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Biological characterisation of the biocontrol agent Bacillus 

amyloliquefaciens CPA-8: the effect of temperature, pH and 

water activity on growth, susceptibility to antibiotics and 

detection of enterotoxic genes 

Gotor-Vila, A., Teixidó, N., Sisquella, M. Torres, R. & Usall, J. 

Reviewers’ suggestions submitted to Current Microbiology (April 25th, 2017) 

ABSTRACT 

This work focuses on the biological understanding of the biocontrol agent Bacillus 

amyloliquefaciens CPA-8 in order to accomplish the characterisation required in the 

registration process for the development of a microorganism-based product. The tolerance 

of CPA-8 to grow under different pH-temperature and water activity (aw)-temperature 

conditions was widely demonstrated. Regarding the pH results, optimum growth at the 

evaluated conditions was observed at 37 ºC and pH between 7 and 5. On the contrary, the 

slowest growth was recorded at 20 ºC and pH 4.5. Moreover, the type of solute used to 

reduce aw had a great influence on the minimum aw at which the bacterium was able to 

grow. The lowest aw for CPA-8 growth in media modified with glycerol and glucose was 

0.950 and 0.960, respectively. Besides, the lowest aw for CPA-8 growth increased when the 

temperature decreased to 20 ºC, at which CPA-8 was not able to grow at less than 0.990 

aw, regardless of the type of solute. Antibiotic susceptibility tests were carried out to 

determine which antibiotic could affect the behaviour of the bacterium and revealed that 

CPA-8 was clearly resistant to hygromycin. Finally, a PCR amplification assay to detect 

the presence of enterotoxic genes from Bacillus cereus in CPA-8 was also performed. CPA-

8 gave negative results for all the genes tested except for nheA gene, which is not enough 

for the toxicity expression, suggesting that fruit treated with this antagonist will not be a 

potential vehicle for foodborne illnesses.  

Keywords: Bacillus spp.; biocontrol; ecophysiology; enterotoxicity; sensibility to

antibiotics. 
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INTRODUCTION 

Brown rot in stone fruit essentially caused by Monilinia spp. is one of the major 

factors that affect quality of fruit during storage, causing important losses that could 

reach even higher than 50 % of the production in European Mediterranean countries 

(Nunes, 2012; Sisquella et al., 2013; Usall et al., 2015). Infection occurs through injuries 

made during picking or handling and results in decay during storage or marketing. 

The use of fungicides is still the most effective way for preventing yield losses caused 

by most fungal diseases on different crops (Mari et al., 2007; Teixidó et al., 2011). 

However, the use of chemical applications in stone fruit after harvesting is hardly 

authorized in Europe. In addition, an increase in public concern on the sustainability 

of agricultural practices and the prevention of acquired fungicide resistance in target 

pathogens have promoted the development of biological control agents (BCAs) as an 

effective alternative to chemicals in controlling postharvest diseases of fruits and 

vegetables (Droby et al., 2016; Sharma et al., 2009; Teixidó et al., 2011). Recently, 

detailed studies have shown that the BCA Bacillus amyloliquefaciens CPA-8 (formerly 

B. subtilis), which is a common constituent of the resident microbiota on peaches, is 

an effective antagonist to control brown rot in peach caused by Monilinia spp., either 

used alone (Yánez-Mendizábal et al., 2011) or in combination with other environment-

friendly techniques, such as hot water and curing (Casals et al., 2010).  

In general, the BCAs’ efficacy requires specific and suitable environmental 

conditions. If appropriate temperature and moisture are not consistently available, 

BCA populations may fail to reduce disease incidence and severity, and may not 

recover as rapidly as pathogen populations when conducive conditions occur 

(Garrett et al., 2006). Effective colonisation, high population and viability of BCAs on 

plant surfaces have been considered important aspects in the successful control of 

plant diseases. The dynamics of individual populations within the epiphytic 

community are determined by the most important environmental factors which 

include water availability (water activity, aw), prevailing temperatures and pH of the 

plant tissue (Costa et al., 2002; Mossel et al., 1995). These three factors interact and 

directly influence the capability for growth and establishment of the BCAs in the host. 

Thus, it is important to identify the environmental niche in which an individual BCA 
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can actively grow as this enables abiotic threshold criteria for obtaining efficacy 

(Teixidó et al., 1998).  

Furthermore, in order to develop a commercial product, a deep characterisation 

of the BCA is required in the registration procedure. Recently, two molecular markers 

have been described for monitoring CPA-8 under field conditions and during the 

postharvest storage period (Gotor-Vila et al., 2016). Moreover, the key mode of action 

of CPA-8 based on fengycin-like lipopeptides production and the emission of volatile 

organic compounds has also been described (Gotor-Vila et al., 2017; Yánez-

Mendizábal et al., 2012b). However, no work is done about the antibiotics sensibility 

pattern of CPA-8. Isolates of the genus Bacillus displayed resistance to an extended 

spectrum of antibiotics; hence, it is important to know the antibiotic susceptibility. 

Besides, considering CPA-8 as part of a microorganism-based product, the chance of 

toxic substances production should be taken into account. Relatively few researches 

have reported the presence of foodborne illnesses associated with Bacillus spp. other 

than Bacillus cereus. The main studied Bacillus species are included in two groups: B. 

subtilis sensu lato group (which refers to closely species such as B. subtilis, B. pumilus, 

B. licheniformis, B. atropheaeus, B. mojavensis, and B. amyloliquefacines) and B. cereus 

sensu lato group (which includes B. cereus, B. thuringiensis, B. mycoides, and 

B.  anthracis). A priori, CPA-8 should not present enterotoxic genes no lost from 

B.  cereus genome. However, due to the high degree of phylogenetic relatedness 

among members of this genus, a variety of species (including B. amyloliquefaciens) 

should be considered potentially enterotoxigenic (Phelps & McKillip, 2002). 

The main aim of this work was to characterise the BCA CPA-8 to complete 

registration requirements. In order to do this, the specific aims were: (i) to evaluate 

the effect of the key ecological parameters of temperature, aw and pH on growth rate 

and lag phase of CPA-8, (ii) to study the susceptibility/resistance of CPA-8 to 

different antibiotics tested at different concentrations under in vitro conditions and 

(iii) to detect enterotoxic B. cereus genes in CPA-8 by PCR-based technique.  
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MATERIAL AND METHODS 

B. amyloliquefaciens CPA-8  

The strain CPA-8 used in this study was obtained from the Postharvest 

Pathology Group Collection of the IRTA Centre (Lleida, Catalonia, Spain). It was 

isolated from the surface of a nectarine fruit in an experimental orchard in Lleida 

(Catalonia, Spain) and selected for its preliminary efficacy in reducing brown rot 

caused by Monilinia spp. in stone fruit (Casals et al., 2010; Yánez-Mendizábal et al., 

2011). CPA-8 was firstly identified by 16S rRNA partial analysis by the Netherland 

Culture Collection of Bacteria as a member of the B. subtilis species complex and it 

has been recently classified as B. amyloliquefaciens (Gotor-Vila et al., 2016). Cultures 

were maintained on nutrient yeast dextrose agar (NYDA: 8 g L-1 nutrient broth, 

5  g  L- 1 yeast extract, 10 g L-1 dextrose and 20 g L-1 agar) at 30 ºC for 24 h. 

Assays to determine the effect of environmental factors on CPA-8 growth 

Growth media 

CPA-8 was grown in 250 mL conical flasks containing 50 mL of 863 basic 

medium (10 g L-1 peptone, 10 g L-1 yeast extract, and 20 g L-1 glucose) and incubated 

at 30 ºC for 24 h (Yánez-Mendizábal et al., 2011). Fresh inoculum was prepared by 

transferring a 24 h culture on NYDA to 5 mL of potassium phosphate buffer solution 

(PB) (70 mL KH2PO4 0.2 mol L-1, 30 mL K2HPO4 0.2 mol L-1 and 300 mL deionized 

water, v/v/v, pH 6.5) and then added to each flask. 

The combined effect of pH-temperature and aw-temperature on CPA-8 growth 

The pH of the 863 medium was adjusted to pH levels from 7.0 (control) to 3.5 

using 5 mol L-1 malic acid with the pH meter GLP 21 (Crison Instruments S.A., 

Barcelona, Spain). In this study, seven pH levels were evaluated: 6.5, 6.0, 5.5, 5.0, 4.5, 

4.0 and 3.5. For each aw studies, 863 medium was osmotically modified by adding the 

non-ionic solutes glycerol or glucose in a broad aw range from 0.998 (control) to 0.940 

following the methodology described by Dallyn & Fox (1980) and Scott (1957), 

respectively. Specifically, the aw levels were adjusted at 0.995, 0.990, 0.980, 0.970, 0.960, 
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0.950 and 0.940 and checked with an Aqualab (Decagon Devices, Pullman, Wash., 

USA) aw meter to an accuracy of ± 0.003. For each pH and aw conditions described, 

200  µL of 863 media (modified or non-modified) were contained in 96-well 

microplates and inoculated by a quantity of a bacterial suspension of CPA-8 to obtain 

a final concentration adjusted at 105 CFU mL-1. The plates were then incubated at 0, 

4, 10, 20, 25, 30 and 37 ºC. To monitor CPA-8 growth, changes in absorbance of all 

cultures were determined with a PowerWave HT Microplate Spectrophotometer 

(BioTek Instruments Inc., Winooski, VT, USA) set at 700 nm and with 15 s of agitation 

prior to measurement. An uninoculated solution of the same composition for each 

pH or aw condition served as negative control. Each condition was replicated three 

times and the experiment was conducted twice.  

CPA-8 susceptibility to antibiotics 

Growth medium and antibiotics 

CPA-8 was cultured on nutrient yeast dextrose broth (NYDB, NYDA without 

agar) at 30 ºC for 24 h and CPA-8 susceptibility to the following antibiotics was tested: 

chloramphenicol water soluble (CHL), ampicillin sodium salt (AMP), gentamicin 

(GEN), nalidixic acid sodium salt (NAL), streptomycin sodium salt (STR) and 

hygromycin (HYG). All antibiotics were evaluated at different concentrations: 0, 20, 

40, 60, 80, 100, 200, 300, 400, 500, 750, 1000, 1250, and 1500 ppm. In the case of no-

susceptibility observed, 2000, 3000, 4000, 5000, and 6000 ppm were also evaluated. 

In vitro tests: CPA-8 susceptibility 

All-purpose agar plates, including meat extract 20 g L-1, glucose 20 g L-1 and agar 

15 g L-1, were overlaid with 5-6 mL of NYDA soft agar (7.5 g L-1) and inoculated with 

50 µL of the 24 h-old CPA-8 culture. Drops (5 µL) of the antibiotics solutions were 

spotted onto the lawn of the bacterium and incubated for 24-48 h at 30 ºC. At each 

plate, four concentrations of each antibiotic were tested. Inhibition was recorded as 

positive/susceptible if a translucent halo zone was observed around the spot, or 

negative/resistant if a no translucent halo was observed. In the case of susceptibility, 

the diameter of the halo was measured. Three plates were performed for each 

evaluation and all of the experiments were repeated twice.  
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Detection of enterotoxic B. cereus genes in CPA-8 by PCR-based techniques 

DNA extraction 

Bacterial strains were cultured overnight at 30 ºC in NYDB and DNA was 

extracted according to the method described by Crespo-Sempere et al. (2013) and 

modified by Gotor-Vila et al. (2016). The amount and purity of DNA samples were 

determined spectrophotometrically (NanoDrop ND-1000; NanoDrop Technologies, 

Wilmington, DE, USA) and DNA integrity was analysed by electrophoresis on 1 % 

agarose gels run at 100 V for 100 min with TBE (10.8 g Tris base, 5.5 g boric acid, 4 mL 

EDTA 0.5 mol L-1), stained with gel red (GelRedTM Nucleic Acid Stain, 10.000X in 

water) and visualised with UV light.  

Analysis of B. cereus genes of virulence on CPA-8 

The presence of two enterotoxigenic protein complexes from B. cereus strains, 

hemolysin BL (HBL) and nonhemolytic enterotoxin (NHE) was checked in CPA-8. 

Different primer pairs were selected according to Hansen & Hendriksen (2001), 

Kumar et al. (2010), and Ngamwongsatit et al. (2008), whose work aimed the detection 

of the genes hblA, hblC, hblD and nheA, nheB, nheC (genes from HBL and NHE 

complexes, respectively) (Table 1). PCR was performed by using a peltier thermal 

cycler (GeneAmp PCR System 2700, Applied Biosystems, Foster City, CA, USA). The 

amplification reactions were prepared in 25 µL using 1.25 units DFS-Taq DNA 

polymerase in 2.5 µL 10X Complete NH4 Taq Buffer (Bioron GmbH, Ludwigs am 

Rhein, Germany), 200 µmol L-1 each dNTP, 50 ng DNA and 0.4 µmol L-1 each primer. 

A initial denaturation at 94 ºC for 5 min was followed by 30 cycles of 94  ºC for 30 s, 

x  ºC for 45 s (Table 1), 72 ºC for 30 s and by a final extension step of 72 ºC for 7 min. 

The pathological reference strain B. cereus ATCC 14579, which exhibits detectable 

signal for the enterotoxic genes used in this study, was used as a positive control and 

negative controls (without DNA) were also included. Reaction products were 

analysed by electrophoresis on 1 % TBE buffer agarose gels stained with gel red and 

visualised with UV light. DNA standard 100 bp DNA Ladder H3 RTU (NIPPON 

Genetics Europe GmbH, Düren, Germany) was used as molecular size marker.  
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Table 1. Sequences of the primers, temperature of annealing, and size of the PCR 

products of the enterotoxic B. cereus genes tested in CPA-8: (1) Hansen and Hedriksen, 

2001; (2) Ngamwongsatit et al. (2008), and (3) Kumar et al. 2010. 

Target genes Primers sequence (5’- 3’) 
T annealing 

(°C) 
Product 

(bp) 

hblA   
(B component of HBL) 

GTGCAGATGTTGATGCCGAT 
65 319 

ATGCCACTGCGTGGACATAT 
hblC  

 (L2 component of HBL) 
AATGGTCATCGGAACTCTAT 

65 749 
CTCGCTGTTCTGCTGTTAAT 

hblD   
(L1 component of HBL) 

AATCAAGAGCTGTCACGAAT 
65 429 

CACCAATTGACCATGCTAAT 
nheA1   

(A component of NHE) 
TACGCTAAGGAGGGGCA 

65 499 
GTTTTTATTGCTTCATCGGCT 

nheB1   
(B component of NHE) 

CTATCAGCACTTATGGCAG 
65 769 

ACTCCTAGCGGTGTTCC 
nheC1  

(C component of NHE) 
CGGTAGTGATTGCTGGG 

65 581 
CAGCATTCGTACTTGCCAA 

nheA2   
TAAGGAGGGGCAAACAGAAG 

58 759 
TGAATGCGAAGAGCTGCTTC 

nheB2   
CAAGCTCCAGTTCATGCGG 

58 935 
GATCCCATTGTGTACCATTG 

nheC2   
ACATCCTTTTGCAGCAGAAC 

58 618 
CCACCAGCAATGACCATATC 

nheA3 
AAGGCGAATGTACGAGAGTGG 

58 553 
CTTCTCTCGTTTGACTATCTGCAG 

Statistical analysis 

To determine the effect of temperature, aw, and pH on CPA-8 growth responses, 

the absorbance data were ln-transformed and plotted against time. For each pH-

temperature or aw-temperature combination, the maximum growth rate (µmax) and lag 

phase duration (λ) were obtained by fitting the data to the primary model of Baranyi 

& Roberts (1994):  

Eq. (1)         𝑦(𝑡) = µ𝑚𝑎𝑥𝐹(𝑡) − ln (1 +
𝑒µmax  𝐹(𝑡) − 1

𝑒𝑦𝑚𝑎𝑥
) 

and 

Eq. (2)      𝐹(𝑡) = 𝑡 +
1

µ𝑚𝑎𝑥

ln (𝑒−µ 𝑚𝑎𝑥𝑡 + 𝑒−µ 𝑚𝑎𝑥𝜆 − 𝑒−µ 𝑚𝑎𝑥𝑡−µ 𝑚𝑎𝑥𝜆) 

Where y(t) is the natural logarithm of absorbance values at time t (h), ymax is the 

natural logarithm of maximum absorbance value, µmax is the maximum growth rate 

(h-1) and λ is the lag phase duration (h).  
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Growth curves were fitted to Eq. (1) using the package JMP® 8.0 (SAS institute, 

Cary, NC, USA). Subsequently, analysis of variance (ANOVA) was performed to test 

the influence of each combination of CPA-8 growth condition on maximum growth 

rate and lag phase duration. Statistical significance was judged at the level of P<0.05. 

When the analysis was statistically significant, the Tukey’s HSD test was used for the 

separation of means. Root-square transformation of the maximum growth rate was 

performed prior to analysis to normalise the data. Non-transformed means are 

presented. 

RESULTS 

Effect of the environmental factors on CPA-8 growth 

CPA-8 was not able to grow on liquid 863 medium after being incubated at 0, 4 

and 10 ºC for more than one month regardless of the pH and aw. However, CPA-8 was 

maintained alive at the conditions mentioned (data not shown). The absorbance 

curves fitted by Baranyi model at the ranges of pH-temperature and aw-temperature 

at which CPA could grow are shown in Figures 1-3.  

The minimum pH at which CPA-8 was able to grow was 4.5 regardless of the 

temperature. In the conditions evaluated, the optimum growth was observed at 37 ºC 

and pH between 7 and 5 (Fig. 1). Maximum growth rates of 0.43-0.47 h-1 (Table 2a) 

and lag phase durations of 3.74-5.23 h (Table 2b) were recorded. On the contrary, the 

slowest growth was recorded at 20 ºC and pH 4.5 (Fig. 1) with a maximum growth 

rate of 0.12 h-1 (Table 2a) and lag phase duration of 34.41 h (Table 2b). Generally, for 

the same pH, the reduction of the incubation temperature from 37 to 30, 25 and 20 ºC 

reduced the maximum growth rate and increased the lag phase duration (Table 

2a- b). Regarding the influence of pH on growth of CPA-8 at 37 and 30 ºC, the 

maximum growth rate was not significantly affected by pH (Table 2a). However, the 

lag phase duration significantly increased when pH was reduced to 5 or 4.5 (Table 

2b). In contrast, when the temperature of incubation was lower (25 ºC), both growth 

parameters estimated were significantly affected by pH, since maximum growth rate 

decreased and lag phase duration increased when pH of the medium was modified 

from 7-5.5 to 5 and 4.5 (Table 2a-b). At 20 ºC, no influence of pH was observed 
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regarding the maximum growth rate. Nevertheless, the lag phase duration was also 

significantly increased when the pH of the medium was reduced to 5 and 4.5 

(Table  2b).  

In terms of the combined parameters aw-temperature, regardless of the type of 

solute used to reduce aw, the greatest growth was generally observed at 37 ºC and 

0.998-0.990 aw (Fig. 2-3) with maximum growth rates of 0.36-0.50 h-1 (Table 3a and 

Table 4a) and 3.48-4.49 h lag phase durations (Table 3b and Table 4b). On the contrary, 

the slowest growth was recorded at 20 ºC and 0.990 aw (Fig 2-3), which was the lowest 

aw at which CPA-8 was able to growth at this temperature (maximum growth rate of 

0.09 h-1 and lag phase duration of 24.62 h when glucose was used as solute) (Table 4). 

The type of solute used to reduce aw had a great influence in the minimum aw at which 

the bacterium was able to grow, indicating that the aw-temperature range with the 

solute glucose was more limited than with the solute glycerol. The lowest aw for 

growth at 37 and 30 ºC was 0.950 in media modified with glycerol and at 25 ºC, no 

growth was observed at this aw (Fig. 2). However, for the media modified with 

glucose, the lowest aw for growth at 37 ºC and 30-25 ºC was 0.960 and 0.970, 

respectively (Fig.3). Although there is not a clear tendency in the maximum growth 

values when the aw decreased for the same temperature, a significant increase in the 

lag phase duration is observed for both solutes. However, significant lower growth 

rate values and longer lag phase durations were generally detected when the 

temperature decreased for the same aw (Table 3-4). 
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Table 2a. Maximum specific growth rate (h-1) of CPA-8 at different temperatures and pH estimated 

by Baranyi model. Root square transformation of the data was performed before statistical analysis. 

Non-transformed means are shown. Means with the same uppercase letter for each temperature or 

with the same lowercase letter for each pH are not significantly different (P<0.05) according to 

Tukey’s HSD test. 

 

 Temperature (ºC) 

pH 37 30 25 20 

7.0 0.45 Aa 0.29 Ab 0.30 Ab 0.15 Ac 

6.5 0.43 Aa 0.28 Ab 0.26 ABb 0.15 Ac 

6.0 0.47 Aa 0.30 Ab 0.27 Ab 0.15 Ac 

5.5 0.43 Aa 0.30 Ab 0.26 ABb 0.14 Ac 

5.0 0.46 Aa 0.31 Aa 0.19 BCa 0.13 Aa 

4.5 0.46 Aa 0.27 Aab 0.16 Cab 0.12 Ab 

 

Table 2b. Lag phase duration (h-1) of CPA-8 at different temperatures and pH estimated by Baranyi 

model. Means with the same uppercase letter for each temperature or with the same lowercase letter 

for each pH are not significantly different (P<0.05) according to Tukey’s HSD test. 

 

 Temperature (ºC) 

pH 37 30 25 20 

7.0 4.18 Aa 8.77 Ab 12.31 ABb 22.81 ABc 

6.5 3.88 Aa 8.61 Ab 11.21 Ac 21.32 Ad 

6.0 4.16 Aa 8.96 Aab 11.04 Ab 24.63 ABc 

5.5 3.74 Aa 9.16 Ab 12.83 ABc 22.67 ABd 

5.0 5.23 Aa 11.31 Bb 14.52 Bc 30.29 BCd 

4.5 15.65 Ba 27.12 Cb 34.71 Cc 34.41 Cc 
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Table 3a. Maximum specific growth rate (h-1) of CPA-8 at different temperatures and aw modified 

with glycerol solution estimated by Baranyi model. Root square transformation of the data was 

performed before statistical analysis. Non-transformed means are shown. Means with the same 

uppercase letter for each temperature or with the same lowercase letter for each aw are not 

significantly different (P<0.05) according to Tukey’s HSD test. 

 

 Temperature (ºC) 

aw 37 30 25 20 

0.998 0.45 CDa 0.26 Ab 0.30 Bb 0.15 Ac 

0.995 0.42 Da 0.17 BCb 0.40 Aa 0.23 Ab 

0.990 0.50 BCa 0.21 Bc 0.33 Bb 0.23 Abc 

0.980 0.64 Aa 0.16 BCb 0.27 Bc - 

0.970 0.61 Aa 0.28 Ab 0.13 Cc - 

0.960 0.56 ABa 0.20 Bb 0.15 Cc - 

0.950 0.22 Ea 0.15 Cb - - 

(-): No growth observed 

 

Table 3b. Lag phase duration (h-1) of CPA-8 at different temperatures and aw modified with glycerol 

solution estimated by Baranyi model. Means with the same uppercase letter for each temperature or 

with the same lowercase letter for each aw are not significantly different (P<0.05) according to Tukey’s 

HSD test. 

 

 Temperature (ºC) 

aw 37 30 25 20 

0.998 4.18 Aa 7.83 Ab 12.31 Bb 22.81 Ac 

0.995 3.48 Aa 7.96 Ab 9.69 Ab 20.47 Ac 

0.990 4.40 Aa 8.01 Ab 10.92 ABc 21.36 Ad 

0.980 5.57 Ba 8.19 Ab 11.75 ABc - 

0.970 6.86 Ca 12.08 Bb 12.24 Bb - 

0.960 8.21 Da 14.04 Cb 17.35 Cc - 

0.950 11.33 Ea 16.92 Db - - 

(-): No growth observed 
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Table 4a. Maximum specific growth rate (h-1) of CPA-8 at different temperatures and aw modified 

with glucose solution estimated by Baranyi model. Root square transformation of the data was 

performed before statistical analysis. Non-transformed means are shown. Means with the same 

uppercase letter for each temperature or with the same lowercase letter for each aw are not 

significantly different (P<0.05) according to Tukey’s HSD test. 

 

 Temperature (ºC) 

aw 37 30 25 20 

0.998 0.45 Aa 0.29 Ab 0.30 ABb 0.15 Ac 

0.995 0.36 Aa 0.28 Aa 0.34 ABa 0.20 Aa 

0.990 0.44 Aa 0.34 Aab 0.20 Bbc 0.09 Bc 

0.980 0.40 Aa 0.33 Aa 0.30 ABa - 

0.970 0.31 Aa 0.25 Aa 0.36 Aa - 

0.960 0.27 aa - - - 

0.950 - - - - 

(-): No growth observed 

 

Table 4b. Lag phase duration (h-1) of CPA-8 at different temperatures and aw modified with glucose 

solution estimated by Baranyi model. Means with the same uppercase letter for each temperature or 

with the same lowercase letter for each aw are not significantly different (P<0.05) according to Tukey’s 

HSD test. 

 

 Temperature (ºC) 

aw 37 30 25 20 

0.998 4.18 ABa 8.77 Bb 12.31 ABb 22.81 Ac 

0.995 3.89 Aa 8.23 Ab 10.50 Ac 26.67 Ad 

0.990 4.49 ABa 10.16 BCb 11.75 Ab 24.62 Ac 

0.980 5.72 Ba 11.46 Cb 14.61 Bc - 

0.970 8.26 Ca 15.15 Db 19.67 Cc - 

0.960 14.52 Da - - - 

0.950 - - - - 

(-): No growth observed 

CPA-8 susceptibility to antibiotics 

The susceptibility or resistance of CPA-8 to different antibiotic substances was 

determined (Table 5). Our results showed that CPA-8 was clearly resistant to 

hygromycin at all concentrations tested (from 20 to 6000 ppm). Moreover, when 

CPA- 8 grew in the presence of chloramphenicol and streptomycin no halo was 

observed when they were used at concentrations from 20 to 80 ppm and from 20 to 

200 ppm, respectively. In contrast, CPA-8 was susceptible to gentamicin, ampicillin 

and nalidixic acid at all concentrations evaluated except when nalidixic acid was used 
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at 20 ppm, in which the growth of CPA-8 could be distinguished. As it was expected, 

larger halo diameters were detected as the antibiotic concentrations increased.  

Table 5. CPA-8 susceptibility and resistance to different antibiotic substances by detecting zone of 

inhibition (halo) around bacterial growth 

 Antibiotics 

Concentration 
(ppm) 

CHL AMP GEN NAL STR HYG 

0 + + + + + + 

20 + 
- 

(8.7±0.6) 
- 

(7.0±0.0) 
+ + + 

40 + 
- 

(8.2±0.3) 
- 

(10.7±0.3) 
- 

(9.3±0.6) 
+ + 

60 + 
- 

(9.7±0.6) 
- 

(10.7±0.6) 
- 

(11.7±0.6) 
+ + 

80 + 
- 

(9.7±0.6) 
- 

(11.0±1.0) 
- 

(13.3±1.5) 
+ + 

100 
- 

(9.3±1.2) 
- 

(10.8±1.9) 
- 

(12.0±0.5) 
- 

(13.3±2.6) 
+ + 

200 · 
- 

(12.0±0.0) 
- 

(14.0±1.0) 
- 

(18.3±0.6) 
+ + 

300 · 
- 

(11.3±1.5) 
- 

(13.3±0.6) 
- 

(19.3±1.2) 
- 

(4.0±0.0) 
+ 

400 · 
- 

(11.7±2.5) 
- 

(14.3±1.2) 
- 

(22.0±0.0) 
- 

(4.7±0.6) 
+ 

500 
- 

(18.2±1.9) 
- 

(14.5±1.5) 
- 

(14.3±0.6) 
- 

(21.4±1.1) 
- 

(8.5±2.9) 
+ 

750 
- 

(19.0±2.5) 
- 

(19.7±0.6) 
· 

- 
(24.5±1.9) 

- 
(14.0±0.0) 

+ 

1000 
- 

(20.2±2.7) 
- 

(19.7±0.6) 
· 

- 
(26.3±1.0) 

- 
(15.0±0.0) 

+ 

1250 
- 

(24.0±1.0) 
- 

(19.7±0.6) 
· 

- 
(26.0±1.0) 

- 
(16.0±0.0) 

+ 

1500 
- 

(23.8±1.0) 
- 

(19.7±1.2) 
· 

- 
(27.7±1.2) 

- 
(16.7±0.6) 

+ 

     2000 · · · · · + 

3000 · · · · · + 

4000 · · · · · + 

5000 · · · · · + 

6000 · · · · · + 

CHL: chloramphenicol, AMP: ampicillin, GEN: gentamicin, NAL: nalidixic acid, STR: streptomycin and 
HYG: hygromycin.  
+: growth of CPA-8 (resistance) 
- : no growth of CPA-8 (susceptibility). In brackets, diameter of the halo ± standard deviation (mm) 
· : no data available 
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Detection of enterotoxic B. cereus genes 

A molecular study to detect the presence of B. cereus enterotoxic genes in the 

strain CPA-8 was performed using PCR. The results showed that the genes hblA, hblC, 

hblD, nheB and nhC were not detected. However, nheA gene amplified when the 

primers described by Hansen & Hendriksen (2001) were used. Otherwise, this gene 

did not give rise to any DNA product when using the primer pairs described by 

either, Kumar et al. (2010) or Ngamwongsatit et al. (2008) (Fig. 4). It should be pointed 

out that NHE is a three-component enterotoxin which is composed by three genes 

(nheA, nheB and nheC) that constitute one operon, being all three components 

necessary for enterotoxigenic activity. Regarding these results, we suggest that the 

genes encoding the protein complexes (HBL and NHE), responsible for 

enterotoxigenicity in B. cereus foodborne pathogen, are not present in CPA-8.  

 

Figure 4. PCR products from enterotoxic B. cereus genes amplification. a) HBL complex and b) NHE 

complex. Target genes are indicated in the figure and subindex indicates the primer pairs used in the 

PCR: (1) Hansen and Hedriksen, 2001; (2) Ngamwongsatit et al. (2008), and (3) Kumar et al. 2010, and.  

The CPA-8 nheA1 gene amplification is indicated by an arrow ( ) 
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DISCUSSION 

This study is the first detailed investigation into the aw, temperature, and pH 

relation on growth of the BCA CPA-8. In addition, a better biological characterisation 

of the microorganism has been accomplished. 

These findings report the most favourable environmental conditions in which 

CPA-8 is able to grow, which is particularly relevant for predicting biocontrol 

response. On the whole, CPA-8 could grow in a wide range of stress conditions. 

Specifically, the results have confirmed that CPA-8 grew faster in warmer 

temperatures. Minimum temperature is an intrinsic property of the organisms when 

growth conditions other than temperature are non-limiting (Ratkowsky et al., 1982) 

and for CPA-8 growth seems to be higher than 10 ºC. Maximum growth was obtained 

in a no modified media and neutral pH when incubation temperatures were 37 and 

30 ºC, suggesting that CPA-8 is a mesophilic bacterium. This strain is a really adapted 

microorganism to high temperatures, providing an advantage when a BCA has to be 

applied at field conditions (specifically in summer time) and needs to be formulated 

by drying technologies. However, although the results obtained in this work indicate 

that CPA-8 could not grow at cold temperatures, we could observe that CPA-8 

survived at temperatures lower than 10 ºC. Moreover, the maintenance of CPA-8 cells 

on peaches after storage at 0 ºC has already been demonstrated (Yánez-Mendizábal 

et al., 2012a). These data indicate that CPA-8 is not restricted to warm temperatures 

for storage conditions. 

According to Padan et al. (2005), who described that neutral or even basic pH 

are required for better bacterial development, acidic pH under in vitro conditions 

seemed an important restriction for the growth of CPA-8. Nevertheless, the work 

conducted by Yánez-mendizábal et al. (2012a) also proved that CPA-8 cells remained 

over the surface of artificially wounded peaches and nectarines with pH lower than 

4.5. 

Regarding water availability, the minimum aw at which this BCA was able to 

grow at 37 ºC was 0.960 when glucose was used to modify the medium and 0.950 at 

30 and 37 ºC when glycerol was used. However, the minimum aw was 0.990 at 20 ºC, 
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which was the lowest temperature at which CPA-8 grew among the temperatures 

tested. These results are in agreement with those obtained by Mossel et al. (1995), who 

observed that a large proportion of bacilli are not able to grow when the aw is lower 

than 0.950.  

A similar study with the BCA Pantoea agglomerans CPA-2 (Costa et al., 2002) 

described that the minimum aw for growing was 0.960 in media modified with 

glycerol and 0.950 in media modified with NaCl or glucose. As we could observe, the 

solute used to reduce aw has a great influence on bacterial growth, especially at 

unfavourable conditions (low temperature). It has been reported that some bacteria, 

such as P. agglomerans and Bacillus spp., generally respond to elevated ionic-strength 

media by synthesising or accumulating any of a variety of osmolytes (e.g., glycine-

betaine, proline) (Loshon et al., 2006; Teixidó et al., 2005). These compounds enable 

the microorganism to retain water in the cytoplasm and thus maintaining turgor 

pressure and providing tolerance to desiccation conditions (Loshon et al., 2006; 

Teixidó et al., 2005). Therefore, additional studies should be done to define the 

compatible solutes accumulated by CPA-8.  

Few works have already reported how important is to provide a detailed 

description of the ecophysiology of the BCAs and the pathogens. Teixidó et al. (1998) 

described the variety of responses of the yeast Candida sake to water, temperature, and 

pH stress, suggesting that changes in nutrients and aw may be useful for improving 

environmental competence of the microorganism in the environment. Moreover, the 

comparison of aw and temperature impacts on growth of Fusarium langsethiae strains 

from northern Europe indicated which environmental profiles could be beneficial for 

improving the ecological knowledge of these fungui (Medina & Magan, 2010). 

In order to accomplish a better understanding of the biology of CPA-8, two 

different analysis have also been conducted: antibiotic sensibility and production of 

enterotoxins. A panel of six common antibiotic substances belonging to different 

antibiotic groups such as penicillin, quinolones and aminoglycosides was tested 

against CPA-8 growth. If the growth of the organism is inhibited by the action of the 

substance, it has been reported as susceptible to that antibiotic. A clearly resistance 

was observed when hygromycin was applied at all concentrations tested, even at 6000 

ppm. The results obtained suggest that CPA-8 can grow in the presence of 
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hygromycin as a tool for avoiding other microbial contamination during different 

stages of the CPA-8-based products development such as, formulation process or 

shelf-life storage. To the best of our knowledge, little is known about the antibiotic 

sensibility patterns of the BCAs. In the work reported by Kadaikunnan et al. (2015), 

B.  amyloliquefaciens VJ-1 was classified as sensitive or resistant to an antibiotic 

according to the diameter of inhibition zone given in a standard antibiotic disc chart. 

However, whereas some results could be comparable, hygromycin was not 

evaluated.  

Regarding the CPA-8 capability for encoding genes responsible for the 

production of enterotoxins, a PCR test was carried out. B. cereus is traditionally 

considered the most problematic member of the genus Bacillus in the food industry 

due to the ability of many strains to produce enterotoxins (Phelps & McKillip, 2002). 

Many B. cereus isolates express at least two distinct multiple-component enterotoxins: 

a tripartite hemolytic heat-labile enterotoxin designated HBL and the nonhemolitic 

enterotoxin NHE (Hansen & Hendriksen, 2001; Phelps & McKillip, 2002). 

Toxicological activity has also been found in other Bacillus species including 

B.  circulans, B. lentus, B. mycoides and, B. subtilis (Beattie & Williams, 1999). 

Conversely, the results obtained in this work suggest that CPA-8 do not encode either 

HBL or NHE proteins. Although the subunit NheA amplified by using the primer 

pair described by Hansen & Hendriksen (2001), specific studies exist which 

demonstrated that all three components (NheA, NheB, and NheC) are necessary for 

cytotoxic activity (Lindbäck et al., 2004; López & Alippi, 2010). 

In summary, this study has shown that from an ecological point of view, CPA-8 

has a wide tolerance to different pH-temperature and aw-temperature profiles which 

should enable this strain to grow actively under a wide range of environmental 

conditions. This work also focused on the better understanding of the CPA-8’s 

biology. Results from antibiotic tests have been obtained and the absence of B. cereus 

HBL and NHE enterotoxins has been demonstrated. Thus, the findings here reported 

meaningfully contribute to the characterisation of B. amyloliquefaciens CPA-8 in order 

to complete registration requirements for developing a microorganism-based 

commercial product.  
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