage. However, a general trend towards underestimating LAI due to 84 

foliage clumping (Jonckheere et al. 2004; Johnson and Pierce 2004), and the 85 

requirement for an above canopy reference reading in order to get accurate LAI 86 

estimations are known weaknesses of the LAI-2000 approach. The use of ceptometer 87 

devices and hemispherical photographs has also been referenced (López-Lozano et al. 88 

2009). 89 

 90 



 Another possibility is the use of ground-based sensors to get information about 91 

the geometry and/or structure of the canopy (López-Lozano et al. 2009; Rosell et al. 92 

2009b; Llorens et al. 2011). Specifically, laser sensors have been tested in fruit orchards 93 

(apple and pear) (Walklate et al. 2002; Palacín et al. 2007; Rosell et al. 2009a; Sanz et 94 

al. 2011), in citrus (Wei and Salyani 2004; Lee and Ehsani 2009) and in grapevine, in 95 

which in addition to laser sensors (Arnó et al. 2006; Rosell et al. 2009b; Llorens et al. 96 

2011), radiometric sensors mounted on tractors were used (Goutouly et al. 2006; Drissi 97 

et al. 2009; Mazzetto et al. 2010). As an alternative to optical sensors, ultrasonic sensors 98 

(US) have been used to estimate LAI in cereals (Scotford and Miller 2004) and measure 99 

canopy volume in different crops: fruit trees (Giles et al. 1988; Solanelles et al. 2006; 100 

Escolà et al. 2011), grapevines (Gil et al. 2007; Llorens et al. 2011) and citrus (Tumbo 101 

et al. 2002; Schumann and Zaman 2005; Zaman and Schumann 2005). However, more 102 

accurate measurements are obtained using laser sensors due to the lower vertical 103 

sampling resolution of US (Lee and Ehsani 2009). 104 

 105 

 Remote sensing, using satellite and airborne imaging systems, is another option 106 

that has also been used to estimate the LAI or to map vigour differences within 107 

vineyards (Johnson et al. 2001; Hall et al. 2002). For example, Johnson et al. (2003) 108 

obtained a significant correlation (R2 = 0.72) between the estimated leaf area per vine 109 

using the Normalized Difference Vegetation Index (NDVI) calculated from satellite 110 

images and the leaf area per vine obtained by direct and indirect measurements on the 111 

ground. However, it is also known that the relationship between LAI and NDVI varies 112 

over time and requires a specific calibration according to the different growth stages of 113 

the crop. Johnson et al. (2003) also pointed out the difficulty of remote estimation of 114 

LAI in vineyards due to the spatial discontinuity of this crop in which leaves are 115 



concentrated over long stems and cover a relatively small percentage of the ground 116 

surface. Vegetation present between rows (such as vegetative cover or weeds) further 117 

complicates the correct interpretation of reflectance data in the images. In addition, 118 

remote sensing LAI estimates are usually validated by handheld LAI instruments as 119 

they operate similarly and are also affected by foliage clumping. By contrast, terrestrial 120 

laser scanners (TLS) operate laterally penetrating the canopy from different angles, and 121 

therefore the sensor validation requires actual LAI values obtained by destructive leaf 122 

sampling methods. The terrestrial sensors that provide NDVI values (or other 123 

appropriate vegetation indices) operate similarly to airborne and satellite sensors. The 124 

GreenSeeker sensor (Trimble Agriculture Division, Westminster, CO, USA) uses bands 125 

that sample in the visible red (660 nm) and near-infrared (770 nm) portions of the 126 

electromagnetic spectrum (Goutouly et al. 2006; Drissi et al. 2009), and the CropCircle 127 

sensor (Holland Scientific Inc., Lincoln, NE, USA) uses bands that sample in the visible 128 

orange (595 nm) and near-infrared (880 nm) portions of the electromagnetic spectrum 129 

(Stamatiadis et al. 2010). Such ground-based sensors are more widely accepted in the 130 

domain of precision agriculture (viticulture) for measuring ground level crop 131 

reflectance. 132 

 133 

 The continuous evaluation of the canopy in vineyards is undoubtedly an 134 

important objective in precision viticulture. A laser sensor (using Light Detection And 135 

Ranging or LiDAR technology) has been the instrument chosen in this research work to 136 

reliably estimate LAI and canopy density in grapevines. We have discarded ultrasonic 137 

sensors due to their low vertical sampling resolution (Tumbo et al. 2002; Wei and 138 

Salyani 2004) and reflectance ground-based sensors due to their relatively poor ability 139 

to estimate and encompass the entire canopy (Drissi et al. 2009). In fact, there exist 140 



some interesting LiDAR applications in agriculture demonstrating the potential of laser 141 

scanning systems. For example, Ehlert et al. (2008, 2010) and Saeys et al. (2009) used a 142 

laser system for measuring crop biomass and crop density in cereals, respectively. 143 

Gebbers et al. (2011) also used laser sensors to map LAI in broadacre crops. 144 

Measurement of wood volume by means of a LiDAR sensor has been proposed by 145 

Keightley and Bawden (2010) for grapevine biomass analysis. More recently, field 146 

characterization of olive trees has also been possible using TLS systems (Moorthy et al. 147 

2011). As far as the possible applications in horticulture, LiDAR sensor has become an 148 

excellent device to reliably quantify tree geometric characteristics (Rosell et al. 2009b; 149 

Sanz et al. 2011). The matter is the large amount of data provided and what are the most 150 

suitable procedures to analyse and extract valuable information. 151 

 152 

 Wei and Salyani (2005) and Lee and Ehsani (2009) developed a laser based 153 

measurement system and associated algorithms specifically designed to estimate the 154 

canopy volume in citrus trees. Likewise, Palacín et al. (2007) and Rosell et al. (2009b) 155 

also suggested the measurement of canopy volume in orchards to subsequently make 156 

possible the estimation of total leaf area by an allometric relationship between both 157 

parameters. In vineyard, Llorens et al. (2011) also proposed a similar procedure. 158 

However, these methods are very sensitive to the distance between the laser sensor 159 

travel line and the tree row line (Palleja et al. 2010). Measurement errors could appear 160 

when the sensor deviates from the path, usually in asymmetrically shaped trees, if there 161 

are no specific corrections. On the other hand, the use of such allometric equations may 162 

be limited to specific conditions since volume/leaf area relationship may depend in turn 163 

on the crop, stand density and canopy structure. 164 

 165 



 Faced with all these methods of measuring canopy volume, Walklate et al. 166 

(2002) obtained several canopy parameters by analysing data from a LiDAR sensor 167 

using a probability based model. In the study presented herein, the geometric and 168 

structural parameters mentioned in the work of Walklate et al. (2002) in orchards were 169 

obtained, reviewed and validated for the specific case of estimating the LAI in 170 

vineyards. It is known that sunlight is of vital importance in viticulture (Smart 1985), 171 

and light interception through the canopy is normally described using light extinction 172 

probability models. The Poisson model has been used in the work presented here to 173 

analyze the performance of LiDAR measurements of foliage characteristics in 174 

vineyards. Ultimately, the goal is to check the operation and feasibility of a ground laser 175 

scanner in viticulture as a crop sensor, making possible a reliable LAI estimation in 176 

grapevines. In this sense, the developed LiDAR system has to be able to estimate 177 

foliage area for both symmetric and asymmetric tree shapes regardless of the side of the 178 

row from which the LiDAR reading is performed. The method should also be simple, 179 

fast and non-destructive, without requiring the use of allometric relationships. 180 

Additionally, it has to allow the estimation of foliar density within vines. 181 

 182 

Materials and methods 183 

Laser scanner 184 

LiDAR sensors operate based on the measurement of the time-of-flight (TOF) of an 185 

infrared laser pulse (Lee and Ehsani 2008). In our case, the time the pulse takes to travel 186 

from the sensor to the canopy of vines and back. For each interception with a vine leaf, 187 

the sensor determines the radial distance (r) between the intercepted point and the 188 

sensor position and the angular coordinate (θ) of this intercepted point according to an 189 

adequate reference system (Fig. 1). The laser beam is sequentially emitted in different 190 



directions within a vertical plane according to a given angular resolution. Therefore, 191 

each scanning cycle performs a two-dimensional fan-shaped scan (Fig. 2a), so that vines 192 

are scanned in a vertical cross-sectional plane. Field data are organized as a matrix of 193 

polar coordinates (r, θ) of intercepted points with the position of the sensor as the origin 194 

of coordinates. Thus, each vertical scan produces a matrix of data and the displacement 195 

of the LiDAR sensor along the row gives several scans with their corresponding polar 196 

coordinate matrices. The LiDAR sensor used in this study was a low-cost general-197 

purpose LMS-200 model (SICK AG, Waldkirch, Germany) with an accuracy of ±15 198 

mm over a range up to 8 m, with an angular scanning range of 100º or 180º (according 199 

to the characteristics of the vegetation) and an angular resolution of 1º. The MultiScan 200 

program developed in MATLAB (MATrix LABoratory, The MathWorks Inc., Natick, 201 

Mass., USA) was used to control the scanner, acquire data and subsequently process the 202 

information. Data transfer from the sensor to a laptop was done via the RS-232 203 

protocol. This external communication finally limited the scanning sampling frequency 204 

up to 12 scans/s (that resulted in a horizontal scanning resolution of 2.3 cm row 205 

length/scan at a speed of 1 km/h). The scanner and mounting are shown in Figure 1 and 206 

Table 1 shows the basic specifications of the LMS-200 scanner provided by the 207 

manufacturer. 208 

 209 

Fig. 1 LMS-200 scanner (left) and mounting used in the field trials (right) (Rosell et al. 210 
2009b) 211 

 212 

Table 1 LMS-200 LiDAR sensor specifications 213 

Wavelength (nm) 905 
Maximum measurement distance (m) 8 (mm-mode), 80 (cm-mode) 
Scanning range (º) (selectable) 180 (0º to 180º) and 100 (40º to 140º) 
Angular resolution (º) (selectable) 0.25º, 0.5º and 1º 
Scanning time (ms/cycle) 53, 26 and 13 at 0.25º, 0.5º and 1º, respectively 
Precision (mm) ±15 (mm mode), ±40 (cm mode) 
Weight (kg) 4.5 
Dimensions (mm) 185 (width) x 156 (length) x 210 (height) 



 214 

 215 

Data analysis 216 

The LiDAR sensor generated data (polar coordinates) according to the scanner's 217 

reference system shown in Figure 2a. Thus, it was assumed that the axis Ox was parallel 218 

to the ground and directed towards the interior of the canopy, that the Oy axis was 219 

perpendicular to the ground and that the Oz axis was parallel to the ground and in the 220 

direction in which the LiDAR sensor moved. With this arrangement, the origin O 221 

(LiDAR) corresponded to the centre of the semicircle of the LiDAR scan and all the 222 

points intercepted by the laser beam in each semicircular scan were in the Oxy plane 223 

(Fig. 2a). The provided (r, θ) values were r as the distance between the reference origin 224 

O and the intercepted vegetation, and θ as the angle between the Oy axis and the 225 

direction of the laser beam (clockwise). As the sensor moved relative to the crop (Oz 226 

axis) (Fig. 2b), it carried out several vertical scans keeping an approximately constant 227 

height from the ground, Hg. 228 

 229 

 For the subsequent analysis of the data, the interception points of the whole 230 

scanned volume along the Oz axis (Fig. 2c) were projected onto a two-dimensional grid 231 

of polar cells in the Oxy plane (Fig. 2d), so the overall projected cross-section of the 232 

canopy volume was divided into cells with equal angle increments of 3=∆θ  and equal 233 

radial increments of Δr = 100 mm. The height of the sensor from the ground is denoted 234 

by Hg and dt is the distance used to exclude intercepted points at ground and trunk level 235 

whose Cartesian coordinates in height (Oy) satisfy: y < - (Hg-dt). 236 

 237 

Fig. 2 a) Coordinate system of the sensor for a complete single scan (0º to 180º). b) 238 
Simulated vertical scans along the row. c) Intercepted points generated by several scans 239 



along a row (1 m in length) seen in the Oxy plane. d) Projection of the scans along the 240 
Oz axis onto a two-dimensional grid of polar cells in the Oxy plane 241 
 242 

 A diagram showing a two-dimensional polar cell (k, j) is also shown in Figure 243 

2d, where ‘k’ refers to the angular position of the cell from the Oy axis (clockwise), and 244 

‘j’ refers to the radial position (distance) relative to the LiDAR sensor. For a specific 245 

polar cell, the number of interceptions, jkn ,∆ , occurring between the laser beam and the 246 

presence of vegetative material in its path within the cell should satisfy the following 247 

expression: 248 

1,,, +−=∆ jknjknjkn  [1] 249 

where jkn ,  is the number of laser beams reaching the entrance side of the polar cell (k, 250 

j) and 1, +jkn  is the number of beams that cross the exit side of the cell and, therefore, 251 

enter the next cell. To apply equation [1], it was necessary to know the number of 252 

beams entering the first cells, that is the cells close to the LiDAR sensor (k, j = 1). This 253 

value could be easily established by taking into account that the number of scans carried 254 

out over a section of 4 m in the row was between 163 and 191, the angular resolution of 255 

the sensor was 1º, and the angle increment Δθ of the cells was 3º. So, typical number of 256 

entering beams ranged from 489 to 573. Readings from the LiDAR sensor were finally 257 

structured according to two data matrices: the interception matrix ( jkn ,∆ ) and the 258 

matrix of beams entering each cell ( jkn , ). In other words, the information about the 259 

crop was reduced to a two-dimensional distribution over the Oxy plane of the laser beam 260 

interception with the crop canopy, and a two-dimensional distribution on the same plane 261 

describing the attenuation that the laser beam undergoes on passing through the crop 262 

canopy. The crop vegetation parameters shown in Table 2 were obtained from the two 263 

aforementioned matrices. 264 

 265 



 266 

 267 

Table 2 Vegetative parameters of vines computed from the LiDAR sensor data 268 

Parameter Formulae Notation 
Tree height a 

(H) (m) 
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polar distance (m), Δθ is the angle 
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This is the sum of the unit volumes 
from each scan, where Ai  is the cross-
sectional area of each scan i, Δz is the 
width (mm) between two consecutive 
scans, and N the number of scans 
carried out. 
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Using the Poisson model to 
determine the probability of the laser 
beam's transmission within vines, the 
TAI index is formulated as the ratio 
between the crop detected area by the 
LiDAR sensor and the ground area. 
W (m) is the row spacing. 

a In all the formulae, the presence or absence of foliage in each cell was indicated by the function jk ,δ  269 
taking a value of 1, =jkδ  when the coefficient jkjk nn ,, /∆  is greater or equal to 0.01, and a value of 270 

0, =jkδ  when the coefficient is less than 0.01 (Walklate et al. 2002). 271 
 272 

 In the most recent scientific literature (Llorens et al. 2011), the estimation of 273 

canopy volume has been proven to be a useful method for the indirect determination of 274 

leaf area in vineyards. In this study, the total canopy volume was obtained by adding up 275 

the volumes of the individual slices (scans), as shown in Table 2. This methodology 276 

differs from that used by Walklate et al. (2002), where the canopy volume is calculated 277 

from the cross-sectional area (A) and the row scanned length. 278 

 279 

 Faced with the parameters related to geometry of the crop (H, A and V), the TAI 280 

is the most related parameter to the leaf density of the crop. In obtaining this parameter, 281 

and similarly to Walklate et al. (2002), firstly it was considered (Fig. 2d) that the 282 



probability of transmission of laser beam in a generic cell (k, j) could be established by 283 

dividing the amount of beams at the output ( 1, +jkn ) and the amount of beams at the 284 

entrance ( jkn , ), 285 

jk

jk
jk n

n
T

,

,
, 1

∆
−=  [2] 286 

and, secondly, this probability could be approximated by the Poisson probability model 287 

when sufficiently small distances Δr, and random spatial distribution of the canopy are 288 

considered (Walklate 1989), 289 

( )jkjk arT ,, exp ⋅∆−= . [3] 290 

 291 

 Thus, it was possible to assign to each cell (k, j) a particular value of the 292 

parameter ak,j (local area density of the crop [L-1]), which could be considered as the 293 

ratio of the area detected by the LiDAR in the direction Δr and the volume of the 294 

corresponding cell. Combining the expressions [2] and [3], the value of the local area 295 

density for a cell (k, j) was obtained from LiDAR data as 296 
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 298 

 Adding the vegetation detected by the LiDAR sensor in each cell and dividing 299 

by the total ground area on which the scan was performed, TAI is finally obtained using 300 

the equation shown in Table 2.  301 

 302 

Field trials 303 

The field trials were carried out in a vineyard (Merlot) in Raimat (Lleida, Spain). They 304 

consisted of four trials at four different growth stages of the vines. In each trial a 4-m 305 



long row section was scanned corresponding to three consecutive vines (LAI zone) 306 

which were subsequently manually defoliated according to the sections shown in the 307 

diagram in Figure 3. LAI was then determined for 1 m row lengths taking individual 308 

sections 1, 2, 3 and 4 (Fig. 3). LAI for 2-m row length sections was obtained by 309 

combining sections 1 and 2 and sections 3 and 4, while LAI for 4-m row length was 310 

obtained by combining all the sections. A planimeter (Delta-T Devices Ltd., Cambridge, 311 

UK) was used in combination with a gravimetric method correlating fresh weight of 312 

leaves and leaf area. LAI was determined for both left and right sides of the row 313 

separately and as an average for the total row width. The LAI zone (Fig. 3) was scanned 314 

twice from each side of the row, at a speed of approximately 1 km/h, with the sensor at 315 

1.60 m above ground level, obtaining a total of 4 readings per row scanned length. The 316 

establishment of the LAI zones was possible using reference stands 0.55-m wide and 317 

1.10-m high, located 0.40 m from the center of the row as shown in Figure 4. For the 318 

experiments (Table 3), the LMS-200 was operated in the mm-mode and scanned the 319 

vines in different scanning ranges (depending on the development of the crop) with an 320 

angular resolution of 1º. The ground surface of the travel path for the tractor was 321 

relatively even and, to avoid measurement errors, field trials were carried out in calm 322 

wind conditions. 323 

 324 

Fig. 3 Diagram of the scanning procedure over a row using LiDAR sensor (left), and 325 
defoliation sections 1, 2, 3 and 4 (1-m length) of the LAI zone (right). Thus, either eight 326 
values of the LAI were obtained when left and right row sides were considered 327 
separately (shaded area), and four values when the row was considered as a whole 328 
 329 

Table 3 Field trials 330 

Date Block Vines Scanning range (º) Number of scans (1-m long section) 
5/10/2005 I 15, 16 and 17 60 - 180 42 
6/6/2005 II 21, 22 and 23 40 - 160 46 - 48 
7/7/2005 III 24, 25 and 26 40 - 160 41 
8/24/2005 IV 18, 19 and 20 40 - 160 46 



 331 

Fig. 4 Left-side view of block III with vines with foliage (left) and right-side view of 332 
defoliated vines of the same block III (right) 333 
 334 

 Finally, the relationship between LAI and the LiDAR parameters was evaluated 335 

by regression analysis according to linear models of the following type: 336 

LiDARLAI ⋅+= 10
ˆˆ ββ  [5] 337 

where LAI is the Leaf Area Index (m2/m2), LiDAR is the considered vegetative 338 

parameter (expressed in the corresponding units) and 0β̂  and 1β̂  are the estimates of the 339 

model parameters obtained by the method of least squares. Regression analysis was 340 

performed using Microsoft Excel 2002 and the goodness of fit was checked by the 341 

coefficient of determination (R2) and the contrast of the regression (model significance). 342 

 343 

Results and discussion 344 

LiDAR performance in measuring LAI and leaf area density 345 

In general, when the leaf area (LAI) of the vines increased, there was a proportional 346 

increase in the values of the parameters obtained by the LiDAR sensor. However, the 347 

TAI was the parameter that showed the greatest ability to predict the LAI. Specifically, 348 

with defoliation sections of 1 m, the TAI parameter was able to explain 92 % of the 349 

variability of LAI, compared with 81% that was explained by the canopy volume. Both 350 

regression models estimate the LAI of the total width of the row, i. e. regardless of the 351 

side of the row from which the sensor readings are made. The cross-sectional area and 352 

the tree height parameters also showed interesting results (Table 4), but they are slightly 353 

poorer given the R2 results (0.72 and 0.62, respectively). 354 

 355 



 LiDAR parameters were different (although with slight variation) when the 356 

sensor scannings were made from different sides (left or right) of the row. Probably, as 357 

suggested by Walklate et al. (2002), these differences were due to the asymmetry of the 358 

vegetative structure of the vines. This result raised the question of whether it was 359 

appropriate to use the LiDAR sensor only from one side to estimate the total leaf area of 360 

the row or, by contrast, it was more convenient to formulate a model that was 361 

specifically applicable to estimate the leaf area of only half the width of the row (right 362 

or left sides). Thus, in a second analysis, four additional regression models were 363 

obtained with the aim of investigating the relationship between leaf area of each half of 364 

the row-width (or partial LAI) and the LiDAR parameters obtained using readings from 365 

the corresponding side of the row (1-m long). By considering the LAI of the right and 366 

left sides of the row separately, a greater number of data was handled (32 LAI values 367 

and 64 values of each LiDAR parameter). Once again, the canopy volume (R2 = 0.71) 368 

and the tree area index (R2 = 0.83) were the parameters showing the best estimation of 369 

LAI (Table 4). On the other hand, the vine height did not seem to be a good option 370 

when estimating grapevine leaf area (R2 = 0.54).  371 

 372 

 Leaf area index prediction for longer lengths was another option (Table 4). The 373 

models obtained for sections of 2 m and 4 m showed even better results, essentially 374 

attributable to the lower amount of points used. Except for the tree height parameter, 375 

higher R2 values were obtained (between 0.86 and 0.99), confirming the excellent 376 

performance of the LiDAR sensor. However, results for section lengths of 1 m were 377 

probably more reliable as they were based on more robust models (with higher number 378 

of observations/points). 379 

 380 



 It is clear that the TAI showed itself to be a valuable parameter for estimating the 381 

LAI. To bring together one overall model that would be valid for canopy sections of 1-382 

m, 2-m and 4-m lengths, and also to estimate the total, or partial, leaf area of a row, LAI 383 

could be estimated with the following average equation:  384 

)99.0(1935.02646.1 2 =−∗= RTAILAI  [6] 385 

which was obtained by regression analysis of the predicted LAI values (or fit LAI 386 

values) using the four linear models shown in Table 4 for canopy sections of 1 m, 2 m 387 

and 4 m. Equation [6] has an obvious advantage because the LAI of vines could be 388 

estimated from scanning only one of the sides of the row. This feature is especially 389 

interesting as it reduces the mapping and scanning time required for a field. 390 

 391 

Table 4 Statistical analysis of simple linear regression models for predicting the LAI in 392 
vineyards 393 

Estimation of LAI of the total width of the row (sections of 1-m long) 
LiDAR 

parameter 
Model 

significance 
 

R2 
Coefficient* 

0β̂  

Coefficient* 

1β̂  
C.I. 95 % for 1β̂  

Lower Upper 
Tree height, 

H (m) 
<0.0001 0.62 -3.8104 

(0.4972) 
2.1790 
(0.2158) 

1.7476 2.6103 

Cross-sectional 
area, A (m2) 

<0.0001 0.72 -0.1931 
(0.1140) 

1.8982 
(0.1497) 

1.5990 2.1975 

Canopy volume, 
V (m3) 

<0.0001 0.81 -0.6685 
(0.1193) 

11.2666 
(0.7032) 

9.8608 12.6723 

Tree area 
index, TAI 

<0.0001 0.92 -0.2329 
(0.0566) 

1.3014 
(0.0491) 

1.2032 1.3996 

Estimation of LAI of only half the width of the row (right or left sides, sections of 1-m long) 
LiDAR 

parameter 
Model 

significance 
 

R2 
Coefficient* 

0β̂  
Coefficient* 

1β̂  
C.I. 95 % for 1β̂  

Lower Upper 
Tree height, 

H (m) 
<0.0001 0.54 -3.7416 

(0.5844) 
2.1490 
(0.2536) 

1.6420 2.6560 

Cross-sectional 
area, A (m2) 

<0.0001 0.66 
 

-0.2149 
(0.1337) 

1.9279 
(0.1756) 

1.5770 2.2789 

Canopy volume, 
V (m3) 

<0.0001 0.71 
 

-0.6681 
(0.1535) 

11.2640 
(0.9049) 

9.4552 13.0728 

Tree area 
index, TAI 

<0.0001 0.83 -0.2444 
(0.0873) 

1.3118 
(0.0759) 

1.1602 1.4635 

Estimation of LAI of the total width of the row (sections of 2-m long) 
LiDAR 

parameter 
Model 

significance 
 

R2 
Coefficient* 

0β̂  

Coefficient* 

1β̂  
C.I. 95 % for 1β̂  

Tree height, 
H (m) 

<0.0001 0.57 -3.3512 
(0.7183) 

1.9577 
(0.3084) 

1.3278 2.5876 

Cross-sectional 
area, A (m2) 

<0.0001 0.87 -0.2515 
(0.1047) 

1.6362 
(0.1140) 

1.4034 1.8690 

Canopy volume, 
V (m3) 

<0.0001 0.86 -0.7379 
(0.1430) 

5.8418 
(0.4229) 

4.9781 6.7054 



Tree area 
index, TAI 

<0.0001 0.95 -0.1741 
(0.0603) 

1.2395 
(0.0522) 

1.1329 1.3461 

Estimation of LAI of the total width of the row (sections of 4-m long) 
LiDAR 

parameter 
Model 

significance 
 

R2 
Coefficient* 

0β̂  

Coefficient* 

1β̂  
C.I. 95 % for 1β̂  

Tree height, 
H (m) 

<0.0001 0.74 -3.8960 
(0.8131) 

2.1764 
(0.3466) 

1.4331 2.9198 

Cross-sectional 
area, A (m2) 

<0.0001 0.96 -0.2875 
(0.0801) 

1.4440 
(0.0750) 

1.2831 1.6048 

Canopy volume, 
V (m3) 

<0.0001 0.98 -1.0398 
(0.0870) 

3.3759 
(0.1290) 

3.0992 3.6527 

Tree area 
index, TAI 

<0.0001 0.99 -0.1226 
(0.0331) 

1.2057 
(0.0288) 

1.1439 1.2674 

* Standard errors of β0 and β1 estimators’ are shown in parentheses. 394 
 395 

 The final proposed model [6] may be questionable according to two basic 396 

concepts. First, LiDAR does not distinguish between green and non-green elements 397 

which makes the TAI a parameter conceptually similar to Plant Area Index (PAI) as 398 

proposed in Moorthy et al. (2011), and second, actual canopy foliage is not uniform or 399 

randomly distributed due to vegetation structure (Weiss et al. 2004). In fact, Moorthy et 400 

al. (2011) obtain the PAI after calculating a clumping index that, unlike the TAI, 401 

considers nonrandom distribution of vegetation. Furthermore, the TAI parameter can 402 

vary in leafless vines that have different wooden structure. Therefore, estimation of LAI 403 

based on the Poisson model using the TAI parameter will provide estimates of an 404 

effective leaf area index (Leff) as suggested by Weiss et al. (2004). The term “effective 405 

LAI” is useful for describing optical LAI estimates using methods that do not 406 

distinguish leaves from other plant elements, and are unable to compensate for non-407 

random positioning of leaves within the canopy (Jonckheere et al. 2004). 408 

Underestimation errors caused by clumping and the inherent row structure of vineyards 409 

are therefore expected when comparing TAI derived from LiDAR measurements with 410 

the actual LAI value measured with destructive sampling (Johnson and Pierce 2004). 411 

Testing the effect of clumping has been possible by forcing the linear regression model 412 

according to the expression: 413 

effLTAILAI ⋅=⋅= ββ ˆˆ  [7] 414 



where Leff is the ‘effective’ leaf area index (m2/m2) computed as TAI, and β (>1, if 415 

clumping effect is true) is the model's coefficient. Table 5 shows the obtained results. 416 

As expected, in both cases (whole and half row width) the TAI parameter 417 

underestimates the true value of LAI by about 10 %, confirming the irregular but non-418 

random distribution of leaves in vineyard. However, the sensitivity of TAI to LAI is 419 

evident (Tables 4 and 5) and no saturation occurs for higher values of LAI (figures not 420 

shown). TAI is therefore a valid parameter for the estimation of LAI, and this result also 421 

confirms the findings of López-Lozano et al. (2009) in which the Poisson model can be 422 

applied for LAI < 3 (which are typical values in vineyards) using LiDAR to provide 423 

lateral observations of the vines from perpendicular scans to the rows. 424 

 425 

Table 5 Linear regression models between the LAI and the ‘effective’ leaf area index 426 
(Leff) for 1-m long sections of crop vegetation 427 

Whole-row width Half-row width 
Coefficient β̂   R2 RMSE Coefficient β̂  R2 RMSE 

1.1082 0.90 0.1509 1.1091 0.81 0.2191 
 428 

 The leaf area density is defined as the total one-side leaf area of photosynthetic 429 

tissue per unit canopy volume (Weiss et al. 2004). As already mentioned above, TAI is a 430 

parameter that was obtained taking into account the foliage density of the crop. The 431 

two-dimensional plot of the local density values (ak,j) [4] should allow the visual 432 

interpretation of foliage density (or foliage distribution) detected by the LiDAR sensor 433 

within the canopy. Figure 5 shows the foliage density plots for each of the scanned 434 

blocks of 4-m length (scans accumulated over 4 m and performed from the left side of 435 

the row). The highest densities appeared to concentrate within the inner parts of the 436 

canopy and, also, with increasing LAI there was a proportional increase in TAI and 437 

cross-sectional area. The measurement of high values of local density in some cells of 438 

the lower parts of the canopy could be due to the presence of grapes in these zones. 439 



 440 

Fig. 5 Grapevine foliage density of the scanned blocks (4-m row length from the left 441 
side) by plotting the values of local area density, ak,j [4] 442 
 443 

Required number of accumulated scans to derive LAI 444 

After verifying the suitability of the tree area index for estimating the leaf area index, 445 

the analysis of foliage variability could be addressed by analyzing the variability of TAI 446 

along the row. Figure 6a shows the values of TAI for each of the scans performed in 447 

block I (early stages of crop cycle). It is observed that the variability of TAI (and, 448 

presumably, the leaf area) along the row was evident and, more importantly, repeated 449 

readings (in blue) of the same block showed very similar results to those obtained in the 450 

first scan (in red). These results confirmed the suitability of LiDAR sensors to 451 

accurately and repeatedly detect and quantify vineyard canopies. 452 

 453 

Fig. 6 TAI values in two repeated readings (red and blue) from the left side of the row, 454 
cv. Merlot, 10 May, 2005 (Block I): a) Individual values of TAI for each of the 170 455 
scans performed; b) Accumulated TAI scans along the row (4-m length); c and d) 456 
Cumulative values of TAI in lengths of 2 m and 1 m, respectively 457 
 458 

 The remaining issue was to determine the required row length that should be 459 

scanned for an optimal use of the LiDAR sensor. At first, data available were the values 460 

of TAI based on the projection of scans made over a certain row length (in our case, 4 461 

m, 2 m and 1 m). However, further calculation of the accumulated values of TAI, as 462 

scans were progressively overlaid and projected, provided very interesting information 463 

about the operation and use of LiDAR technology in field conditions. Figure 6 shows 464 

the evolution of TAI with the accumulation of LiDAR scans. Specifically, it shows the 465 

cumulative values for different row lengths (b-4 m, c-2 m, d-1 m) for the vegetation 466 

block tested on 10 May, 2005 (Block I). Graphical analysis of the block (Fig. 6) reveals 467 



that the value of TAI showed some stabilization with higher number of scans 468 

accumulated. This trend was more evident in sections (row lengths) of 4 m and 2 m, 469 

probably contributing to smooth the TAI values and to mask the spatial variability at 470 

these scales. However, in sections of 1 m the values of the last cumulative TAI 471 

presented greater differences from one to another section, being the detection of foliage 472 

variability along the row more effective in this spatial scale. Faced with the possibility 473 

of using the LiDAR scanner as a sensor for mapping LAI at parcel level, we suggest 474 

calculating the value of TAI based on scans accumulated in 1 m length sections in each 475 

of the sampling areas. In our working conditions, this means calculating the TAI after 476 

40-50 accumulated scans. 477 

 478 

 The assessment of leaf area variability along a row can be addressed through the 479 

use of LiDAR technology. However, further research is needed to confirm the LiDAR 480 

as a reliable crop sensor. If the good results of this study were confirmed, LiDAR 481 

sensors could have several and interesting applications in viticulture. For instance, 482 

LiDAR sensors could be an excellent device for predicting grape yield and quality 483 

related parameters when the spatial covariance between vigor, yield and quality is 484 

acceptable. In this sense, they would solve the need for sensors for indirect and 485 

continuous monitoring of grape quality, similarly to how grape yield monitors work. 486 

 487 

Conclusions 488 

LiDAR sensors with the configuration proposed in this research provide a feasible 489 

method to monitor within-field leaf area variability and can have several applications in 490 

precision viticulture. Among the parameters obtained from the LiDAR sensor data, the 491 

canopy volume and, above all, tree area index have shown a higher ability to estimate 492 



leaf surface (or LAI) in vineyards. Furthermore, estimation of leaf area corresponding to 493 

the total width of the row can be done by scanning with LiDAR from only one side of 494 

the row. In other cases, TAI can also be used to estimate leaf area of half the width of 495 

the row corresponding to the scanned side, i.e. to estimate the leaf area between the 496 

canopy and the average plane defined by the trunks of vines. As grapevine leaf surface 497 

is variable along the row, the use of LiDAR sensors for obtaining reliable LAI maps 498 

should also consider the section row length to be scanned in each sampling area. 499 

Specifically, scanning section row lengths of 1 m (40 to 50 scans) is the option we 500 

recommend. Scanned lengths of 2 m and 4 m provided TAI values that are somewhat 501 

smoothed since they account for a greater row length. This would mask the spatial 502 

variability detected at these scales. The main difficulties with the technology are the 503 

non-random distribution of leaves (which moves away from the Poisson model) and the 504 

presence of leaves and other non-green vegetative elements within the canopy. Since the 505 

intensity of the returned laser beam is also provided by some LiDAR sensors, future 506 

research could explore the applicability of this information to better characterize 507 

grapevine canopies.  508 
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Fig. 1 LMS-200 scanner (left) and mounting used in the field trials (right) (Rosell et al. 667 
2009b) 668 
 669 
Fig. 2 a) Coordinate system of the sensor for a complete single scan (0º to 180º). b) 670 
Simulated vertical scans along the row. c) Intercepted points generated by several scans 671 
along a row (1-m long) seen in the Oxy plane. d) Projection of the scans along the Oz 672 
axis onto a two-dimensional grid of polar cells in the Oxy plane 673 
 674 
Fig. 3 Diagram of the scanning procedure over a row using LiDAR sensor (left), and 675 
defoliation sections 1, 2, 3 and 4 (1-m length) of the LAI zone (right). Thus, either eight 676 
values of the LAI were obtained when left and right row sides were considered 677 
separately (shaded area) and four values when the row was considered as a whole 678 
 679 
Fig. 4 Left-side view of block III with vines with foliage (left) and right-side view of 680 
defoliated vines of the same block III (right) 681 
 682 
 683 
Fig. 5 Grapevine foliage density of the scanned blocks (4-m row length from the left 684 
side) by plotting the values of local area density, ak,j [4] 685 
 686 
Fig. 6 TAI values in two repeated readings (red and blue) from the left side of the row, 687 
cv. Merlot, 10 May, 2005 (Block I). a) Individual values of TAI for each of the 170 688 
scans performed. b) Accumulated TAI scans along the row (4-m length). c and d) 689 
Cumulative values of TAI in lengths of 2 m and 1 m, respectively 690 
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Table 2 Vegetative parameters of vines computed from the LiDAR sensor data 725 
 726 
Table 3 Field trials 727 
 728 
Table 4 Statistical analysis of simple linear regression models for predicting the LAI in 729 
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Table 5 Linear regression models between the LAI and the ‘effective’ leaf area index 732 
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May 10 field trial, LAI = 0.5033 

Cross-sectional area, A = 0.599 m2 
Tree area index, TAI = 0.532 

Cross-sectional area, A = 1.017 m2 
Tree area index, TAI = 1.162 

June 6 field trial, LAI = 1.2646 

Cross-sectional area, A = 1.350 m2 
Tree area index, TAI = 1.495 

July 7 field trial, LAI = 1.6591 August 24 field trial, LAI = 1.3601 

Cross-sectional area, A = 1.138 m2 
Tree area index, TAI = 1.189 
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