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ABSTRACT 1 

In the European Union, the maintenance of soil quality is a key point in agricultural 2 

policy. The effect of additions of dairy cattle (Bos taurus) manure (DCM) during a 3 

period of 11 years were evaluated in a soil under irrigated maize (Zea mays L.) 4 

monoculture. DCM was applied at sowing, at wet-weight rates of 30 or 60 Mg ha-1yr-1 5 

(30DCM or 60DCM). These were compared with a mineral-N treatment (300 kg N ha-1, 6 

MNF), applied at 6-8 emerged leaves and with a control (no N, no manure). Treatments 7 

were distributed in a randomized block design. Factors analysed were stability against 8 

wetting stress disaggregation, porosity, soil organic carbon (SOC) fractions and 9 

earthworm abundance, studied eight months after the last manure application. The 10 

application rate of 30DCM increased aggregate stability and the light SOC fraction, but 11 

not the pore volume, nor the earthworm abundance, compared with MNF. The DCM 12 

rates did not result in unbalanced agronomic advantages versus MNF, as high yields 13 

(17-18 Mg ha-1 yr-1) were obtained. In Mediterranean environments, the use of DCM 14 

should be encouraged mainly because of its contribution to the light SOC fraction which 15 

protects dry macro-aggregates from implosion (slaking) during the wetting process. 16 

Thus, in intensive agricultural systems, it protects soil from physical degradation. 17 

 18 

19 
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INTRODUCTION 1 

The European Union and its Member States are addressing soil quality issues, and 2 

setting targets for sustainable land use and soil quality (EU, 2013). Worldwide, 3 

vegetation (Cerdà, 1996), revegetation (Yu & Jia, 2014) or revegetation for agricultural 4 

uses (Barua & Haque, 2013), specific soil tillage management practices (Nieto et al., 5 

2012), the application of different carbonaceous materials (Cely et al., 2014; Wick et al., 6 

2014) or organic amendments are widely used to improve the physical attributes of 7 

degraded agricultural soils (Diacono & Monterruno, 2010; Quilty & Cattle, 2011; 8 

Castro et al., 2012). The use of manures to maintain or increase soil organic carbon 9 

(SOC) is of great interest, as SOC losses are a real threat (Jones et al., 2012; Batjes, 10 

2014; Srinivasarao, 2014). In Europe, around 45% of mineral soils have very low or low 11 

(0-20 g kg-1) SOC content (Rusco et al., 2001), but in southern Europe the percentage of 12 

topsoil horizons with less than 20 g kg-1of SOC can be up to 74% (Zdruli et al., 2004). 13 

The coarse textured soils are the most affected (Muñoz-Rojas et al., 2012) although soil 14 

management practices can drive SOC changes (De Moraes Sá et al., 2015; Parras-15 

Alcántara et al., 2014). Soil organic carbon is an attribute of soil quality because it is 16 

one of the principal aggregating agents in soil (Tisdall & Oades, 1982). Furthermore, 17 

different authors (Jaiarree et al., 2014) pointed out that organic materials should be 18 

applied as a priority to soils with low fertility and low SOC in order to enhance soil C 19 

sequestration. Also, they favor nutrient recycling in agricultural systems where such 20 

residues are produced (i.e. promoting sustainable field management). 21 

Physical fractionation of SOC, using density separation, assumes that biologically 22 

significant pools, differing in structure and function, can be obtained. In a long-lasting 23 

cultivated soil where stubble is not burned, it separates newly incorporated, partially 24 
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decomposed debris named the “light fraction” (which includes free and occluded 1 

organic C within aggregates) from a more decomposed organic matter (heavy fraction), 2 

with a lower C:N ratio, which includes organic matter adsorbed onto mineral surfaces or 3 

sequestered within soil aggregates.  4 

The presence of earthworms is another attribute of soil quality because of their 5 

contribution in the conversion of plant residues into soil organic matter. Earthworms 6 

help to increase porosity and decrease bulk density, leading to greater soil water 7 

infiltration (Lee & Foster, 1991).   8 

Medium and long-term studies on manure fertilization relating to aggregate stability and 9 

SOC have been reported (Tripathi et al., 2014). But under Mediterranean climates in 10 

particular, there is a gap in knowledge about these potential relationships because 11 

management studies have mainly focused on the effects of tillage (Plaza-Bonilla et al., 12 

2013) where “no tillage” or “minimum tillage” increased the proportion of 13 

macroaggregates together with gains in SOC content, or on the effect of slurries (Yagüe 14 

et al., 2012) which have a positive impact on aggregate stability and soil microbial 15 

biomass. The gap is relevant, because highly productive Mediterranean climates exist 16 

on several continents (Bosch-Serra, 2010). Climatic conditions can also induce different 17 

responses (Whitbread, 2003) although aridity, which leads to soil structure degradation 18 

processes becoming more active (Cerdà, 2000), is one of the most relevant. 19 

The experimental area is representative of northeastern Spain where soils are 20 

characterised by low SOC content and climate by erratic rainfall (Beguería et al., 2011). 21 

Manures are readily available because dairy cattle are raised locally (Idescat, 2009). 22 

Recently, as the area has been classified as a nitrate vulnerable area (Generalitat de 23 

Catalunya, 2014), management policies focus on water quality preservation. However, 24 
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soil disaggregation exists and crust formation in the fields is evidence of soil quality 1 

problems, which lead to difficulties in crop emergence and poor water infiltration, and 2 

enhance laminar flux, which can transport disaggregated materials.  3 

The breakdown of soil aggregates by implosion (slaking), caused by the penetration of 4 

water into soil dry aggregates, is increased when the soil surface dries between rain or 5 

irrigation events. Slaking is the main destabilizing mechanism for aggregate 6 

disintegration in the Ebro basin (Amézqueta et al., 2003). At field level, disaggregation 7 

by wetting stress increases the risk of soil erosion (Mataix-Solera et al., 2011).  8 

Macropores and mesopores (100-1000 µm) increase as manure rates increase (Miller et 9 

al., 2002) but microporosity also depends upon the organic material applied (Pagliai & 10 

Antisari, 1993). Pore size distribution and total porosity affects and is affected by 11 

almost everything that occurs in soil: movement of water and air, the transport and 12 

reaction of chemicals, and the presence of roots and other biota (Nimmo, 2004). Our 13 

hypothesis is that the regular use of manures in a Mediterranean agricultural system 14 

with low SOM content, helps in avoiding slaking. Furthermore, it could affect other 15 

physical (i.e. porosity and pore size and shape) and biological (i.e. presence of 16 

earthworms) properties related to aggregation. 17 

The aim of this study was to assess the effect of fertilization management (mineral or 18 

dairy cattle manure) on soil quality parameters under a maize (Zea mays L.) crop that 19 

was maintained as a monoculture during 11 growing seasons, under irrigation. Soil 20 

quality studies focused on SOC fractions and the stability of aggregates to wetting stress 21 

(slaking), soil porosity and earthworm abundance. The defined objectives were: (i) to 22 

assess changes in soil organic carbon physical fractions; (ii) to evaluate soil 23 

macroaggregate stability under a slaking breakdown mechanism; (iii) to study potential 24 
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relationships between macroaggregate stability to wetting stress and the different soil 1 

organic carbon fractions; (iv) to evaluate other related impacts of SOC such as porosity 2 

distribution and pore size and shape; (v) to quantify changes in earthworm abundance 3 

and their potential relationship with macroaggregate stability or porosity.  4 

MATERIALS AND METHODS  5 

Soil and climate description  6 

The experiment was established in 2002 in Tallada d’Empordà, Girona, NE Spain 7 

(altitude 18 m a.s.l., lat. 42° 03’ 02” N, long. 03° 03’ 37” E.) The soil studied has a loam 8 

texture in the upper layer (0-0.30 m) and a soil organic carbon content of 7.6 g SOC kg-9 

1. It is well drained and no salinity is present (Table I). The soil is classified as Oxiaquic 10 

Xerofluvent (Soil Survey Staff, 2014).  11 

The area has a dry Mediterranean climate according to Papadakis classification (MAPA, 12 

1989). The annual average temperature is 15.6ºC and summer temperatures are high (on 13 

average 23ºC). Average annual precipitation is 602 mm. Potential evapotranspiration is 14 

also high based on Thornthwaite’s equation (~827 mm yr-1). Most rain falls in autumn 15 

with storm events in September-October-November which can enhance runoff 16 

processes if the soil is bare. But these events may also occur in spring-time, during the 17 

maize sowing period, when crust formation can strongly affect crop emergence and 18 

establishment. The dry period includes July and August. 19 

Description of the experiment 20 

The experimental field was cropped with maize (Zea mays L.) as an irrigated 21 

monoculture, until November 2012. Every year seeding was done in March-April and 22 

harvest in September. During each cropping season of the experimental period (2002-23 

2012), tillage and fertilization management were maintained just the same. The stubble 24 
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was left in the field and was incorporated in the soil, after each annual harvest, by disc-1 

harrowing tillage. At the end of autumn or in early winter, tillage was done by a 2 

mouldboard plough (~ 25-30 cm depth). 3 

Fertilization with dairy cattle manure and mineral fertilizer treatments were included in 4 

a broad experiment aimed at obtaining fertilizer assessments in terms of yield. The 5 

treatments were in a randomised complete block design with three replicates (blocks). 6 

From them, one inorganic fertilizer treatment and two organic amendment treatments 7 

were selected (Table II), plus a control (no N, no manure applied). Treatments were 8 

chosen according to historical maximum grain yields which were between 15 and 18 9 

Mg ha-1 at 14% moisture content (Fig. 1), without significant differences between 10 

chosen treatments of dairy cattle manure (DCM) and mineral nitrogen fertilizer (MNF). 11 

Manure treatments were: DCM, applied only at sowing, at wet-weight rates of 30 and 12 

60 Mg ha-1 yr-1 (named 30DCM-0 and 60DCM-0, respectively; Table II). The lowest 13 

DCM rate took into account the legislation in force at the start of the experiment, which 14 

established a maximum amount of 210 kg N ha-1 to be applied annually from organic 15 

sources. At this rate, the annual average amount of organic carbon applied in the period 16 

2002-11was 2.4 Mg ha-1 and 3.3 Mg ha-1 in the 2012 cropping season (Table II). It can 17 

also be expressed as an average manure equivalent nutrient amount for the period 2002-18 

2012 of 230±60 kg N ha-1 yr-1, 76±33 kg P ha-1 yr-1 and 210±94 kg K ha-1 yr-1. It was 19 

complemented with 27 kg P ha-1 yr-1 as calcium superphosphate and 75 kg K ha-1 yr-1 as 20 

potassium sulphate. When the manure rate was doubled (60DCM-0), no PK mineral 21 

fertilizer was added. Manures were incorporated by disc-harrowing just before sowing. 22 

The MNF treatment consisted of 300 kg N ha-1 (named 0-300MNF) applied as calcium 23 

ammonium nitrate (27% N) at the V6-V8 Zadock’s development stage (late May). 24 
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Mineral fertilizer and control (0-0) treatments received, at sowing time, 55 kg P ha-1 yr-1 1 

as calcium superphosphate and 150 kg K ha-1 yr-1 as potassium sulphate. The control 2 

was maintained throughout all growing seasons.  3 

Sampling and analysis of manures and soil properties 4 

In every cropping season, at manure application time, a composite sample of manure 5 

applied was analysed (Table II). Organic matter was analysed according to the total 6 

volatile solids methodology which in our case includes ashing at 550ºC for 6 h in a 7 

muffle furnace. The loss of weight equals the total volatile solids (Chatterjee et al., 8 

2009). The carbon content was obtained by dividing by a coefficient of 1.82 according 9 

to the molecule that is considered to be representative of the organic matter present in 10 

manures. 11 

Soil samplings were run for each fertilization treatment in each block after the last 12 

harvest, which means eight-nine months after the last manure application (28th March 13 

2012) and incorporation (2nd April 2012). To assess aggregate stability and organic 14 

carbon fractions, samples were taken on 12 November 2012. In each plot, four 15 

individual points were sampled (0-0.10 m depth) and a composite soil sample was 16 

obtained. The three composite samples for each treatment (from the three blocks of the 17 

experiment) were air-dried, stored and sieved (2 mm) just before the different analytical 18 

procedures were carried out. Two days later (14 November) sampling was done (0-0.20 19 

m depth) in the same plots to evaluate earthworm abundance. Finally, in December 12th, 20 

undisturbed soil samples (0-0.05 m depth) were taken in order to study porosity through 21 

image analyses of soil thin sections. 22 

Water-stable aggregates (WSAMOD) without sample pre-wetting and mean weight 23 

diameter of aggregates (MWDFW) 24 
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Aggregate stability was evaluated according two methods: the standard single-sieve 1 

technique in distilled water and the multiple-sieve technique in ethanol. 2 

Each composite sample (one per plot) was divided into four subsamples and all of them 3 

were evaluated for aggregate stability, which means 12 analyses for each treatment as 4 

treatments were replicated in three blocks. The standard stability test for water-stable 5 

aggregates was modified; in that sample pre-wetting (WSAMOD) was avoided, because 6 

slaking decreases as the initial water content increases (Truman et al., 1990). In the 7 

WSAMOD test, four grams of 1-2 mm air-dried sample were directly placed on a 0.25 8 

mm opening sieve and transferred to a Yoder apparatus for disaggregation following the 9 

procedure of Kemper & Rosenau (1986). Soil remaining on the sieve was oven-dried 10 

(105ºC, 24h) and weighed to give the “aggregate stable-mass” which was expressed as a 11 

percentage of total mass. The mass of sand in both parameters was previously 12 

discounted. 13 

The resistance to slaking was also quantified as the mean weight diameter of aggregates 14 

remaining after fast wetting (MWDFW). The methodology followed Le Bissonnais 15 

(1990) as modified by Amézqueta et al. (1996). The disrupting mechanism was applied 16 

to 4 g of air-dry, 1-2 mm diameter aggregates. Aggregates were placed in 0.25 mm 17 

opening sieves and gently immersed for 10 minutes in 100 mL of deionized water. The 18 

sieves were transferred to the modified Yoder apparatus and disaggregation consisted of 19 

mechanically moving the sieves immersed in ethanol (95%) up and down, 10 times over 20 

a distance of 1.3 cm. The fraction >0.25 mm was oven dried (105ºC, 24h) and dry 21 

sieved for 1 minute on a column of four 6.5 diameter sieves with hole openings of 2.0, 22 

1.0, 0.5, and 0.25 mm using a standard mechanical sieve shaker.  23 
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The aggregate stability for each treatment was expressed as MWD (µm). It was 1 

calculated as Eq. [1]:   2 

3

1
FW 10 MWD ××=∑

=

n

i

DiWi        Eq. [1] 3 

where n corresponds to the number of aggregate size fractions considered in the analysis 4 

(in this case four size class: <0.25 mm; ≥0.25 mm to 0.5 mm; ≥0.5 mm to 1mm; ≥1 mm 5 

to 2 mm), Di is the mean diameter of aggregates that potentially can stay in the ith and 6 

i+1 th sieves which were: D1=0.125 mm; D2=0.375 mm; D3=0.75 mm; D4=1.5 mm; and 7 

Wi is the mass percentage of each fraction (dry weight of aggregates in the ith size 8 

fraction (g) divided by the sum of total sieved soil dry weight fractions (g)). 9 

Soil organic carbon fractions 10 

For each sample, five soil density and particle size fractions were obtained according to 11 

the procedure NF X 31-516 established by AFNOR (2007). According to it, the soil 12 

particle fraction sizes obtained were: <0.05 mm, ≥0.05-0.2 mm and ≥0.2-2 mm. The 13 

two upper size fractions were divided by flotation into two density fractions each: light 14 

(the fraction that floats in water) and heavy (the rest). The light fraction was analysed 15 

following the total volatile solids method. In the heavy fractions and in the smallest size 16 

one (<0.05 mm), as they are linked to the soil mineral components, the oxidizable SOC 17 

was determined by dichromate oxidation and subsequent titration with ferrous 18 

ammonium sulphate following the Walkley-Black method (MAPA, 1994).The same 19 

method was used for all initial soil composite samples as it is the routine method used in 20 

agronomic soil laboratories. 21 

Earthworm abundance 22 

Earthworms were sampled from an excavated hole in field conditions. A template was 23 

used to define a 0.25 m x 0.25 m area in two randomly chosen locations in each plot, 24 
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and samples were obtained from the defined area in a 0-0.20 m depth (Baker & Lee, 1 

1993; Smith et al., 2008). No chemical expellant was used. Earthworms in each sample 2 

were removed by hand-sorting. Abundance was measured for intact and fragmented 3 

earthworms.  4 

Soil porosity 5 

The undisturbed samples were dried at room temperature and impregnated with 6 

polyester resin with a fluorescent dye (Uvitex©). One vertical thin section (5 cm wide, 7 

13 cm long) was made from each block, according to the procedures of Stoops (2003).  8 

From each thin section two images (42 x 31.5 mm each) were obtained under two light 9 

conditions: parallel polarisers and crossed polarisers plus a third image under an 10 

ultraviolet incident light. They were processed with ImageJ (Rasband, 2008) to obtain 11 

digital binary images from which the porosity, associated with pores with an apparent 12 

diameter >25µm (the minimum threshold allowed by the established procedure) was 13 

analysed. Pore-size distribution analysis of each image was based on an open 14 

mathematic algorithm: the Quantim4 library (Vogel, 2008). The area occupied by pores 15 

was divided in four intervals according to the pores’ apparent diameter: 25-65 μm; 65-16 

100 μm, 100-200 μm, 200-400 μm and >400 μm. Shape descriptors used followed 17 

Ferreira & Rasband (2012): Circularity, with a maximum value of 1 indicating a perfect 18 

circle (4π pore area / pore perimeter2); Aspect ratio, or the ratio of the particle’s fitted 19 

ellipse (major axis / minor axis); and Solidity (area of the pore / convex area of the 20 

pore). 21 

Data analysis 22 

All statistical analyses were performed using the SAS V8 (SAS Institute, 1999-2001) 23 

statistical software. When differences, according to the analyses of variance (ANOVA) 24 
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were considered significant (p<0.05), Duncan’s Multiple Range Test (DMRT) was 1 

computed for comparing all possible pairs of means at the 0.05 probability level, with 2 

the exception of the earthworm abundance where the DMRT was done at the 0.10 3 

probability level.  4 

RESULTS 5 

In all treatments, the WSAMOD and MWDFW values were in the interval between 25.3 to 6 

35.0% and 244 to 325 µm respectively (Table III). No significant differences were 7 

found between the MNF treatment and the control (Table III). However, resistance to 8 

slaking, evaluated as WSAMOD and MWDFW, was significantly improved by long-term 9 

manure addition, with no differences between the two manure rates (Table III).  10 

The SOC content obtained by dichromate oxidation in the bulk soil ranged from 7.3 to 11 

14.6 g C kg soil-1 (Table IV). Although dichromate oxidation does not recover all the 12 

organic carbon (Skjemstad & Taylor, 1999), in both manure treatments it was 13 

significantly higher than those from the MNF treatment or the control. The more stable 14 

carbon (size<0.05mm) was also significantly improved with the manure addition at the 15 

highest rate (Table III). The sum of total light SOC (from 0.05 up to 2 mm; Table IV) 16 

was positively and significantly (p<0.001) correlated with the aggregate stability (Figs. 17 

2a and 2b), but the best adjustment was obtained with WSAMOD (R2= 0.80). 18 

The abundance of earthworms (Fig. 3) increased with DCM rates and in the 60DCM-0 19 

treatment was significantly higher (p<0.10) than the control (0-0) or the MNF.  20 

Porosity (apparent diameter >25 µm) accounted for 17.11% to 22.63% of the thin 21 

section area (Fig. 4), without significant differences between fertilizer treatments and 22 

the control, nor for the different pore sizes with the exception of the upper class (> 400 23 

µm) which was lower in the control plots. Shape differences (Table V) were present at 24 
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pore ranges of 100-200µm (Solidity) and 200-400µm (Circularity and Solidity). MNF 1 

plots were more solid than in the control and in the 30DCM plots, as well as more 2 

circular. When looking at all sizes, pore circularity tended to decrease as pore size 3 

increased (Table V). The opposite trend occurred in the aspect ratio. 4 

DISCUSSION 5 

Soil aggregate stability 6 

The significant increase of aggregate resistance against the slaking disaggregating 7 

effect, in DCM treatments (Table III), was in agreement with findings of other authors 8 

about improvement in aggregate stability associated with long term cattle manure 9 

applications (Aoyama et al., 1999; Tripathi et al., 2014). Slaking is associated with a 10 

lack of organic bonding between particles (Ashman et al., 2003). These bonding agents 11 

can be temporary and transient, but in soils with low OM content (<10 g kg-1) transient 12 

binding agents such as polysaccharides are the most important (Tisdall & Oades, 1982). 13 

The introduction of animal residues can stimulate microbial activity (Hernández et al., 14 

2007) and consequently, the production of polysaccharides. The increase in aggregate 15 

stability due to manure addition has a supplementary value, because the particular soil’s 16 

clay content is very low (Table I). The importance of mineral components (lithology) on 17 

soil aggregate stability was pointed out by Cerdà (1996). Clay content and SOC 18 

associated with aggregates are the principal determinants of water stable aggregation 19 

(Boix-Fayos et al., 2001). Thus, low clay content aggregates are more vulnerable to 20 

disruptive forces compared with high clay content ones (Edwards & Bremner, 1967; 21 

Lehrsch et al., 1991). Aggregate stability improvements by manure addition would also 22 

result in better protection against water erosion, as aggregation increases infiltration and 23 

reduces runoff (Bronick & Lal, 2005; Arjmand Sajjadi & Mahmoodabadi, 2015). 24 
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Soil organic carbon 1 

The carbon balance (manure vs. mineral fertilization) results in a positive value (Table 2 

IV) for low rate manure (30DCM-0) which represents approximately 6.7 Mg C ha-1 , in 3 

the first 10 cm depth (as average value a bulk density of 1350 kg m-3 has been adopted). 4 

The increase of SOC content in manure treatments was mainly associated with the light 5 

SOC fraction, which increased by 107% or by 282% for 30DCM-0 and 60DCM-0 6 

treatments respectively, when compared with MNF fertilization. Differences in the light 7 

fraction of SOC can be explained because it is a labile source of soil C and it is strongly 8 

influenced by factors related to the recent history of organic matter addition (Gosling et 9 

al., 2013). Thus, it is sensitive to changes in management practices (Gregorich et al., 10 

1997). Our results corroborate Leifeld & Kögel-Knabner (2005) statements saying that 11 

the light SOC fraction is an early indicator of future (long-term) impacts of management 12 

on soil quality. The importance of the SOC light fraction as a sensitive indicator of 13 

changes in OM status associated with fertilization practices was also observed by 14 

Bhogal et al. (2009) on annual manure additions (>7 years). Changes in the SOC light 15 

fraction linked to manure applications controlled the magnitude of changes in aggregate 16 

stability (Fig. 2a and 2b) although a small fraction could be associated with other 17 

temporary stabilizing materials, e.g. stover incorporation and roots, as can be seen for 18 

the mineral fertilizer treatment (Table IV). This is the key point of our research which 19 

distinguishes it from the works of others authors (Whalen & Chang, 2002; Hou et al., 20 

2012; Tripathi et al., 2014; Gelaw et al., 2015; Mikha et al., 2015) where soil 21 

aggregation was related to total SOC. It also reinforces the warning of Pulido Moncada 22 

et al. (2015) when using the SOC as an estimator of aggregate stability, that specific 23 

fractions of the SOC can be the stabilizing agent as, in our case, the light fraction 24 
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despite the increment of the most stable SOC fraction at the highest manure rate (Table 1 

IV). The light fraction is considered to be the decomposing plant and manure part with a 2 

rapid turnover and low specific density (Whitbread, 2003), that stimulates 3 

polysaccharide production (transient binding agents) by microbial activity. The 4 

continued polysaccharide production will result in increments in the aggregate stability 5 

(Tisdall & Oades, 1982). 6 

Total porosity, size classes and shape parameters 7 

Fertilization, whatever is the nature of the fertilizers (minerals or manures), enhances 8 

the presence of pores (Fig. 4) in the upper size class (>400µm) without modifying their 9 

shape (Table V). This result is in accordance with Allison (1973) in the sense that 10 

aggregation improvement extends the volume of large pores. This fact is particularly 11 

relevant in this agricultural system as these pores favor aeration and soil water 12 

infiltration (Pagliai et al., 2004) and, as a consequence, the runoff coefficient and the 13 

sediment transport capacity of water is reduced (Dosskey et al., 2007). Compared with 14 

the results of Miller et al. (2002), no increase of macropores and mesopores (100-1000 15 

µm) was observed as manure rates increased, although the tendency existed (Fig. 4). 16 

The solidity parameter gives information about the irregularity, tortuosity and roughness 17 

of a pore. Also, circular pores are smooth pores, which tend to seal when soil is wet 18 

(Pagliai & Vignozzi, 2002). Then, the moderately irregular pores have walls which 19 

increase water retention capacity and superficial contact by capillarity. This behavior, 20 

enhanced by manure application at an agronomic rate (30DCM), is an environmentally 21 

positive aspect of manure use, despite its attenuation at a higher rate (60DCM).   22 

Earthworms 23 
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Earthworms’ abundance could have been underestimated in terms of anecic species as 1 

they can easily escape to deeper soil layers. For these ecotypes other different expulsion 2 

techniques are available (Valckx et al., 2011). Nevertheless, some authors say (Bartlett 3 

et al., 2006, 2010) that behavioral expulsion techniques overestimate anecic species in 4 

comparison to endogeic species. Besides, Murchie et al. (2015) found that the species 5 

which increased with the application of cattle slurry were epigeic earthworms; and to a 6 

lesser extent (just one species) endogeic earthworms, while anecic species were not 7 

affected. Thus, the hand sorting technique was a sensible option. Earthworm abundance 8 

tended to increase with manure rates (Fig. 3) but had no influence over macroporosity 9 

differences between fertilization treatments (mineral or manures), only when they were 10 

compared with the control (no N). As organic debris was similar in plots that received N 11 

fertilization, and the contribution of earthworms is the physical mixing of soil minerals, 12 

water, microbes and residual matter, this fact could have been the reason for the absence 13 

of significant differences in soil macroporosity between all the fertilized plots (Fig. 4). 14 

Furthermore, the excretion from the gut releases organic materials which begin to form 15 

a structural fabric within the soil (Lee & Foster, 1991). Stable aggregates in soil are 16 

linked to the burrowing actions of earthworms (Ketterings et al., 1997). Earthworms 17 

enhance the litter-derived C transfer into the soil profile (Novara et al., 2015) and the 18 

incorporation of crop-derived C into macroaggregates and  19 

 more importantly into microaggregates formed within macroaggregates (Pulleman et 20 

al., 2005). The dominant mechanism for enhanced aggregate stability from excreted 21 

pellets is the generation of bonds of clay-polyvalent cation-organic matter linkages. 22 

Polysaccharides as well as other organic polymers are involved in the bonds described, 23 

and the differences between them (more or less anionic groups) will depend on the 24 
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ingested materials (Shipitalo & Protz, 1989). At this point, the added manure could set 1 

up some differences in aggregation in comparison with to the mineral fertilized plot 2 

which just received plant residues. As a consequence, the relationship between the 3 

presence of the light organic matter fraction (greater amount in manured treatments; 4 

Table IV) and aggregate stability (Fig. 2) could be enhanced by the activity of 5 

earthworms.  6 

Management of the agricultural system  7 

Manure application is a fertilization option in which a consideration of overall 8 

sustainability must be included: yield productivity, soil quality and overall nutrient 9 

management. In this intensively managed Mediterranean agricultural system, maize 10 

yields (15 to 18 Mg ha-1) are considered high, whatever the fertilization option is 11 

(mineral or/and manures). Thus, the preservation of soil quality, as a decision factor 12 

when evaluating fertilization strategies, can be easily accepted by farmers. 13 

Considering the yields attained (Table II) and an average maize nutrient extraction for 14 

each 1000 kg of grain and hectare of close to 28-30 kg N, 4.4-5.3 kg P and 19-21 kg K 15 

(Betrán-Aso, 2010), at the lowest DCM rates there could be a constraint on N 16 

availability depending upon mineralization values (i.e. residual effect). The applied 17 

phosphorus is close to crop needs, which justifies the addition of mineral P. This is a 18 

key point as surface application of manure often results in very high P concentrations at 19 

the soil surface (Andraski & Bundy, 2003), and P can be lost by sediment transport 20 

losses. Nevertheless, application of dairy manure with high solid content (210-280 g kg-21 

1) reduces sediment and particulate P losses in runoff (Yagüe et al., 2011). Our manure 22 

applications, with high dry matter content (304±68 g kg-1), could also help in avoiding 23 

the transport of sediments and the consequent P runoff because they increase aggregate 24 
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stability related to the usual slaking phenomena in Mediterranean conditions. For 1 

potassium, as the residues are incorporated, there is considerable K recycling, but also a 2 

need for complementary mineral fertilization. Furthermore, DCM tends to increase 3 

earthworm abundance and the solidity of some pores (200 to 400 µm) related with water 4 

infiltration which will result in a better water management efficiency.  5 

CONCLUSIONS 6 

Dairy cattle manure applied annually to maize favoured soil aggregate stability against 7 

the destabilizing effect of slaking on dry aggregates. These results were independent of 8 

the measurement procedures: WSAMOD or MWDFW. The improvement in aggregate 9 

stability was associated with increments in the SOC content, mainly in the light organic 10 

matter fraction. For a period of eleven years, the increment of SOC in manured plots: 30 11 

or 60 Mg ha-1 applied, ranged from 3.9–4.9 g C kg soil-1 to 6.7–9.1 g C kg soil-1 12 

respectively, when compared with mineral fertilization. The earthworm abundance 13 

increased with manure rates although it was not translated into an increment of the areas 14 

occupied by pores with an apparent diameter >25µm. Changes in porosity by any 15 

fertilization treatment consisted in the increase of the upper fraction (>400µm). In the 16 

interval from 100 up to 400 µm, the 30DCM treatment maintained a lower circularity 17 

and pore solidity than MNF. These changes in pore shape could be translated as a way 18 

to facilitate water infiltration and to avoid surface sealing. The annual use of manure in 19 

these agricultural systems, at low rates such as 30 Mg ha-1, can be recommended 20 

because of the positive impacts on soil quality parameters and the achievement of high 21 

yields. Applying higher annual manure rates such as 60 Mg ha-1 is a more risky option 22 

for a long term sustainable management strategy (high nutrient addition in relation to 23 
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the crop’s needs), as there may be groundwater water quality concerns (e.g. leaching of 1 

nitrates). 2 
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Figure legends: 1 

Figure 1. Average grain yield (14% moisture content) of the period from 2001 to 2012 2 

for each fertilization treatment: 0-0 or the control (no N, no manure applied); 0-3 

300MNF: mineral N fertilizer (calcium ammonium nitrate, 27% N) applied at rate of 4 

300 kg N ha-1 yr-1when six-eight leaves were visible; 30DCM-0 and 60DCM-0: dairy 5 

cattle manure applied at wet-weight rate of 30 Mg ha-1 yr-1, or 60 Mg ha-1 yr-1 at sowing. 6 

Mean values of abundance followed by a different letter are significantly different at the 7 

0.05 probability level based on the Duncan Multiple Range Test. Bars represent the 8 

standard error of three replicates. 9 

Figure 2. Relationship between soil organic carbon (SOC) light fraction and aggregate 10 

stability, (a) applying the modified water aggregate stability test (without pre-wetting, 11 

WSAMOD) or (b) according to the mean weight diameter test after fast wetting 12 

(MWDFW). Bars represent the standard error of four replicates, *** p<0.001. 13 

Figure 3. Earthworms abundance in each fertilization treatment: 0-0 or the control (no 14 

N, no manure applied); 0-300MNF: mineral N fertilizer (calcium ammonium nitrate, 15 

27% N) applied when six-eight leaves are visible and at rate of 300 kg N ha-1 yr-1; 16 

30DCM-0 and 60DCM-0: dairy cattle manure applied at wet-weight rate of 30 Mg ha-1 17 

yr-1, or 60 Mg ha-1 yr-1 at sowing. Mean values of abundance followed by a different 18 

letter are significantly different at the 0.10 probability level based on the Duncan 19 

Multiple Range Test. Bars represent the standard error of three replicates. 20 

Figure 4. Average values (n=6) of the porosity area (apparent diameter > 25 µm) and its 21 

distribution for each fertilization treatment maintained in during a period of 11 years in 22 

a maize crop. The fertilization treatments were: 0-0 or the control (no N, no manure 23 

applied); 0-300MNF: mineral N fertilizer (calcium ammonium nitrate, 27% N) applied 24 
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at rate of 300 kg N ha-1 yr-1 when six-eight leaves were visible, and; 30DCM-0 and 1 

60DCM-0: dairy cattle manure applied at wet-weight rate of 30 Mg ha-1 yr-1, or 60 Mg 2 

ha-1 yr-1 at sowing. Mean values of abundance followed by a different letter were the 3 

only ones with significant difference at the 0.05 probability level based on the Duncan 4 

Multiple Range Test. Analysis were done with the values of transformed data (x0.5). 5 

Bars represent the standard error of three replicates. 6 

7 
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Table I. Selected soil physical and chemical characteristics of the experimental site. 1 

Samples (0-0.30 m) were obtained at the start of the fertilization experiment (October 2 

2002). 3 

Parameter Value 
Particle size distribution (g kg-1)  

Sand (2000 <Ø‡< 50 µm) 497 
Silt (50 <Ø< 2 µm) 435 
Clay (Ø < 2 µm) 68 

pH (water; 1:2.5†) 8.4 
Electrical conductivity (1:5†; dS m-1, 25ºC) 0.19 
Organic matter (g kg-1) 13.0 
Total N (g kg-1) 0.8 
Phosphorus (mg P kg-1; Olsen) 23 
Potassium (mg K kg-1; Ammonium acetate) 84 
†Relation; soil: distilled water. 4 
‡ Ø: particle apparent diameter. 5 

6 
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Table II. Description of annual fertilization treatments with averages of the organic 1 

carbon (C) applied. Fertilizers (mineral or from different dairy cattle manure rates) were 2 

annually applied at sowing or when the crop had six-eight visible leaves (V6-V8).  3 

 Annual slurry 
fertilizer 
treatment  

2002 to 2011  
(10 yr) 

Fertilization at 
sowing in 2012 

Treatment† Sowing V6-V8 ----------  Mg C ha-1  yr-1  -------- 
0-0  0 0 0 0 
0-300MNF  0 300 0 0 
30DCM-0  30 0 2.4 (±0.6) 3.3 
60DCM-0 60 0 4.8 (±1.2) 6.6 
Significance     

Numbers in brackets are the standard deviation. 4 
** Significance at the 0.01 probability. 5 
†MNF: mineral nitrogen fertilizer (calcium ammonium nitrate, 27% N), applied when 6 
the crop has six-eight leaves. Number behind indicates the applied rate of 300 kg N ha-1 7 
yr-1.  8 
DCM: dairy cattle manure. Numbers indicate the average theoretical applied wet-weight 9 
rate: 30 Mg ha-1 yr-1, or 60 Mg ha-1 yr-1 at sowing. 10 
‡Mean values in a column followed by different letter are significantly different at the 11 
0.05 probability level based on the Duncan Multiple Range Test. 12 
 13 
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Table III. Average values (n=12) of the mass percentage of water-stable aggregates 1 

(WSAMOD)‡ and of the mean weight diameter after a fast wetting (MWDFW)§, associated 2 

with different fertilization practices maintained during a period of 11 years in a maize 3 

crop. 4 

 5 
Treatment† WSAMOD (%) ¶ MWD FW (µm)¶ 

0-0  25.31 (4.76) B 244.03 (8.70) B 
0-300MNF 25.26 (6.08) B 247.28 (4.46) B 
30DCM-0  34.25 (14.12) A 324.95 (16.16) A 
60DCM-0  35.03 (1.24) A 309.65 (13.21) A 

Significance * ** 
Numbers in brackets are coefficients of variation (%). 6 
* Significant at the 0.05 probability level. 7 
** Significant at the 0.01 probability level. 8 
†MNF: mineral nitrogen fertilizer applied as calcium ammonium nitrate (27%, N); the 9 
number behind indicates the applied rate of 300 kg N ha-1 yr-1 at six-eight visible leaves. 10 
DCM: dairy cattle manure; numbers indicate the average theoretical applied rate of 30 11 
Mg ha-1 yr-1 or 60 Mg ha-1 yr-1 at sowing. 12 
‡WSAMOD: Water aggregate stability from Kemper and Rosenau (1986) method and its 13 
modification without pre-wetting. 14 
§MWDFW: mean weight diameter after fast-wetting, according to Le Bissonnais (1990) 15 
and modified by Amézqueta et al. (1996). 16 
¶Mean values in a column followed by different letter are significantly different at the 17 
0.05 probability level based on the Duncan Multiple Range Test. 18 

19 
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Table IV. Average values (n=3) of organic soil carbon from a bulk soil and from 1 

different physical sizes and density soil fractions, associated to different fertilization 2 

practices maintained during a period of 11 years in a maize crop. Light fraction was 3 

analysed according to the total volatile solids methodology. The oxidizable organic 4 

carbon by dichromate oxidation was analysed in the remaining samples. 5 

 Fractions (mm)‡ Total oxidizableC 
(dichromate)‡  0.2-2 0.05-0.2 <0.05 

Treatment† Heavy Light Heavy Light  
 --------------------------------------- g C kg soil-1------------------------------ 

0-0  0.01 0.61C 0.59 2.33C 4.77B 7.27C 
0-300MNF  0.01 0.93BC 0.64 2.56C 5.23B 7.90C 
30DCM-0  0.01 1.96AB 1.24 5.28B 5.87B 11.80B 
60DCM-0  0.01 2.17A 0.57 7.67A 8.07A 14.63A 

Significance NS * NS *** * *** 
NS: Not significant (p>0.05). 6 
* Significant at the 0.05 probability level. 7 
*** Significant at the 0.001 probability level. 8 
†MNF: mineral nitrogen fertilizer applied as calcium ammonium nitrate (27% N), the 9 
number behind indicates the applied rate of 300 kg N ha-1 yr-1. DCM: dairy cattle 10 
manure, numbers behind indicate the average theoretical applied rate: 30 Mg ha-1 yr-1 or 11 
60 Mg ha-1 yr-1.  12 
‡Mean values in a column followed by different letter are significantly different at the 13 
0.05 probability level based on the Duncan Multiple Range Test. 14 
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Table V. Average values (n=6) of different shape porosity parameters: Circularity 1 

(Circ.), Aspect Ratio (AR), and Solidity (S), for each fertilization treatment† and pore 2 

sizes. 3 

Pore size Shape parameters‡ 

25-65 µm Circ. AR S  
0-0  0.947 1.497 0.876 

0-300MNF 0.959 1.478 0.872 
30DCM-0 0.906 1.703 0.856 
60DCM-0 0.938 1.538 0.874 
Significance  NS NS NS 
65-100 µm Circ. AR S 
0-0  0.848 1.657 0.839 
0-300MN† 0.874 1.593 0.855 
30DCM-0 0.787 1.790 0.817 
60DCM-0 0.810 1.767 0.841 
Significance  NS NS NS 
100-200 µm Circ. AR S 
0-0  0.688 1.772 0.808B 
0-300MNF 0.735 1.888 0.845A 
30DCM-0 0.643 1.935 0.787B 
60DCM-0 0.645 1.972 0.820AB 
Significance  NS  NS  S (0.02) 
200-400 µm Circ. AR S 
0-0  0.477AB 2.088 0.734B 
0-300MNF 0.556A 1.937 0.809A 
30DCM-0 0.451B 2.083 0.721B 
60DCM-0 0.449B 2.093 0.762AB 
Significance   S (0.04) NS S (0.03) 
> 400 µm Circ. AR S 
0-0  0.300 2.215 0.644 
0-300MNF 0.354 2.120 0.747 
30DCM-0 0.263 2.235 0.624 
60DCM-0 0.266 2.110 0.686 
Significance  NS NS NS 

†MNF: mineral nitrogen fertilizer applied as calcium ammonium nitrate (27%); the 4 
number behind indicate the applied rate of 300 kg N ha-1 yr-1.DCM: dairy cattle manure; 5 
numbers behind indicate the applied rate of 30 Mg ha-1 yr-1 or 60 Mg ha-1 yr-1.  6 
‡Mean values in a column followed by different letter are significantly different at the 7 
0.05 probability level based on the Duncan Multiple Range Test.  8 

9 
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Figure 1. Average grain yield (14% moisture content) of the period from 2001 to 2012 22 
for each fertilization treatment: 0-0 or the control (no N, no manure applied); 0-23 
300MNF: mineral N fertilizer (calcium ammonium nitrate, 27% N) applied at rate of 24 
300 kg N ha-1 yr-1when six-eight leaves were visible; 30DCM-0 and 60DCM-0: dairy 25 
cattle manure applied at wet-weight rate of 30 Mg ha-1 yr-1, or 60 Mg ha-1 yr-1 at sowing. 26 
Mean values of abundance followed by a different letter are significantly different at the 27 
0.05 probability level based on the Duncan Multiple Range Test. Bars represent the 28 
standard error of three replicates. 29 
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 1 

 
Figure 2. Relationship betweensoil organic carbon (SOC) light fractionand aggregate 
stability, (a) applying the modified water aggregate stability test(without pre-wetting, 
WSAMOD) or (b) according to the mean weight diameter test after fast wetting 
(MWDFW). Bars represent the standard error of four replicates, *** p<0.001. 
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Figure 3. Earthworms abundance in each fertilization treatment: 0-0 or the control (no 19 
N, no manure applied); 0-300MNF: mineral N fertilizer (calcium ammonium nitrate, 20 
27% N) applied when six-eight leaves are visible and at rate of 300 kg N ha-1 yr-1; 21 
30DCM-0 and 60DCM-0: dairy cattle manure applied at wet-weight rate of 30 Mg ha-1 22 
yr-1, or 60 Mg ha-1 yr-1 at sowing. Mean values of abundance followed by a different 23 
letter are significantly different at the 0.10 probability level based on the Duncan 24 
Multiple Range Test. Bars represent the standard error of three replicates. 25 
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Figure 4. Average values (n=6) of the porosity area (apparent diameter > 25 µm) and its 21 
distribution for each fertilization treatment maintained in during a period of 11 years in 22 
a maize crop. The fertilization treatments were: 0-0 or the control (no N, no manure 23 
applied); 0-300MNF: mineral N fertilizer (calcium ammonium nitrate, 27% N) applied 24 
at rate of 300 kg N ha-1 yr-1 when six-eight leaves were visible, and; 30DCM-0 and 25 
60DCM-0: dairy cattle manure applied at wet-weight rate of 30 Mg ha-1 yr-1, or 60 Mg 26 
ha-1 yr-1 at sowing. Mean values of abundance followed by a different letter were the 27 
only ones with significant difference at the 0.05 probability level based on the Duncan 28 
Multiple Range Test. Analysis were done with the values of transformed data (x0.5). 29 
Bars represent the standard error of three replicates. 30 
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