Evolution of the \textit{adhE} Gene Product of
\textit{Escherichia coli} from a Functional Reductase to a Dehydrogenase

\textbf{GENETIC AND BIOCHEMICAL STUDIES OF THE MUTANT PROTEINS}*

Jorge Membrillo-Hernández‡‡, Pedro Echave‡, Elisa Cabiscol‡, Jordi Tamarit‡‡, Joaquim Ros‡‡, and Edmund C. C. Lin‡

From the †Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115 and ‡Departament de Ciències Medicines Básiques, Facultat de Medicina, Universitat de Lleida, 25198 Lleida, Spain

The multifunctional AdhE protein of \textit{Escherichia coli} (encoded by the \textit{adhE} gene) physiologically catalyzes the sequential reduction of acetyl-CoA to acetaldehyde and then to ethanol under fermentative conditions. The NH\textsubscript{2}-terminal region of the AdhE protein is highly homologous to aldehyde:NAD+ oxidoreductases, whereas the COOH-terminal region is homologous to a family of Fe2+-dependent ethanol:NAD+ oxidoreductases. This fusion protein also functions as a pyruvate formate lyase deactivase. \textit{E. coli} cannot grow aerobically on ethanol as the sole carbon and energy source because of inadequate rate of \textit{adhE} transcription and the vulnerability of the AdhE protein to metal-catalyzed oxidation. In this study, we characterized 16 independent two-step mutants with acquired and improved aerobic growth ability on ethanol. The AdhE proteins in these mutants catalyzed the sequential oxidation of ethanol to acetaldehyde and to acetyl-CoA. All first stage mutants grew on ethanol with a doubling time of about 240 min. Sequence analysis of a randomly chosen mutant revealed an Ala-267 → Thr substitution in the acetaldehyde:NAD+ oxidoreductase domain of AdhE. All second stage mutants grew on ethanol with a doubling time of about 90 min, and all of them produced an AdhEA267T/E568K. Purified AdhEA267T/E568K showed highly elevated acetaldehyde dehydrogenase activities. It therefore appears that when AdhE catalyzes the two sequential reactions in the counter-physiological direction, acetaldehyde dehydrogenation is the rate-limiting step. Both mutant proteins were more thermosensitive than the wild-type protein, but AdhEA267T/E568K was more thermal stable than AdhEA267T. Since both mutant enzymes exhibited similar kinetic properties, the second mutation probably conferred an increased growth rate on ethanol by stabilizing AdhEA267T.

When lacking molecular oxygen or other exogenous electron acceptors, \textit{Escherichia coli} carries out mixed acid fermentation during anaerobic growth in order to achieve metabolic redox balance. The fermentation products include ethanol, formate, acetate, glyceral, di-lactate, succinate, CO\textsubscript{2}, and H\textsubscript{2} (1, 2). As indicated by Reactions 1 and 2 below, ethanol arises from acetyl-CoA by two sequential NADH-dependent reductions catalyzed by the multifunctional ethanol oxidoreductase (the \textit{adhE} gene product) comprising 891 amino acids (Refs. 3 and 4; see Fig. 1):

\textbf{REACTION 1}

\begin{equation}
\text{AdhE} \quad \text{CH}_3\text{CO-S-CoA} + \text{NADH} + \text{H}^+ \rightarrow \text{CH}_3\text{CHO} + \text{CoA} + \text{NAD}^+ \\
\end{equation}

\textbf{REACTION 2}

\begin{equation}
\text{AdhE} \quad \text{CH}_3\text{CHO} + \text{NADH} + \text{H}^+ \rightarrow \text{CH}_3\text{CH}_2\text{OH} + \text{NAD}^+ \\
\end{equation}

AdhE appears to be the evolutionary product of a gene fusion. The NH\textsubscript{2}-terminal region of this protein is highly homologous to the family of aldehyde:NAD+ oxidoreductases, whereas the COOH-terminal region is homologous to the family of Fe2+-dependent alcohol:NAD+ oxidoreductases (3–5). Despite the fact that both AdhE-catalyzed reactions are reversible, \textit{E. coli} fails to grow on ethanol as a sole carbon and energy source apparently for two main reasons. First, the \textit{adhE} gene is insufficiently expressed under aerobic conditions (6–8). Second, the catalytic half-life of the AdhE protein is shortened during aerobic metabolism by a metal-catalyzed oxidation (MCO)1 cycle. In this disablilizing process, the amino acid chains of AdhE are thought to be covalently attacked by the highly reactive hydroxyl radicals locally generated by the Fe2+ bound to the active site of the alcohol:NAD+ oxidoreductase domain. In fact, AdhE has been identified as one of the major targets of protein oxidation in \textit{E. coli} (9, 10).

The case of the \textit{adhE} gene product and its role in general fermentation is analogous to that of the \textit{fucO} gene product and its role in specific L-fucose fermentation (11). Unlike AdhE, FucO is not a fusion protein but a simple enzyme that belongs to the family of Fe2+-dependent alcohol:NAD(P)+ oxidoreductases and catalyzes physiologically the reduction of L-lactaldehyde to L-1,2-propanediol (11–13). Like AdhE, FucO also fails to serve as a dehydrogenase for aerobic growth, because the gene is inadequately expressed, and the enzyme is highly sus-

* This work was supported by United States Public Health Service Grant GM40993 from the NIGMS of the National Institutes of Health and Dirección General de Enseñanza Superior e Investigación Científica Project PB97-1456. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† Recipient of The Bernard D. Davis Fellowship. Present address: Dept. de Biología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, P. O. Box 70-228, 04510 Mexico City, México.

‡ Recipient of a Ph.D. fellowship from the Ministerio de Educación y Cultura (Spain).

‡‡ Recipient of a postdoctoral fellowship from the Generalitat de Catalunya (Spain).

‡‡ To whom correspondence should be addressed. Tel.: 34 973 702 407; Fax: 34 973 702 426.

1 The abbreviations used are: AdhE, ethanol oxidoreductase encoded by \textit{adhE}; FucO, L-1,2-propanediol oxidoreductase encoded by \textit{fucO}; MCO, metal catalyzed oxidation; MOPS, morpholinepropanesulfonic acid; kb, kilobase pair; IPTG, isopropyl-1-thio-b-galactopyranosid.
ceptible to MCO during aerobic metabolism. We have previously characterized E. coli mutants that acquired aerobic growth ability on 1,1,2-propanediol by recruiting FucO to serve as a dehydrogenase (Ref. 14 and references therein). Two kinds of mutations contributed to such an ability. First, an IS5 insertion occurred in the fucO promoter that resulted in high constitutive expression of the fucAO operon (15). Second, a missense mutation occurred that conferred resistance of FucO to MCO (9, 14, 16).

A mutant that grew on ethanol as sole carbon and energy source was previously reported (6). However, the nature of the mutation(s) responsible for the ethanol" phenotype was not definitively determined. Here we report the isolation of 16 mutants and the characterization of the genetic changes at the molecular level. Our results showed that the evolution of AdhE as a dehydrogenase followed a strategy that differs from that of FucO.

EXPERIMENTAL PROCEDURES

Bacterial Strains, Growth Conditions, and Preparation of Cell Extracts—The relevant characteristics and sources of bacterial strains, plasmids, and phages used in this study are given in Table I. Luria Bertani (LB) medium containing 0.1 mM MOPS and 0.2% glucose was adjusted to pH 7.4 (LB-glucose medium). Minimal medium was prepared as described previously (10) and was supplemented with 0.2% glucose or 2% ethanol as carbon and energy source. Solid media contained 1.5% Bacto-agar (Difco). Culture absorbance (A560) for assays.

Enzyme Assays—To determine the level of AdhE activities, the cells were grown on glucose or ethanol minimal medium. Ethanol dehydrogenase activity was assayed in 1.5 mM ethanol, 2.5 mM NAD, and 300 mM potassium carbonate at pH 10.0. Acetaldehyde dehydrogenase activity was assayed in 100 mM acetaldehyde (10 mM for purified enzymes), 2.5 mM CaASh, 2.5 mM NAD, and 300 mM potassium carbonate at pH 10.0 (18). The rates of both dehydrogenase reactions were monitored by the formation of NADH at 340 nm (19). Acetyl-CoA reductase activity was assayed in 1 mM acetyl-CoA, 0.25 mM NADH, and 50 mM Tris-HCl (pH 7.5). Acetaldehyde reductase activity was assayed in 100 mM acetaldehyde (10 mM for purified enzymes), 0.25 mM NADH, and 50 mM Tris-HCl (pH 7.5) (18). The ratio of both dehydrogenase reactions was monitored by the disappearance of NADH at 340 nm (19). In all of the assays 1 activity unit corresponds to 1 μmol of substrate converted per min. β-Galactosidase activity was assayed as described previously by Miller (20).

Purification of AdhE Wild-type and Mutant Proteins—6 liters of anaerobic cultures were grown overnight at 37 °C in minimal medium containing 0.2% glucose. Cultures were centrifuged and disrupted by two 1-min cycles of sonication with 1-min intervals of resting on ice. Cell-free extracts were obtained by centrifugation at 15,000 × g for 30 min at 4 °C. Ammonium sulfate was slowly added to the extracts being stirred and chilled on ice until 20.6% saturation was reached. The mixture was left chilled for 30 min and then centrifuged for 15 min at 4 °C at 15,000 × g. The supernatant fraction was recovered, and ammonium sulfate was added until 30% saturation while being stirred and chilled on ice. After 30 min of equilibration, the mixture was again centrifuged, as described above. This time the pellet was recovered and resuspended in 2.5 ml of 50 mM Tris-HCl (pH 8.5) (approximately 30–35 mg of protein/ml). The sample was applied to an Ultragel AcA44 gel filtration column (IBF Biotechnics, Paris, France) pre-equilibrated with 100 mM KCl, 50 mM MOPS-KOH at pH 7.65. Elution with the same buffer was carried out at a flow rate of 1.4 ml/min. Fractions showing significant AdhE activity were pooled and diluted (1:1 v/v) with 50 mM Tris-HCl (pH 8.5). The sample was then loaded onto a DEAE-15HR column (Waters Associates, Milford, MA) equilibrated with 50 mM Tris-HCl (pH 8.5) and 50 mM NaCl. After a washing step of 30 min with the same buffer, elution was carried out by a linear gradient of 50–200 mM NaCl at a flow rate of 5 ml/min for 20 min. Peak AdhE elution occurred at approximately 15 min. Purity of the samples was examined by SDS-polyacrylamide gel electrophoresis (21). Protein concentration was determined by the Bradford method (22), using bovine serum albumin as standard.

Thermal Stability Assays of AdhE—Purified wild-type and mutant AdhE proteins (0.14 mg/ml) were incubated at 37 °C. Samples were withdrawn at different time intervals for assay of ethanol dehydrogenase activity.

Oxidative Inactivation of AdhE—Purified wild-type and mutant AdhE proteins (0.14 mg/ml) were incubated at 15 °C either in the presence of 1 mM NADH or 2 mM ascorbate plus 50 μM FeCl3 (23).
Samples were withdrawn at different time intervals for assay of ethanol dehydrogenase activity.

Results

Selection of Mutants with Acquired Aerobic Growth Ability on Ethanol as a Sole Carbon and Energy Source—Selection of mutants that could grow aerobically on ethanol as a sole carbon source was carried out as follows. E. coli wild-type strain ECL3999 was crossed by P1 transduction with strain JAN (26). The plasmid pJMADH5 (26) was used as a helper plasmid in the transduction experiments. The P1 lysate was used to transduce strain JAN into the ECL3999 strain background. The transductants were selected for growth ability on ethanol as a sole carbon and energy source. Of 1425 colonies screened on the MacConkey-ethanol agar, 1425 colonies were picked and tested for growth on the same kind of agar for purification. A single red colony from each streak was then tested for growth ability on agar containing mineral medium and 2% ethanol. For reasons undetermined, only 31 red colonies were found to have an ethanol⁺ phenotype. Sixteen independent ethanol⁺ mutants were adopted for further study. The doubling time of all these mutants in liquid mineral medium containing 2% ethanol was about 240 min at 37 °C. A phase P1 lysate was then prepared from each of the mutants to transduce strain ECL4000 and selected for aerobic growth on ethanol. One ethanol⁺ transductant (first stage mutants) from each transduction experiment was subjected to an additional 100 generations of selection in the same ethanol liquid medium. A sample of the cells from each line of selection was then plated again on ethanol agar, and one colony that clearly exhibited an increased growth rate was isolated. A phase P1 lysate was then prepared from each of the 16 clones with improved growth rate on ethanol to transduce strain ECL4000, and the transductants were selected for aerobic growth on ethanol. All backcrosses gave rise to the large colony size phenotype. When each of these back-crossed strains (second stage mutants) were grown at 37 °C in liquid mineral medium containing 2% ethanol, all showed a doubling time of about 90 min. These results indicate that the first and second mutants are transductionally linked. A first stage mutant, JE46, and a second stage mutant, JE52, were picked as representatives for both genetic and biochemical characteristics (Table II).

Indication of cis Mutations by Enzymatic Analysis of Merodiploid Evolvants—For a preliminary cis/trans test for the two mutations, we took advantage of the adhE-F(adhE-lacZ) merodiploid background. A cis mutation in adhE should primarily increase the ethanol dehydrogenase activity level, whereas a trans-positively regulatory mutation should elevate the expression of both adhE-F and FadhE-lacZ).

When wild-type and mutant cells were grown aerobically on glucose, ethanol dehydrogenase activities were found to be 5.3-fold elevated in strain JE46 and 7.6-fold elevated in strain JE52 when compared with the wild-type level. The levels of the dehydrogenase activity were even more elevated when the mutant cells were grown aerobically on ethanol (possibly because of substrate stabilization). Curiously, the β-galactosidase activity levels were found to be 40% lower in strain JE46 and 46% lower in strain JE52 when compared with the wild-type level (Table II). In any event, the increase in ethanol dehydrogenase level without concomitant increase in β-galactosidase activity level would suggest that both mutations acted in cis. According to Leonardo and co-workers (8), the change of β-galactosidase activity levels in a direction opposite to that of ethanol dehydrogenase is best explained as follows. A cis mutation was responsible for elevating the dehydrogenase activity levels in the mutants JE46 and JE52. The increase in this activity (consumption of NADH coupled with the reduction of acetyl-CoA) during aerobic growth on glucose would raise the cellular redox potential. Such a state would in turn cause a decrease in the synthesis of β-galactosidase under the direction of the adhE promoter. The adhE promoters of Aerobacter aerogenes
FIG. 1. AdhE amino acid sequence and putative binding sites. The acetaldehyde dehydrogenase and ethanol dehydrogenase domains are connected by a proposed linker (bold italicized letters) indicated by the arrow (33). The NAD-binding site (9) is shown with its conserved residues underlined. The substituted amino acid residues (T and K) in the mutant proteins are encircled.

Further Evidence in Support of Mutations cis to adhE by Transduction Analysis—To confirm that the mutations in JE46 and JE52 were cis to the adhE locus situated at min 27.8 (31), we prepared a P1vir lysate from each of the mutants to transduce strain CAG12169 that bears sci-506::Tn10 insertion at min 28 (31). If the mutation(s) responsible for the increase of adhE expression is indeed cis, then all of the transductants selected for the ability to grow on ethanol should lose the closely linked transposon Tn10 that confers tetracycline resistance. When 2000 ethanol-resistant transductants, obtained from each of the two P1vir lysates, were analyzed for the drug resistance, all were found to be Tet⁺, affirming that the mutation(s) was in cis. There are several ways by which a mutation cis to adhE can increase the ethanol dehydrogenase activity level. For example, a regulatory mutation could increase the rate of transcription or translation of the gene, or a structural gene mutation may occur that enhances the catalytic activity or the half-life of the protein.

Sequence Determination of Mutant adhE Alleles—To locate the mutations, we sequenced each entire mutant gene from 1 kb upstream of the ATG codon to the end of the open reading frame (see "Experimental Procedures"). As expected, the promoter region of strains JE46 and JE52 was identical to that of the wild-type sequence previously reported (32). On the other hand, the coding region of the adhE gene in strain JE46 showed an A to G transition at position 799 from the A of the initiation codon ATG. This change converts amino acid residue 267 from Ala to Thr and is located inside the acetaldehyde dehydrogenase domain (Fig. 1). The coding region of the adhE gene in strain JE52 showed two base changes as follows: the same substitution found in strain JE46, plus an A to G transition at position 1702 that converts the amino acid residue 568 from Glu to Lys, which is located inside the ethanol dehydrogenase domain. Strikingly, when the 15 other independently isolated second stage mutants were also subjected to DNA sequence analysis, the same pair of mutations present in strain JE52 was found. It might be noted that the presence of the mutations considerably downstream of the sequence specifying the RBS site also makes translational control an unlikely mechanism for the increased ethanol dehydrogenase activity level in the mutant strains.

Reconstitution of adhE_{A267T} and adhE_{A267T/E568K} Mutant Alleles—To demonstrate that the mutations identified in strains JE46 (adhE_{A267T}) and JE52 (adhE_{A267T/E568K}) are sufficient to account for their phenotypes, we prepared λ phage bearing wild-type or each of the two mutant alleles (see “Experimental Procedures”) to lysogenize strain ECL3999 (adhE::kan). The control lysogen ECL4063 (λadhE₁::kan) did not confer tetracycline resistance. The copy lysogens ECL4063 (λadhE_{E2p}), ECL4064 (λadhE_{A267T}), and ECL4065 (λadhE_{A267T/E568K}) showed aerobic and anaerobic levels of AdhE activity indistinguishable from those of the wild-type strains MC4100 and ECL4000. When strain ECL4064 (λadhE_{E2p}) was tested, the activity levels were similar to those of strain JE46, and the cells grew on ethanol as an sole carbon and energy source at a rate similar to that of cells of JE46. Similarly, strain ECL4066 (λadhE_{A267T/E568K}) showed the same phenotypes as strain JE52 (data not shown).

Identity of the Double Mutations in Strain JE52 and the Previously Isolated Strain DC272—Starting from an acetate auxotroph (aceF₁₀, defective in dihydrolipoyltransacetylase component E2p), DC48, Clark and Cronan (6) isolated a nitrilotriazine-induced mutant, DC51, that acquired the ability to use ethanol as a substitute of acetate. Strain DC51 also grew on ethanol as sole carbon and energy source. When grown aerobically on glucose and acetate, DC51 exhibited an ethanol dehydrogenase activity level more than 20-fold higher than that of DC48. It was suggested on the basis of genetic analysis that the mutation in DC51 altered a transcriptional control site of the adh gene at min 27 (6), later referred to as the promoter constitutive mutation adhC (27). Strain DC272, re-examined in this study, was an ace⁺ transductant of strain DC81 bearing that adhC mutation (28). Since all of the 16-second stage mutants possessed wild-type promoters and strains JE52 and DC272 grew at the same rate on ethanol at 37 °C (about 90-min
that the second E568K substitution stabilized the architectural integrity of the enzyme rather than improved the catalytic activity. These results are in contrast to those obtained with the FucO mutant proteins. In that case, FucO^{T171} was more thermal stable but less MCO-resistant than FucO^{T171L}, thus indicating that the increased fitness of FucO for aerobic function was entirely dependent on MCO resistance.

Kinetic Analysis of Purified AdhE, AdhE_{A267T}, and AdhE_{A267T/E568K} Proteins—Since the mutants were selected for more rapid utilization of ethanol, we compared the purified AdhE proteins for the two substrate-oxidizing reaction rates that the proteins catalyze the specific ethanol and acetaldehyde dehydrogenase activities. The ethanol dehydrogenase specific activities of purified AdhE_{A267T} or AdhE_{A267T/E568K} were similar to each other but only 1.3-fold higher than that of AdhE (Table III). It might be recalled that the ethanol dehydrogenase specific activities of extracts from AdhE_{A267T} or AdhE_{A267T/E568K} were 5–6-fold higher than that of AdhE (Table III). To confirm the occurrence of enzyme inactivation during purification, we then examined acetaldehyde dehydrogenase specific activities of AdhE_{A267T} and AdhE_{A267T/E568K} in extracts of cells grown aerobically on glucose. The specific activities were about 16–18-fold higher than that of AdhE (data not shown), supporting the notion that partial inactivation of the mutant enzymes during the course of purification, as suggested by the stability data shown in Fig. 3. What is critical to note, however, is that the acetaldehyde dehydrogenase specific activities of purified AdhE_{A267T} and AdhE_{A267T/E568K} were 5–6-fold higher than that of AdhE (Table III). To confirm the occurrence of enzyme inactivation during purification, we then examined acetaldehyde dehydrogenase specific activities of AdhE_{A267T} and AdhE_{A267T/E568K} in extracts of cells grown aerobically on glucose. The specific activities were about 16–18-fold higher than that of AdhE (data not shown), supporting the notion that partial inactivation of the mutant enzymes occurred during the course of purification. Perhaps it is no coincidence that both mutant proteins contained an amino acid substitution in the acetaldehyde domain (Fig. 1). When the <i>K_m</i> values for ethanol and acetaldehyde were examined in the same pair of reactions, the values for the mutant proteins were indistinguishable from each other but were significantly lower than those for the wild-type protein (Table III).

DISCUSSION

The emergence of the AdhE fusion protein was probably a turning point in the evolution of the fermentative network of an ancestor of *E. coli* (33). From the perspective of catalysis, the fusion of an acetaldehyde oxidoreductase and an ethanol oxidoreductase probably accelerated the successive reduction of acetyl-CoA to ethanol by bringing the two active sites in close proximity. As a corollary, the steady state level of acetaldehyde, a toxic intermediate, could probably be lowered. It should be mentioned, however, that such a condition might also be achieved by the complexing of the two separate oxidoreductases, as in *Clostridium kluyveri* (34, 35).

Members of the family of aldehyde oxidoreductases have their NAD-binding sites near the COOH-terminal end, whereas members of the family of Fe²⁺-dependent alcohol oxidoreductase have their NAD-binding sites near the NH₂-terminal end. Interestingly, a sequence analysis of AdhE of *E. coli* revealed only a single NAD-binding motif on the NH₂-terminal side of the linker (Fig. 1). If indeed there is only a single NAD-binding site, it is possible that evolution of the fusion not only brought the two catalytic sites close together but also made it possible to dispense with the coenzyme-binding site of the parent alcohol oxidoreductase. The sharing of the remaining NAD-binding site could in principle greatly facilitate the sequential catalysis. An added advantage of fusing the two proteins might provide the more elaborate structure of the protein with the potential to acquire other functions, such as the deactivation of pyruvate formate lyase (4). There may well...
be other accrued functions yet to be discovered. For instance, we do not yet know the biological significance of spirosomes consisting of AdhE molecules (4, 32).

The fact that all 17 independent ethanol mutants characterized in this study exhibited altered AdhE structures would indicate that promoter-up mutations were either extremely rare or deleterious. Indeed, when we plated MC4100 transformant cells bearing a multicopy plasmid (pBR322 derivative) containing the \(\text{adhE}\) gene under the control of an IPTG-inducible promoter on ethanol-IPTG agar, no growth was observed. Worse yet, when the transformant cells were grown aerobically on glucose in a mineral medium, the addition of IPTG was bactericidal. Thus, an excessive concentration of the AdhE protein appears to be toxic. Even a more moderate increase in the level of the protein seems to be detrimental, since transformant cells bearing the same multicopy plasmid containing the \(\text{adhE}\) gene under the control of its own promoter failed to grow aerobically on ethanol. Moreover, such cells were growth-impaired on glucose as the sole source of carbon and energy.

Whatever the reason, the deleterious effect of excessive levels of AdhE protein under aerobic conditions may explain why up-regulated promoter mutations were not selected.

The striking increase in the specific acetaldehyde dehydrogenase activity relative to the specific ethanol dehydrogenase activity of AdhE\(^{A267T}\) would suggest that the second reaction was rate-limiting when AdhE was selected to catalyze the two sequential reactions in the direction opposite to the physiological one. As a consequence of the mutation, however, the protein appears to be destabilized. Since AdhE\(^{A267T/E568K}\) exhibited

\(\text{AdhE}^+\) (●), AdhE\(^{A267T}\) (■), and AdhE\(^{A267T/E568K}\) (▲) proteins were incubated in 50 mM Tris chloride, pH 8.5, and 160 mM NaCl at 37 °C. Samples for ethanol dehydrogenase activity measurements were taken at several time intervals. The results shown are the average of four independent experiments, and every point was done in triplicate; the variation was less than 15%.

![Graph A](image1.png)

FIG. 3. Thermal inactivation of different AdhE proteins. The AdhE\(^+\) (●), AdhE\(^{A267T}\) (■), and AdhE\(^{A267T/E568K}\) (▲) proteins were incubated in 50 mM Tris chloride, pH 8.5, and 160 mM NaCl at 37 °C. Samples for ethanol dehydrogenase activity measurements were taken at several time intervals. The results shown are the average of four independent experiments, and every point was done in triplicate; the variation was less than 15%.

![Graph B](image2.png)

FIG. 4. MCO inactivation depending on Fe\(^{3+}\) and Ascorbate.

![Graph C](image3.png)

FIG. 5. MCO inactivation depending on NADH.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Ethanol dehydrogenase</th>
<th>Acetaldehyde dehydrogenase</th>
<th>Km (mM) Ethanol</th>
<th>Km (mM) Acetaldehyde</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdhE</td>
<td>10</td>
<td>240</td>
<td>4.0</td>
<td>5.4</td>
</tr>
<tr>
<td>AdhE(^{A267T})</td>
<td>13</td>
<td>190</td>
<td>23</td>
<td>4.0</td>
</tr>
<tr>
<td>AdhE(^{A267T/E568K})</td>
<td>13</td>
<td>190</td>
<td>20</td>
<td>4.0</td>
</tr>
</tbody>
</table>

The data shown are the average of three independent experiments with an S.D. of less than 20%.

The fact that all 17 independent ethanol \(^+\) mutants characterized in this study exhibited altered AdhE structures would indicate that promoter-up mutations were either extremely rare or deleterious. Indeed, when we plated MC4100 transformant cells bearing a multicopy plasmid (pBR322 derivative) containing the \(\text{adhE}\) gene under the control of an IPTG-inducible promoter on ethanol-IPTG agar, no growth was observed. Worse yet, when the transformant cells were grown aerobically on glucose in a mineral medium, the addition of IPTG was bactericidal. Thus, an excessive concentration of the AdhE protein appears to be toxic. Even a more moderate increase in the level of the protein seems to be detrimental, since transformant cells bearing the same multicopy plasmid containing the \(\text{adhE}\) gene under the control of its own promoter failed to grow aerobically on ethanol. Moreover, such cells were growth-impaired on glucose as the sole source of carbon and energy. It is not clear whether the toxicity is related to the AdhE structure or its catalytic activity. Whatever the reason, the deleterious effect of excessive levels of AdhE protein under aerobic conditions may explain why up-regulated promoter mutations were not selected.

The striking increase in the specific acetaldehyde dehydrogenase activity relative to the specific ethanol dehydrogenase activity of AdhE\(^{A267T}\) would suggest that the second reaction was rate-limiting when AdhE was selected to catalyze the two sequential reactions in the direction opposite to the physiological one. As a consequence of the mutation, however, the protein appears to be destabilized. Since AdhE\(^{A267T/E568K}\) exhibited

\(^2\) J. Membrillo-Hernández, unpublished observations.
AdhEA267T directly on minimal ethanol agar. 2 An alternative strategy to raise the steady level of cellular acetaldehyde dehydrogenase activity would be to confer resistance of the AdhE protein to MCO damage. However, we failed to select for wild-type cells grown anaerobically on glucose (Table II). An relatively small difference in AdhE activity level of mutant and selected. Finally, it should be mentioned that Ala-267 in the ability to grow on ethanol).

An even more intriguing mystery is our failure to select for the Glu-568
appear that the Glu-568
3
state level of cellular acetaldehyde dehydrogenase activity by

partially stabilizing AdhEA267T (however, we cannot rule out the possibility that the Glu-568 Lys mutation alone confers the ability to grow on ethanol).

Lys mutations conferred such large increases in the efficacy of the novel function of AdhE that the MCO-resistant mutations conferring only modest improvements failed to be selected. Finally, it should be mentioned that Ala-267 in the acldehyde oxidoreductase domain and Glu-568 in the etha-

cataldehyde dehydrogenase activity would be to confer resist-
tion provides two different examples for genetic adaptation. In fucO and the

The two biased modes of adaptation may illustrate how pre-

ed evolution of AdhE, the first and

first step was invariably the activa-
tion provides two different examples for genetic adaptation. In fucO, the first step was invariably the activa-
tion of the promoter (in 10/10 independent selections), followed

by mutations in the coding region that conferred resistance to MCO (14). By contrast, in the evolution of AdhE, the first and second steps were invariably mutations in the coding region. The two biased modes of adaptation may illustrate how pre-existing genetic, physiological, and biochemical contexts can predestine the channels for future evolution. The two examples also illustrate the versatility of the bacterial genome: when one evolutionary pathway is blocked, alternative routes are available.

Acknowledgments—We thank Mary Berlyn for providing some strains used in this study; A. Aristarkhov and D. Georgellis for advice; and Henry Paulus, Oh Suk Kwon, and Eva Piulats for helpful discussions.

Addendum—Since the submission of this report, we found that pre-adaptation of wild-type cells on acetate as the sole source of carbon and energy allowed the appearance of colonies on solid minimal ethanol medium at a frequency of about 10⁻³.

REFERENCES
34. Lurz, R., Mayer, F., and Gottschalk, G. (1979) Arch. Microbiol. 120, 255–262
Evolution of the \textit{adhE} Gene Product of \textit{Escherichia coli} from a Functional Reductase to a Dehydrogenase: GENETIC AND BIOCHEMICAL STUDIES OF THE MUTANT PROTEINS

Jorge Membrillo-Hernández, Pedro Echave, Elisa Cabisco, Jordi Tamarit, Joaquim Ros and Edmund C. C. Lin

\textit{doi}: 10.1074/jbc.M005464200 \textit{originally published online August 1, 2000}

Access the most updated version of this article at \textit{doi}: 10.1074/jbc.M005464200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 31 references, 19 of which can be accessed free at http://www.jbc.org/content/275/43/33869.full.html#ref-list-1