) | X

N

Universitat de Lleida

Document downloaded from:

http://hdl.handle.net/10459.1/63092

The final publication is available at:

https://doi.org/10.1093/logcom/exu008

Copyright

© The Author, 2014. Published by Oxford University Press, 2014

http://hdl.handle.net/10459.1/63092
https://doi.org/10.1093/logcom/exu008

RP-DeLLP: A weighted defeasible argumentation
framework based on a recursive semantics

Teresa Alsinet® Ramén Béjar * Lluis Godo ” Francesc Guitart ®

& Department of Computer Science, Universitat de Lleida
C/laume 11 69, 25001 Lleida, SPAIN — Email: {tracy,ramon,fguitart} @diei.udl.cat

bArtificial Intelligence Research Institute (IIIA), CSIC
Campus UAB s/n, 08193 Bellaterra, SPAIN — Email: {godo}@iiia.csic.es

Abstract

In this paper we first define a recursive semantics for warranted formulas in a general de-
feasible argumentation framework by formalizing a notion of collective (non-binary) con-
flict among arguments. The recursive semantics for warranted formulas is based on the fact
that if the argument is rejected, then all arguments built on it should also be rejected. The
main characteristic of our recursive semantics is that an output (extension) of a knowledge
base is a pair of sets of warranted and blocked formulas. Arguments for both warranted
and blocked formulas are recursively based on warranted formulas but, while warranted
formulas do not generate any collective conflict, blocked conclusions do. Formulas that
are neither warranted nor blocked correspond to rejected formulas. Second we extend the
general defeasible argumentation framework by attaching levels of preference to defeasible
knowledge items and by providing a level-wise definition of warranted and blocked for-
mulas. Third we formalize the warrant recursive semantics for the particular framework of
Possibilistic Defeasible Logic Programming, we call this particular framework Recursive
Possibilistic Defeasible Logic Programming (RP-DeLP for short), and we show its rele-
vance in the scope of Political debates. An RP-DeLLP program may have multiple outputs
in case of circular definitions of conflicts among arguments. So, we tackle the problem of
which output one should consider for an RP-DeLLP program with multiple outputs. To this
end we define the maximal ideal output of an RP-DeLLP program as the set of conclusions
which are ultimately warranted and we present an algorithm for computing them in poly-
nomial space and with an upper bound on complexity equal to PN*. Finally, we propose
an efficient and scalable implementation of this algorithm that is based on implementing
the two main queries of the system, looking for valid arguments and collective conflicts
between arguments, using SAT encodings. We perform an experimental evaluation of our
SAT based approach when solving test sets of instances with single and multiple preference
levels for defeasible knowledge.

Key words: Defeasible Reasoning, Recursive Semantics, Collective Conflict, Rationality
Postulates, SAT Encoding, Efficient Implementation

Preprint submitted to Elsevier Science 6 April 2018

1 Introduction and motivation

Defeasible argumentation is a natural way of identifying relevant assumptions and
conclusions for a given problem which often involves identifying conflicting in-
formation, resulting in the need to look for pros and cons for a particular conclu-
sion [24]. This process may involve chains of reasoning, where conclusions are
used in the assumptions for deriving further conclusions and the task of finding
pros and cons may be decomposed recursively.

Defeasible Logic Programming (DeLP) [20] is a formalism that combines tech-
niques of both logic programming and defeasible argumentation. As in logic pro-
gramming, in DeLLP knowledge is represented using facts and rules; however, DeLLP
also provides the possibility of representing defeasible knowledge under the form
of weak (defeasible) rules, expressing reasons to believe in a given conclusion.
In DeLP, a conclusion succeeds if it is warranted, i.e., if there exists an argument
(a consistent sets of defeasible rules) that, together with the non-defeasible rules
and facts, entails the conclusion, and moreover, this argument is found to be un-
defeated by the warrant procedure which builds a dialectical tree containing all
arguments that challenge this argument, and all counterarguments that challenge
those arguments, and so on, recursively. Actually, dialectical trees systematically
explore the universe of arguments in order to present an exhaustive synthesis of the
relevant chains of pros and cons for a given conclusion. In fact, the interpreter for
DeLP [19] (http://lidia.cs.uns.edu.ar/DeLP) takes a knowledge base (program) P
and a conclusion (query) () as input, and it then returns one of the following four
possible answers: YES, if () is warranted from P; NO, if the complement of () is
warranted from P; UNDECIDED, if neither () nor its complement are warranted
from P; or UNKNOWN, if () is not in the language of the program P.

Possibilistic Defeasible Logic Programming (P-DeLP) [6] is a rule-based argumen-
tation framework which is an extension of DeLP in which defeasible rules are
attached with weights (belonging to the real unit interval [0, 1]) expressing their
belief or preference strength and formalized as necessity degrees. As many other
argumentation frameworks [13,24], P-DeLP can be used as a vehicle for facilitat-
ing rationally justifiable decision making when handling incomplete and potentially
inconsistent information. Actually, given a P-DelLP program, justifiable decisions
correspond to warranted conclusions (with a maximum necessity degree), that is,
those which remain undefeated after an exhaustive dialectical analysis of all possi-
ble arguments for and against.

In [11] Caminada and Amgoud proposed three rationality postulates which ev-
ery rule-based argumentation system should satisfy. One of such postulates (called
Indirect Consistency) claims that closure under the consequence operator of the un-
derlying logic of warranted conclusions with respect to the set of strict rules must
be consistent. In [11] a number of rule-based argumentation systems were identi-

fied in which such postulate does not hold (including DeLLP [20] and Prakken &
Sartor’s [23], among others). As a way to solve this problem, the use of transposed
rules is proposed in [11] to extend the representation of strict rules. Recently, in [7]
Amgoud proposes a new rationality postulate (called Closure under Subarguments)
which rule-based argumentation systems should satisfy. This postulate claims that
the acceptance of an argument should imply also the acceptance of all its subargu-
ments which reflect the different premises on which the argument is based.

Since the dialectical analysis based semantics of P-DeLP for warranted conclu-
sions does not satisfy the Indirect Consistency postulate, our aim in this paper is
to characterize P-DelLP with a new warrant semantics. To this end, we consider re-
cursive semantics for defeasible argumentation as defined by Pollock in [22] where
recursive definitions of conflict between arguments were characterized by means
of inference-graphs, representing (binary) support and attack (pros and cons) rela-
tions between the conclusions of arguments. On the other hand, recursive semantics
are based on the fact that if an argument is rejected, then all arguments built on it
should also be rejected. On the other hand, as stated in [22], recursive definitions
of conflict among arguments can cause to different outputs (extensions) for war-
ranted conclusions. Hence, we need a new and general notion of conflict among
the conclusions of arguments which ensures the Indirect Consistency postulate and
which allows us to safely reason about recursive definitions of conflict between
arguments.

The first contribution of this paper is to define a recursive semantics for warranted
formulas in a quite general framework (without levels of strength) by formaliz-
ing a new collective (non-binary) notion of conflict between arguments. The main
characteristic of our recursive semantics is that an output (extension) of a knowl-
edge base is a pair of sets of warranted and blocked formulas. Arguments for both
warranted and blocked formulas are recursively based on warranted formulas but,
while warranted formulas do not generate any conflict with the set of already war-
ranted formulas and the strict part of the knowledge base (information we take for
granted they hold true), blocked formulas do. Formulas that are neither warranted
nor locked correspond to rejected formulas. On the one hand, the key feature that
address our warrant recursive semantics corresponds with the closure under sub-
arguments postulate recently proposed by Amgoud and that is, if an argument is
excluded from an output, then all arguments built on it should also be excluded
from that output. On the other hand, the idea of defining an argumentation frame-
work on the basis of conflicting sets of arguments was proposed in [26]. The differ-
ence with the collective conflict among arguments in our framework is that in [26]
the conflict is not relative to a set of already warranted conclusions and the strict
part of the knowledge base. Finally, in contrast with DeLLP and other argument-
based approaches [13,24,9,25], our argumentation framework do not require the
use of dialectical trees as underlying structures for characterizing the semantics for
warranted conclusions and ensures the three rationality postulates defined by Cam-
inada and Amgoud in [11] without extending the representation of strict rules with

transposed rules.

The second contribution of this paper is to extend the recursive semantics based
on the collective notion of conflict between arguments to a general argumentation
framework with defeasibility (preference) levels by providing a level-wise defini-
tion of warranted and blocked conclusions. We characterize the properties of out-
puts in terms of some propagation criteria between defeasibility levels of warranted
and blocked conclusions.

The third contribution of this paper is to specialize the warrant recursive semantics
with defeasibility levels to the particular framework of P-DelLP, we refer to this for-
malism as Recursive P-DeLP (RP-DeLP for short). In [5] we proposed a level-wise
approach to compute warranted conclusions which distinguished two types of con-
flicts between arguments, direct and indirect conflicts. Direct conflicts were due to
binary attacks emerging from defeasible knowledge, while indirect conflicts were
due to collective attacks emerging from strict knowledge. Then, direct conflicts in-
validated indirect conflicts, and thus, an implicit evaluation order between conflicts
were established in [5]. In contrast, the collective notion of conflict for RP-DelLP
do not assume any implicit order of evaluation of conflicts which ensures that if a
conclusion is included as warrant in an output, then the argument that justify the
conclusion is not involved in any kind of conflict. Due to some circular definitions
of warranty among arguments that emerge in case of circular definitions of conflicts
among arguments, the recursive semantics for warranted conclusions may result in
multiple outputs for RP-DeLLP programs. Following the approach of Pollock [22],
we characterize circular definitions of conflict among arguments that cause differ-
ent outputs by means of what we call Warrant Dependency Graphs representing
support and (collective) conflict relations between the conclusions of arguments.
Moreover, for RP-DelLP programs with multiple outputs we consider the problem
of deciding the set of conclusions that can be ultimately warranted. The usual skep-
tical approach would be to adopt the intersection of all possible outputs. However,
in addition to the computational limitation, as stated in [22], adopting the intersec-
tion of all outputs may lead to an inconsistent output (in the sense of violating the
base of the underlying recursive warrant semantics) in case some particular recur-
sive situation among literals of a program occurs. Intuitively, for a conclusion, to
be in the intersection does not guarantee the existence of an argument for it that is
recursively based on ultimately warranted conclusions. With the aim of computing
single outputs and based on the idea defined by Dung, Mancarella and Toni [16,17]
as an alternative skeptical basis for defining collections of justified arguments in
abstract argumentation frameworks, we characterize what we call Maximal Ideal
Output for an RP-DeLLP program based on a recursive level-wise definition consid-
ering at each level the maximum set of conclusions based on warranted information
and not involved in neither a conflict nor a circular definition of conflict.

The fourth contribution of the paper is the development and experimental validation
of an interpreter that computes the maximal ideal output for an RP-DeLLP program.

To this end, first we define an efficient algorithm that computes the maximal ideal
output in polynomial space and with an upper bound on complexity equal to PV*.
Second we present SAT encodings for the two main combinatorial subproblems that
arise when computing warranted and blocked conclusions of he maximal ideal out-
put for an RP-DeLLP program, so that we can take profit of existing state-of-the-art
SAT solvers for solving instances of big size. Finally we present empirical results
obtained with an implementation of our algorithm that uses these SAT encodings.
The results show that, at least on randomly generated instances, the practical com-
plexity is strongly dependent on the size of the strict part of the program, as for
the same number of variables RP-DeLLP programs with different size for their strict
part can range from trivially solvable to exceptionally hard. Moreover, the exper-
imental results also show that the fraction of defeasible knowledge considered at
each defeasible level is also relevant in defining the tractability and scalability of
RP-DeLP programs.

This paper extends our previous work in [1,3] by providing new running exam-
ples, the characterization of the properties of the framework, the algorithm for the
computation of the maximal ideal output for an RP-DeLLP program based on SAT
encodings, experimental results, and proofs for all outcomes. The rest of the paper
is organized as follows. In Section 2, we define a general defeasible argumentation
framework with recursive semantics. In Section 3, we introduce several levels of
defeasibility or preference among different pieces of defeasible knowledge. In Sec-
tion 4, we particularize the recursive warrant semantics to the case of the P-DelLP
programs and we provide some examples in the context of political debates. In Sec-
tion 5, we define the maximal ideal output for RP-DeLLP programs and in Section 6,
we present an algorithm for its computation. In Section 7, we present SAT encod-
ings for the two main queries performed in the algorithm and in Section 8, we study
the scaling behavior of the (average) computational cost of our implementation. Fi-
nally, in Section 9, we present some concluding remarks.

2 A general defeasible argumentation framework with recursive semantics

We will start by considering a rather general framework for defeasible argumenta-
tion based on a propositional logic (£, F) with a special symbol L for contradic-
tion!. For any set of formulas A, if A - L we will say that A is contradictory,
while if At/ 1 we will say that A is consistent. A knowledge base (KB) is a triplet
P =(1I,A,%), where I1, A, > C £, and IT I/ L. IT is a finite set of formulas rep-
resenting strict knowledge (formulas we take for granted they hold to be true), A is
another finite set of formulas representing the defeasible knowledge (formulas for
which we have reasons to believe they are true) and > denotes the set of formulas

L If not stated otherwise, in this and next sections (£,) may be taken as classical propo-
sitional logic.

(conclusions) over which arguments can be built. In many argumentation systems,
e.g. in rule-based argumentation systems, . is taken to be a set of literals.

The notion of argument is the usual one. Given a KB P, an argument for a formula
p € Yisapair A= (A, p), with A C A such that:

(1) TUAH L, and
(2) Ais minimal (with respect to set inclusion) such that ITU A - .

If A = (), then we will call A a s-argument (s for strict), otherwise it will be a d-
argument (d for defeasible). The notion of subargument is refereed to d-arguments
and expresses an incremental proof relationship between arguments which is for-
malized as follows.

Definition 1 (Subargument) Ler (B,) and (A, @) be two d-arguments such that
the minimal sets (with respect to set inclusion) 11, C II and 11, C II such that
I, U B F v and 11, U A& @ verify that 11, C I1,. Then, (B, 1) is a subargument
of (A, p), written (B,) T (A, v), when one of the following conditions holds:

e B C A (strict inclusion for defeasible knowledge),
o B = Aandlly CIL, (strict inclusion for strict knowledge), or
o B=A1l, =11, and = ¢ but p 1/ .

Notice that if (II, A, X) = {r},{r = pAq},{p,¢,p Nq}) and A = {r — p A q}
then A; = (A,p), Ay = (A, q) and A3 = (A, p A q) are arguments for different
formulas with a same support and thus, in our framework, A3 = A; and A3 C A,
are the subargument relations between arguments .4;, A, and A3 since p A ¢ - p,

pAqgtqp/pAgandql/pAg.

A formula ¢ € X will be called justifiable conclusion with respect to P if there
exists an argument for ¢, i.e. there exists A C A such that (A, ¢) is an argument.

The usual notion of attack or defeat relation in an argumentation system is binary.
However in certain situations, the conflict relation among arguments is hardly rep-
resentable as a binary relation, mainly (but not only) when IT # (. For instance,
consider the following KB P; = (II, A,) with

I={anb— —p}, A={a,b,p}and X = {a,b,p,—p}.

Clearly, A, = ({p},p), Ay = ({b},b), A3 = ({a}, a) are arguments that justify
p, b and a respectively, and which do not pair-wisely generate a conflict. Indeed,
Mu{a, b}t/ L, ITU{a,p} 1/ Land IT1U {b, p} I/ L. However the three arguments
are collectively conflicting since ITU{a, b, p} I L, hence in P; there is a non-binary
conflict relation among several arguments.

In the following we formalize this notion of collective conflict among what we will

call valid arguments which arises when we compare them with the strict part of the
knowledge base and a consistent set of justifiable conclusions . If we think of W
of a consistent set of already warranted conclusions, a valid argument will capture
the idea of an argument which is based on subarguments already warranted.

Definition 2 (Conflict among arguments) Ler P = (II, A, Y) be a KB and let
W C X be a consistent set. We say that a set of arguments { (A1, 1), ..., (A, ¢x) }
minimally conflicts with respect to W iff the two following conditions hold:

(C) The set of argument conclusions {1, . .., @} is contradictory with respect to
W, i.e. it holds that ITUW U {pq,...,op} F L.

(M) The set { A, ..., Ay} is minimal with respect to set inclusion satisfying (C),
ie. if S C{p1,...,pr}, then TUW U S L.

Notice that if a set of arguments G = {(A1, 1), ..., (A, ©x)} minimally conflicts
with respect to a set of conclusions W, then the arguments (A;, ¢;) cannot be s-
arguments, i.e. for each 7, A; # (0. Indeed, if A; = () for some ¢, then II - ;, and
hence GG would not satisfy the minimality Condition (M).

Consider the previous KB P;, and the set of arguments {.A;, Ay, A3} for p, b and
a, respectively, and let W = U,—; _ 3{¢ | (B,¢) C A;} = 0. According to the
previous definition, it is clear that the set of arguments {A;, Ay, A3} minimally
conflicts with respect to II = {a A b — —p}. The intuition is that this collective
conflict should block the conclusions a, b and p to be warranted. Now, this general
notion of conflict is used to define a recursive semantics for warranted conclusions
of a knowledge base. Actually we define an output of a KB P = (II, A, X2) as a pair
(Warr, Block) of subsets of 3 of warranted and blocked conclusions respectively
all of them based on warranted information but while warranted conclusions do not
generate any conflict, blocked conclusions do.

Definition 3 (Output for a KB) An output for a KB P = (I, A, X)) is any pair
(Warr, Block), where Warr N Block = (), Warr U Block C ¥ and {p € ¥ | Tl F
v} C Warr, satisfying the following recursive constraints:

(1) ¢ € Warr U Block iff there exists an argument (A,) such that for every
(B,vY) C (A, @), v € Warr. In that case call valid such an argument (A, @).
(2) For each valid argument (A, p):
® © € Block whenever there exists a set of valid arguments G such that
(i) (A,) IZ (C,x) forall (C,x) € G, and
(ii) {(A,)} U G minimally conflicts with respect to the set W = {1 |

(B,) T (D,) for some (D,v) € GU{(A,¢)}}.
e otherwise, ¢ € Warr.

The intuition underlying this definition is as follows: an argument (A,) is either
warranted or blocked whenever for each subargument (B, 1)) of (A, ¢), ¥ is war-
ranted; then, it is eventually blocked if ¢ is involved in some conflict, otherwise it

1s warranted.

Notice that if an argument (A,) is warranted, and (A,) is another argument,
then (A, 1) is warranted as well.

Example 4 Consider the KB Py, = (II, A, X)), with
I={a—y,bAc— -y}, A={a,b,c,~c}and¥ ={a,b,c,—c,y,~y}.

According to Definition 3 s-Warr = () and the arguments ({a}, a), ({b},b), ({c}, ¢)
and ({—c}, —c) are valid. Now, for every such valid argument there exists a set of
valid arguments which minimally conflicts: indeed both sets of valid arguments
{{a},a), {b},b), {c},c)} and {{({c},c), ({—c},—c)} minimally conflict (since
Hu{a,b,c} b Land 1 U{c,~c} = L). Therefore a, b, c and —c are blocked con-
clusions. On the other hand, the arguments ({a,b}, —c), ({a},y) and {({b,c}, —y)
are not valid since they are based on conclusions which are not warranted. Hence
y and —y are considered as rejected conclusions. Thus, the (unique) output for P
is the pair (Warr, Block) = (0, A). Intuitively this output for Py expresses that all
conclusions in Block are (individually) valid, however all together are contradic-
tory with respect to 11.

We remark that, as it will be discussed in Section ??, a KB may have multiple
outputs. For instance, consider the KB P3 = (II, A, ¥) with

O=0,A={p,qg,—pV—q}and £ = {p,q,—p,q}.

Then, according to Definition 3, the pairs

(Warry, Block,) = ({p},{¢, ~q}) and
(Warry, Blocks) = ({q}, {p, —p})

are two outputs for Ps.

It can be proven that if (Warr, Block) is an output for a KB (II, A, X), the set Warr
of warranted conclusions is indeed non-contradictory and satisfies indirect consis-
tency with respect to the strict knowledge.

Proposition 5 (Indirect consistency) Ler P = (II, A, X)) be a KB and let the pair
(Warr, Block) be an output for P. Then, I1 U Warr t/ L.

Proof: By Definition 3, for every ¢ € Warr there does not exist a set W C Warr
such that ITU W U {p} I L, and therefore, ITU W I/ L for all W C Warr. O

In the following we will see that the general defeasible argumentation framework
we have defined satisfies the closure postulate (in the sense of Caminada and Am-
goud [11]) with respect to the strict knowledge depending on how the set of formu-

las > over which arguments can be built is defined. For instance, consider the KB
Py = (I, A, X2), with

I={anb—y}, A={ab}and ¥ = {a,b}.
Then, the pair
(Warr, Block) = ({a,b},0)

is the only output for Py and {a Ab — y}U{a,b} - y (i.e. IIU Warr - y), however
y & Warr since y is not a justifiable conclusion of Py (i.e. y ¢). A different case
occurs when II U Warr F ¢ with ¢ € X and there does not exist a consistent proof
for ¢ with respect to the set of warranted conclusions. For instance, consider now
the KB P5 = (II, A,) with

H={anb—y},A={s—a,~s—b,s,~s}and ¥ = {a,b,y}.
Again,
(Warr, Block) = ({a,b}, D)

is the only output for P5 and thus, although ITUWarr - yand y € 3, y & Warr. The
problem here is that there does not exist an argument for y with respect to P5 since
{s,—s} F L and the proof of y should be based on a and b which are respectively
based on s and —s.

Finally, it can be the case that there exists an argument for conclusion with p €
but, the argument is not valid with respect to the output (Warr, Block). For instance,
consider now the KB Ps = (II, A, ¥) with

H={aAnb—y}, A={s,~s,s > a,—~s—bp, —p,p—y}and
Y= {CI,, bap7 _‘pay}'

Now,

(Warr, Block) = ({a, b}, {p, —p})

is the only output for Pg and, again, we can see that [T U Warr - y and y € X,
however, y ¢ Warr. The problem here is that although there exists an argument for
conclusion y based on p, ({p,p — y},y), this argument is not valid with respect
to (Warr, Block) since p is a blocked conclusion and, as it occurs with program Ps,
the proof of y based on a and b is not consistent.

Proposition 6 (Closure) Let P = (II, A,) be a KB and let the pair (Warr, Block)
be an output for P. If 11 U Warr = ¢ then ¢ € Warr whenever there exits a valid
argument for @ with respect to Warr.

Proof: Assume ¢ € X and 11 U Warr = ¢, but II I/ ¢, otherwise it is clear that
@ € Warr. Further, suppose there exists a valid argument (A,) with respect to
Warr. By way of contradiction, let us suppose ¢ ¢ Warr. Then, there would exist
a set of valid arguments G such that (A,) is not a subargument of any argument
in G and that G U {(A,)} minimally conflicts with respect to the set W C Warr
of conclusions of all subarguments of arguments in G U {(A, p) }. If GU {(A,)}
minimally conflicts with respect to the set W, IUW U{p}U{¢ | (B,¢) € G} F L
(Condition (C)), and TUW U S t# L, forall set S C {p} U {v | (B,v) € G}
(Condition (M)). Then, IT U W I/ ¢, and thus, there would exist a set W' C Warr
such that W NW’' = Q) and ITUW U W' F . Now, as for all subarguments of
arguments in G theirs conclusions are in W and for all arguments in Warr there
exist valid arguments, there would exist a conclusion ¢ € W' such that its valid
argument (C, ¢) and G U {(D, x) | x € W U (W'\{¢})} minimally conflict, and
thus, ¢ & Warr. O

Remark that the particular behavior of above KBs P,, P5 and Py can be avoided
with a useful definition of the set of justifiable conclusions .. For instance, if we
extend the set of justifiable conclusions of P, with {y} and of P5 and Ps with
{s,—s}, we get that the pair

(Warr, Block) = ({a,b,y},0)
is the only output for the new definition of P, the pair
(Warr, Block) = (0, {s,~s})
is the only output for the new definition of P; and the pair
(Warr, Block) = (0,{s, s, p,—p})
is the only output for the new definition of Pg.

Given a set of strict and defeasible formulas IT and A respectively, we define its
set of justifiable conclusions as Conc(Il, A) = {¢ | [IU A F ¢ for some set A C
A such that [TUA I/ L}. Then KBs of the form (II, A,) where the set of formulas
over which arguments can be built includes Conc(I1, A) enjoy the following proper
Closure property.

Corollary 7 (Closure) Let P = (II, A,X) be a KB such that Conc(Il, A) C X.
For any output (Warr, Block) of P, if 11 U Warr = ¢, then ¢ € Warr.

Proof: For every 1; € Warr, there exists a valid argument (C;, ¢;). Then, for every
B C C; such that TTU B + ¢ and ; I/ ¢, we have that (B, ¢) T (C;,1;), ¢ € &
and ¢ € Warr. It is clear that IT U (U;C;) F ¢, and let A be a minimal subset of
U;C; such that IT U A = ¢. Then, it easily follows that (A, ¢) is a valid argument
with respect to Warr. a

10

3 Extending the framework with a preference ordering on arguments

In the previous section, we have considered knowledge bases containing formulas
describing knowledge at two epistemic levels, strict and defeasible. A natural ex-
tension is to introduce several levels of defeasibility or preference among different
pieces of defeasible knowledge.

A stratified knowledge base (sKB) is a tuple P = (II, A, <, 3), such that (IT, A, X))
is a KB (in the sense of the previous section) and < is a total pre-order on [T U A
representing levels of defeasibility: ¢ < 1) means that ¢ is more defeasible than
1. Actually, since formulas in II are not defeasible, < is such that all formulas in
IT are at the top of the ordering. For the sake of a simpler notation we will often
refer in the paper to numerical levels for defeasible clauses and arguments rather
than to the pre-ordering <, so we will assume a mapping N: ITU A — [0, 1] such
that N(¢) = 1forall ¢ € Il and N(¢) < N(¢) iff ¢ < 1. ? Then we define the
strength of an argument (A, @), written s((A, ¢)), as follows:

s({(A,p)) =1if A=0,and s((A, p)) = min{N(¢) | ©» € A}, otherwise.

Since we are considering several levels of strength among arguments, the intended
construction of the sets of conclusions Warr and Block is done level-wise, starting
from the highest level and iteratively going down from one level to next level below.
If1>a; > ... > a, > 0 are the strengths of d-arguments that can be built within
asKB P = (II, A, <, %), we define d-Warr = {d-Warr(o), ... ,d-Warr(co,)} and
Block = {Block(cv), . .., Block(cy,) }, where d-Warr(c;) and Block(cy;) are respec-
tively the sets of the warranted and blocked justifiable conclusions of strength «;.
Then, we safely write d-Warrr(> «;) to denote Ugs,,d-Warr(/3), and analogously
for Block(> «;), assuming d-Warr(> «;) = () and Block(> a;) = 0.

Definition 8 (Output for a sSKB) An output for a sKB P = (II, A, =,Y) is any
pair (Warr, Block), where Warr = s-WarrJd-Warr with s-Warr = {¢ | IL - ¢} N,
and d-Warr and Block are required to satisfy the following recursive constraints: 3

(1) Ad-argument (A,) of strength «; is called valid (or not rejected) if it satisfies
the following three conditions:
(V1) for all subargument (B,) C (A,) of strength > o, ¢ € d-Warr(B);
(V2) o & d-Warr(> «;) and ¢ & Block(> «;);
(V3) {o,0} VL for all v € Block(> «;) and 11 U d-Warr(> «;) U {9 |

2 Actually, a same pre-order < can be represented by many mappings, but we can take any
of them since only the relative ordering is what actually matters.

3 Remark that if we consider a single defeasibility level o for A, d-Warr(> «) = () and
Block(> «) = (), and therefore the recursive definition of output for a SKB turns equivalent
to Definition 3.

11

(B,y) C (Aot U{p} i/ L1
(2) For every valid argument (A, @) of strength o;; we have that
- ¢ € Block(a;) whenever there exists a set G of valid arguments of strength
«; such that
(i) (A,) Z(C,x) forall (C,x) € G, and
(ii) GU{(A, ¢)} minimally conflicts with respect to the set W = d-Warr(>

Oéi) U {1/} | <B777Z)> L <D,fy>f0rs0me <D77> €ceGU {<A7 90>}}
- otherwise, ¢ € d-Warr(a;).

There are two main remarks when considering several levels of strength among
arguments. On the one hand a d-argument (A,) of strength «; is valid whenever
(V1) it is based on warranted conclusions; (V2) there does not exist a valid argu-
ment for ¢ with strength greater than «;; and (V3) ¢ is consistent with both each
blocked argument with strength greater than «; and the set of already warranted
conclusions d-Warr(> a;) U {¢ | (B,1) T (A, ¢)}. On the other hand, a valid ar-
gument (A, ¢) of strength «; becomes blocked as soon as it leads to some conflict
among arguments with strength «; with respect to the set of warranted conclusions
with higher strengths.

Notice that Conditions (V2) and (V3) define how warranted and blocked conclu-
sions of higher levels are taken into account in lower levels. In particular blocked
conclusions play a key role at the propagation mechanism between defeasibility
levels. In our approach if a conclusion ¢ is blocked at level «, then for any lower
level than «, not only the conclusion ¢ is disabled but also every conclusion %) such
that {¢, ¢} F L. Intuitively our mechanism tries to ensure that warranted conclu-
sions at lower levels matches the result if conclusions were considered at higher
levels. A different approach could be to consider that a blocked conclusion ¢ only
disables the conclusion ¢ to be warranted for any lower level. In this case it may
happen that a conclusion should be rejected at a higher level and warranted at a
lower level.

The following examples show how warranted and blocked conclusions of higher
levels are taken into account in lower levels.

Example 9 Consider the KB ‘P in the previous section

I={aAnb— —p}, A={a,b,p}and > = {a,b,p,—p}.
extended with two levels of defeasibility as follows: {a,b} < p. Assume o is the
level of p and a the level of a and b, obviously with 1 > o1 > aw. According to
Definition 8, s-Warr = () and the argument for ({p}, p) is the only valid argument
of strength o. Then, at level on, we get d-Warr(ay) = {p} and Block(ay) = (. At

level ag, we have that ({a},a) and ({b},b) are valid arguments for conclusions a
and b respectively. However, since 11 U d-Warr(ay) U {a,b} & L, the conclusions

4 When we consider a single defeasibility level, the notion of argument subsumes condi-
tionITU {4 | (B,) C (A, ¢)} U{p} 7 L.

12

a and b are blocked, and thus, d-Warr(az) = () and Block(az) = {a,b}. Notice
that the argument ({a, b}, —p) for —p is not valid since it is based on a and b and

a,b ¢ d-Warr(as).
Example 10 Consider the KB Py of Example 4.
I={a—ybAc— -y}, A={ab,c,~c}, and ¥ = {a,b,c,—c,y,~y},

extended with three levels of defeasibility as follows: —¢ < ¢ < {a,b}. Assume o
is the level of a and b, « is the level of ¢, and oy is the level of —c, with 1 > oy >
oy > as. Then, s-Warr = () and, at level o, we have not only the conclusions
a, b and y with valid arguments not generating conflict but also ({a,b},—c) is a
valid argument for —c which does not generate conflict. Therefore, d-Warr(ay) =
{a,b,y, ~c} and Block(ay) = 0. At level o, we have arguments for ¢ and —y.
Since 11U d-Warr(a) U{c} F L, the argument ({c}, c) is not valid with respect to
d-Warr(c), and thus, c is a rejected conclusion. Then, as argument for —y is based
on ¢, —y is also a rejected conclusion. Therefore, d-Warr(az) = () and Block(cs) =
(). Finally, at level a3 we have the argument ({—c}, —c), but since —c is already in
d-Warr(ay), we also have d-Warr(asz) = () and Block(as) = .

Consider now that the KB P, is extended with a new defeasible formula —a, i.e.
II={a—ybArc— -y}, A={a,b,c,~c,—a}and ¥ = {a,b,c,—c,y,y,~a},
and two defeasibility levels as follows: {—a,c} < {a,b,c,c}. Assume o is the
highest level and v is the lowest level. Notice that —a belongs to the defeasible
level oy and c belongs to both defeasible levels o, and o. Again, s-Warr = () but
now, at level oy we have that the conclusions a, b, ¢ and —c have valid arguments
all involved in conflicts, and thus, d-Warr(c;) = 0 and Block(ay) = {a, b, c, —c}.
At level ay, we have arguments for ¢ and —a. However, the argument for c is not
valid because the conclusion c has been blocked at level oy (Condition (V2)), and
the argument for —a is not valid because the conclusion a has been blocked at level
a1 (Condition (V3)). Therefore, d-Warr(az) = () and Block(a) = (.

The following results provide an interesting characterization of the relationship
between warranted and blocked conclusions in stratified knowledge bases.

Proposition 11 Let P = (II, A, <, X)) be a sKB and let (Warr, Block) be an output
for P. Then:

(1) If p € d-Warr(a) UBlock(cv), then there exists an argument (A, @) of strength
a such that for all subargument (B,) T (A, @) of strength 3, ¢ € d-Warr(p).

(2) If ¢ € d-Warr(a) U Block(a), then for any argument (A, p) of strength f3,
with B > «, there exists a subargument (B,) T (A,) of strength vy and
W & Warr(7).

(3) If v € Warr, then ¢ & Block and 1) & Block, for all 1) such that {p, ¥} F L.

(4) If ¢ & Warr U Block, then either 1) € Block with {p,v¥} + L, or for all
argument (A, @) there exists a subargument (B,1)) T (A,) such that 1 ¢

13

Warr or I1U d-Warr(> a;) U{¢ | (B,¢) C (A, p)} U{p} I/ L.
Proof:

(1) Proof follows directly from Condition (V1).

(2) If p € d-Warr(a)) U Block(«), by Condition (V2), ¢ & d-Warr(3) U Block(3),
for all 5 > «. Suppose that there exists an argument (A, ¢) of strength £,
with 8 > «, verifying Condition (V1). Now, as ¢ & d-Warr(y) U Block(y) for
all v > 3, Condition (V3) must fail for (A,), and thus, Condition (V3) also
must fail for any argument (B,) of strength . Hence, Condition (V1) fails
for any argument (A,) of strength 5, with 5 > «.

(3) Suppose that ¢ € d-Warr(a) and ¢ € Block((3). By Conditions (V2) and
(V3),if B > «a, ¢ & d-Warr(a) and, if 5 < «a, ¢ & Block(3). Then, it must
be that ¢ € d-Warr(a) and ¢ € Block(«), and thus, there exits two valid
arguments of strength « such that one is involved in a conflict and the other
is not. Suppose that (A, ¢) is a valid argument involved in a conflict. Then,
there should exist a set G of valid arguments of strength « such that (A, ¢) is
not a subargument of arguments in G and G U {(A, ¢)} minimally conflicts.
Hence, every valid argument (B, () is not a subargument of arguments in G,
and thus, (B, ¢) is involved in a conflict. Proof that v ¢ Block, for all ¢ such
that {, ¢} - L, follows directly from Condition (V3).

(4) If ¢ & Warr U Block, then for all argument (A, ¢) either Condition (V1) fails
or, otherwise Condition (V3) fails.

4 A particular case: recursive P-DelLP

In this section we particularize the recursive warrant semantics for stratified knowl-
edge bases to the case of the P-DeLLP programs. As mentioned in Section 1, P-DelLP
is a rule-based argumentation system extending the well-known DeLP system [20]
in which weights are attached to defeasible rules expressing their belief or pref-
erence strength and formalized as necessity degrees. For a detailed description of
the P-DeLP argumentation system based on dialectical trees the reader is referred
to [6].

Although the original syntax and inference of P-DeLP are a bit different (e.g. the
weights are explicit in the formulas and arguments), here we will present them in
a way so to adapt them to the framework introduced in the previous sections. We
will refer to this particular framework as RP-DeLP (recursive P-DeLLP). Hence we
define the logic (Lg,) underlying RP-DeLP as follows.

The language of RP-DeLP is inherited from the language of logic programming,

14

including the notions of atom, literal, rule and fact. Formulas are built over a finite
set of propositional variables p, g, ... which is extended with a new (negated) atom
“~p” for each original atom p. Atoms of the form p or ~p will be referred as
literals, and if P is a literal, we will use ~ P to denote ~p if P is an atom p,
and will denote p if P is a negated atom ~p. Formulas of L consist of rules of
the form) «+ P; A... A\ Py, where Q, Py, ..., P, are literals. A fact will be a
rule with no premises. We will also use the name clause to denote a rule or a fact.
The inference operator -y is defined by instances of the modus ponens rule of the
form: {Q <~ P, A... APy, Pi,...,P.} Fr Q. Asetof clauses [is contradictory,
denoted I' - L, if , for some atom ¢, ' -r gand "' Fp ~q.

An RP-DeLP program P is just a stratified knowledge base (II, A, <, X) over the
logic (Lg,Fgr), where ¥ consists of the set of all literals of L. As already pointed
out, we will assume that < is representable by a mapping N: ITU A — [0, 1] such
that N(p) = 1 for all ¢ € II and N(p) < N(¢) iff ¢ < 1, so we will often
refer to numerical weights for defeasible clauses and arguments rather than to the
pre-ordering <. Also, for the sake of a simpler notation we will get rid of X of a
program specification.

4.1 Arguing with RP-DelP

In this section we explore the application of the RP-DeLLP argumentation frame-
work to the extraction of consistent information from the scope of political debates.
Suppose we have two opposite parties of the sphere of Spanish politics: a left-wing
party (PSOE) and a right-wing party (PP). We are trying to find what are the posi-
tions we can expect both to agree as based on solid arguments considering the facts
and rules from the law and their particular beliefs. We prefix the rules with a label
(L:) so then it is easier to mention them in arguments.

First suppose they are discussing about possible ways to increase the Gross domes-
tic product (GDP) of Spain (target represented by the literal GDP_UP). As possible
actions, they discuss about:

G1: increase the education expenditure
GG2: increase the infrastructures expenditure

G3: decrease taxes for private companies

In the discussion, we have to take into account that the current law only allows
two of the previous actions to be executed at most, so executing all three actions is

15

forbidden by law. So, at the strict level we have that:

II={Rl:~Gl+ G2AGS3,
R2: ~G2 + G1 NG3,
R3:~G3+ G1AG2)

and actions {G1, G2, G3} become defeasible, since they can not be considered as
strict facts but, as assumptions and hence, as defeasible information. Moreover,
the left-wing party believes that executing G'1 and G2 will increase the GDP, and
that the same result will hold if executing G1 and GG3. Finally, the right-wing party
believes that executing G2 and 3 will increase the GDP. So, at the defeasible level
we have the following set of facts and rules:

A ={G1,G2,G3,
PSOEL : GDP_UP + G1 A G2,
PSOE2 : GDP_UP + G1 A G3,
PPl1: GDP_UP+ G2AG3}.

In this case s-Warr = () and it happens that ({G1}, G1), ({ G2}, G2) and ({G3}, G3)
are valid arguments, but each one is blocked by the others two due to the strict
knowledge (i.e., I U {G1} V¥ L, TTU {G2} ¥ L and IT U {G3} I/ L but,
MU {G1,G2,G3} 1), so we end up with an empty warrant set and with the ac-
tions G'1, G2 and G3 blocked. As a result all the arguments for the literal GDP_UP
are rejected and the target GDP_UP is not achieved. Suppose now that there is a
stronger belief in the possibility of implementing the action G1, than in actions
G2 and G3. In this case, we get two defeasibility levels for A: «; and s with
1 > ay > as > 0. ® Then, A is stratified as follows:

level a;: {G1,PSOE1,PSOE2,PP1} level ay: {G2, G3}.

So in this case G1 is the only warranted action at level «; (i.e., d-Warr(ay) =
{G1}), but the actions G2 and G3 become blocked at level s because I1Ud-Warr(o;)U
{G2,G3} L. Again, even if now the action G1 is warranted, not enough is war-
ranted to have a valid argument for target GDP_UP with any of the rules (i.e., all
the arguments for GDP_UP are based on some blocked argument), and thus, we
finally get:

Warr = {G1} and Block = {G2, G3}.

® As it is assumed in many scenarios of non-monotonic reasoning or belief revision, de-
feasibility levels are specified by the knowledge engineer according to their (subjective)
priority or preference: the higher is the priority, the higher is the level.

16

Suppose that now there is a stronger belief in the possibility of implementing the
actions (G1 and (G2, than the belief for action G3. In this case, the defeasible knowl-
edge A becomes:

level a1: {G1,G2,PSOE1,PSOE2,PP1} level ap: {G3}.

So in this case, at level oy, G'1 and G2 are warranted actions and consequently
so are the literals GDP_UP and ~G3 because ({G1, G2,PSOE1}, GDP_UP) and
({G1, G2}, ~G3) are valid arguments at level o, and thus, the action G3 becomes
an invalid (rejected) position at level ;. Therefore, in this case we have the follow-
ing output:

Warr = {G1,G2,GDP_UP, ~G3} and Block = .

Suppose now that the right-wing party hardens its speech and adds a new belief to
the discussion: “increasing the education expenditure will cause the GDP to not
increase”. This new information is represented by the defeasible rule

PP2: ~GDP_UP < G1

and is incorporated with the same strength than the previous rules into the debate.
So, the defeasible knowledge A becomes:

level a: {G1, G2,PSOE1, PSOE2, PP1,PP2}

level ay: {G3}.
In this case, as before, we warrant G1 and 2, and thus, we have valid arguments
for GDP_UP and ~GDP_UP both of strength o;. So at level oy, GDP_UP and
~GDP_UP become blocked. Finally, as before, ~(G3 is warranted at level a;; and

the action G3 is rejected at level . Therefore, in this case we have the following
output:

Warr = {G1,G2,~G3} and
Block = {GDP_UP,~GDP_UP}.

Remark that if we instead consider that the PP2 rule is weaker than the other rules,
the defeasible knowledge A becomes:

level a1: {G1, G2, PSOEL, PSOE2, PP1}
level ap: {G3,PP2},
and thus, the argument ({G1, G2, PSOE1}, GDP_UP) is warranted at level «; and

the argument ({G1,PP2}, ~GDP_UP) is rejected at level iy because it is incon-
sistent with the previous warrant set (i.e., Il U d-Warr(a;) U {~GDP_UP} - 1).

17

So, in this case we have the following output:

Warr = {G1, G2, GDP_UP, ~G3} and Block = {).

4.2 RP-DeLP programs with multiple outputs

As we have mentioned in Section 2, in some cases the output (Warr, Block) for
a knowledge base in general, and for an RP-DelLP program in particular, is not
unique, due to some recursive definitions of conflict that emerge when considering
inference (support) and conflict relations among arguments. The following example
shows a recursion case from the scope of political debates.

This time the law changes and what we have now is a relaxation of the strict rules,
and thus, IT = () and the rules R1, R2 and R3 become questionable (defeasible).
Thus, we can consider a defeasibility level o for rules R1, R2 and R3. Remember
from the previous section that

(1 : increase the education expenditure Rl: ~G1 <+ G2ANG3
(G2 : increase the infrastructures expenditure R2: ~G2+ G1NG3
(G3 : decrease taxes for private companies R3: ~G3 + G1NG2

As in the first example suppose that the left-wing party believes that executing
G'1 and G2 will increase the GDP (PSOEI rule), and that the same result will
hold if executing G1 and G3 (PSOE2 rule). The right-wing party believes that
executing G2 and GG3 will increase the GDP (PP1 rule). So we can consider a
second defeasibility level as with 1 > a; > @y > 0, and then we stratify the
defeasible knowledge as follows:

level o {R1, R2, R3}
level a: {G1,G2,G3,PSOEL, PSOE2, PP1}.

In this case, s-Warr = d-Warr(oy) = Block(ay) = () and ({G1}, G1), ({G2}, G2)
and ({G3}, G3) are valid arguments of strength «, but each one can be warranted
if and only if one of the other two is blocked. Hence, we have three possible outputs:
(Warry, Blocky), (Warry, Blocks) and (Warrs, Blocks) where

Warry = {G1,G2,GDP_UP}, Block; = {G3,~G3},
Warry, = {G1,G3,GDP_UP}, Block, = {G2,~G2},
Warrs = {G2,G3,GDP_UP}, Blocks = {G1,~G1}.
In the rest of this section we formalize recursive definitions of conflict in RP-DeLP

by means of what we call Warrant Dependency Graph. In [22] a similar graph struc-

18

ture, called inference-graph, was defined to represent inference (support) and defeat
relations among arguments allowing to detect recursive defeat relations when con-
sidering recursive semantics for defeasible reasoning. The main difference between
both approaches is that in our case we handle collective conflicts among arguments
in order to preserve indirect consistency and closure among warranted conclusions
with respect to the strict knowledge.

The characterization of the Unique Output Property for an RP-DeL.P program P =
(IT, A, <)is done level-wise, starting from the highest level and iteratively going
down from one level to next level below. For every level « it consists in checking
whether for some literal L, the warranty of L recursively depends on itself based
on the topology of a warrant dependency graph for a set of valid arguments of
strength o and a set of what we call Almost Valid Arguments of strength a. A
valid argument captures the idea of a non-rejected d-argument (i.e. a warranted or
blocked d-argument, but not rejected) while an almost valid argument captures the
idea of a d-argument whose rejection is conditional to the warranty of some valid
argument.

Notation: In the rest of the paper, given an RP-DeLP program P = (I, A, <)
with defeasibility levels 1 > a; > ... > a,, > 0, if W and B denote sets of
warranted and blocked conclusions, respectively, we will write W («;) and B(«;)
to denote the sets of the warranted and blocked conclusions of strength «; from
W and B, respectively. Then, we will also write W(> «;) to denote Ug~., W(5)
and W(> «;) to denote Ug>,, W(3), and analogously for B(> «;) and B(> «;),
assuming W (> «;) is the set of the warranted conclusions of I from the strict
knowledge represented as W (1), and B(> a;) = 0.

Definition 12 (Almost valid argument) Let P = (II, A, <) be an RP-DeLP pro-
gram, let W and B be two sets of warranted and blocked conclusions, respectively,
and let A be a set of valid d-arguments of strength «.® An argument (F, P) of
strength o is almost valid w.r.t. A if it satisfies the following six conditions:

(AV1) for all subargument (C, Ry T (F, P) of strength 8 > o, R € W(p);

(AV2) P ¢ W(> «) and P € B(> «);

(AV3) ~P &€ B(> a)and TUW(> a)U{R | (C,R) C (F,P)} U{P} V/ L;

(AV4) there does not exist a valid d-argument for conclusion P of strength o;

(AVS) for all subargument (C, R) T (F, P) of strength « such that R ¢ W(«), it
holds that (C, R) € A, otherwise R and ~R ¢ B(> «); and

(AV6) there exists at least an argument (C, R) € A such that (C, R) C (F, P).

Intuitively, an almost valid argument captures the idea of an argument based on

6 Remember that a d-argument (A, Q) of strength « is valid with respect to (W, B) if it
satisfies Conditions (V1)-(V3); i.e. (V1) for all subargument (C, R) C (A, Q) of strength
B>a Re WP (V2)Q & W> a)UB(> a); (V3) ~Q & B(> «) and TTU W(>
a) U{R | (C,R) C (A, Q)} U{Q} I/ L.

19

valid arguments and which status is warranted (not rejected) whenever these sub-
arguments are warranted, and rejected, otherwise. In particular, Condition (AV1)
corresponds to a smoothed version of Condition (V1). Conditions (AV2) and (AV3)
are equivalent to Conditions (V2) and (V3), respectively. Condition (V4) ensures
that there does not exist a valid argument for the literal, and Conditions (AVS5)
and (AV6) ensure that the status of an almost valid argument depends on the status
of at least one valid argument.

For instance, in the above example, ({G1}, G1), ({G2}, G2) and ({G3}, G3) are
valid arguments, while

({G2,G3, R1},~G1), ({G1,G3, R2}, ~G2) and ({G1, G2, R3}, ~G3)
are almost valid arguments based on them.

At this point we are ready to define the warrant dependency graph for a set of valid
arguments and a set of almost valid arguments.

Definition 13 (Warrant dependency graph) Let P = (II, A, <) be an RP-DeLP
program and let W and B be two sets of warranted and blocked conclusions, re-
spectively. Moreover, let Ay = (A1, Q1), ..., A = (A, Qx) be valid d-arguments
of strength , and let F; = (Fy, Py), ..., F, = (F,, P,) be d-arguments of strength
« that are almost valid with respect to { A1, ..., Ar}. The warrant dependency
graph (V. E) for {Ay,..., A} and {Fi, ..., F,} is defined as follows:

(1) For every literal L € {Q1,...,Qr} U{Py,...,P,}, the set of vertices V
includes one vertex vy,

(2) For every pair of literals (L1, Ly) € {Q1,...,Qr} x {Pi,..., P,} such that
the argument of L, is a subargument of the argument of Lo, the set of directed
edges E includes one edge (vr,,vr,). "

(3) For every pair of literals (L, Ly) € {Py,..., P} X {Q1,...,Qx} such that
Ly = ~ Lo, the set of directed edges E includes one edge (v, ,vr,).

(4) For every strict rule R < Ry N\ ...\ R, € Il such that {~R,Ry,...,R,} C
W(> a) U{Q1,...,Qr} U{Py,..., P}, the set of directed edges E in-
cludes one edge (v, ,vr,) for every pair of literals (L1, Ly) € {Py, ..., P} X

{Q1, ..., Qr} such that the argument of Lo is not a subargument of the argu-
ment of Ly, Ly € {~R,Ry,...,R,} and, either Ly € {~R,Ry,...,R,} or,
Lo is a subargument of the argument of Ls, for some Ly € {P, ..., P,} such

that L3 € {NR, Ry, .. .,Rp}. 9

" The directed edge (vy,, vy,) represents an inference (subargument) relation from a valid
argument to an almost valid argument.

8 The directed edge (vr,,vr,) represents a direct conflict, inconsistency due to defeasible
rules, between an almost valid argument and a valid argument.

9 The directed edge (vr,,vr,) represents an indirect conflict, inconsistency due to strict
rules, between an almost valid argument and a valid argument.

20

(5) Elements of V and E are only obtained by applying the above construction
rules.

Intuitively, the warrant dependency graph for {A;, ..., A} and {F1, ..., F,} rep-
resents conflict and support relationships among these sets of arguments of strength
« with respect to the set W (> «) of warranted conclusions of equal or higher
strength.

Figure 1 shows the warrant dependence graph for the above example. Remem-
ber that ({G1},G1), ({G2},G2) and ({G3},G3) were valid arguments, while
({G2,G3, R1},~G1), ({G1,G3, R2}, ~G2) and ({G1, G2, R3}, ~G3) were al-
most valid arguments based on them. Conflict and support relationships among
these arguments are represented as dashed and solid arrows, respectively. The graph
contains many cycles. For instance, the set of edges

{(~G1,G1),(G1,~G2), (~G2,G2), (G2, ~G1)}

expresses that (1) the warranty of G1 depends on a (possible) conflict with ~G1
(direct conflict between GG1 and ~G1 if ~G1 was valid); (2) the support of ~ G2
depends on G'1 (i.e. the validity of ~ G2 depends on the warranty of G1); (3) the
warranty of G2 depends on a (possible) conflict with ~ G2 (direct conflict between
G2 and ~G2 if ~G2 was valid); and (4) the support of ~G1 depends on G2 (i.e.
the validity of ~G1 depends on the warranty of G2).

Fig. 1. Recursion case from the scope of political debates.

The following example shows a recursive definition of conflict which arises from
the strict knowledge.

Example 14 Consider the RP-DeLP program Pr, = (I1, A, <) with
I={y,~y«+pAr,~y<+qAstand A ={p,q,r < q,s < p},

and a single defeasibility level o for A.

Consider the sets W(1) = {Q | Il Fr Q} = {y}, B(1) = 0, W(«) = 0 and

B(a)) = (). Now consider arguments for conclusions p and q; i.e.

21

A1 = ({p},p) and Ay = ({q}, q).

Finally, consider arguments for conclusions r and s; i.e.

Fi={{q,r < q},r)and Fo = ({p,s < p},s).

Obviously, A, and As are valid arguments with respect to (W (> «), B(> «))
and Fy and JFy are almost valid arguments with respect to { Ay, As} and (W (>
a), B(> «)). Figure 2 shows the warrant dependency graph for {A;, As} and
{F1, F2}. The cycle of the graph expresses that (1) the warranty of p depends on a
(possible) conflict with r; (2) the support of r depends on q;(3) the warranty of q
depends on a (possible) conflict with s; and (4) the support of s depends on p.

[

< - == — = =

Fig. 2. Warrant dependency graph for Pr; .

Proposition 15 (RP-DeLP program with unique output) Let P = (II, A, <) be
an RP-DeLP program and let (Warr, Block) be an output for P. (Warr, Block) is
the unique output for P iff, for all defeasibility level o and literal L € d-Warr(«),
there is no cycle in the warrant dependency graph for the set of arguments A and
the set of arguments F where

- A s the set of all d-arguments of strength « that are valid w.r.t (Warr(> «)\{L},
Block(> «)), and

- F is the set of all d-arguments of strength « that are almost valid with respect to
A and (Warr(> a)\{L}, Block(> «)).

Proof: Suppose that (Warr, Block) is the unique output for P and there is a cycle
in the graph for some literal L € d-Warr(a). On the one hand, if (Warr, Block) is
the unique output for P , there does not exist a pair (Warr', Block') that satisfies
Definition 8 and Warr’ # Warr or Block' # Block, and thus, every literal is ei-
ther warranted, or blocked, or rejected. On the other hand, given L € d-Warr(«),
A is the set of arguments of strength « which are valid with respect to (Warr(>
a)\{L}, Block(> «)), hence, arguments in .A do not depend on L and there is an
argument for L in A. Similarly, F is the set of arguments of strength « that are
almost valid with respect to A and (Warr(> «)\{L}, Block(> «)), hence, the sup-
port of arguments in F depends on L or some argument in A. Now, according to
Definition 13, if there is a cycle in the warrant dependency graph, it must be that
the warranty of the argument for L depends on the validity of at least an argu-
ment (F, P) € F, which depends on the warranty of some argument (A, L) € A
with L # L', which depends on the validity of at least an argument (F’, P') € F

22

with P’ # P, which in turn depends on the warranty of L. Then, according to
Definition 8, either L is warranted and L' is blocked, or L’ is warranted and L is
blocked, and therefore, there exists at least two different outputs for P. Finally, if
for all defeasibility level « and literal L. € d-Warr(«), there is no cycle in the the
warrant dependency graph with respect to (Warr(> «)\{L}, Block(> «)), there
exists a unique warranty evaluation order between arguments, and thus, there exists
a unique output for P. a

For instance, consider the RP-DeL.P program Pg; from Example 14. According to
Definition 8, Qutput = (Warr, Block) with Warr = s-Warr U d-Warr(«), s-Warr =
{y}, d-Warr(o) = {p} and Block = Block(«t) = {q,~s}, is an output for Pg;.
Then, as p € d-Warr(a), defining W = Warr(> a)\{p} = s-Warr = {y} and
B = Block(> «) = 0, we get that A = {A;, A} is the set of all valid arguments
with respect to W and B, and F = {F}, F»} is the set of all almost valid arguments
with respect to .4. Moreover, the warrant dependency graph for A and F contains a
cycle (see Figure 2) proving that the output for Pg; is not unique. Indeed, notice that
Output = (Warr', Block') with Warr' = s-Warr U d-Warr'(«t), d-Warr' () = {q}
and Block' = Block' () = {p, r}, is also an output for Pg;. Moreover, as Warr’ (>
a)\{q} = Warr(> a)\{p} = s-Warr = {y} and Block'(> «) = Block(> «) = 0),
the warrant dependency graph for ¢ € d-Warr’ («)) also corresponds to the graph in
Figure 2.

From a computational point of view, the unique output property for RP-DeLP pro-
grams can be checked by means of a level-wise procedure, starting from the highest
level and iteratively going down from one level to next level below, and for every
level verifying that there is no cycle in the the warrant dependency graph for all sets
of valid and almost valid arguments with respect to the sets of already warranted
and blocked conclusions. In [2] we designed an algorithm which implements this
level-wise procedure computing warranted and blocked conclusions until a cycle is
found or the unique output is obtained.

In the rest of the paper we tackle the problem of which output one should consider
for an RP-DeLLP program with multiple outputs. To this end we define the maximal
ideal output of an RP-DeLP program as the set of conclusions which are ultimately
warranted and we design an algorithm for computing them in polynomial space and
with an upper bound on complexity equal to PV7.

5 Maximal ideal output

In the previous section we have characterized the unique output property for the
particular framework of RP-DeLLP programs. Now in this section we are interested
in the problem of deciding the set of conclusions that can be ultimately warranted
in RP-DeLLP programs with multiple outputs. The usual skeptical approach would

23

be to adopt he intersection of all possible outputs. However, in addition to the com-
putational limitation, as stated in [22], adopting the intersection of all outputs may
lead to an inconsistent output (in the sense of violating the base of the underly-
ing recursive warrant semantics) in case some particular recursive situation among
literals of a program occurs. Intuitively, for a conclusion, to be in the intersection
does not guarantee the existence of an argument for it that is recursively based on
ultimately warranted conclusions.

For instance, consider the following situation involving three conclusions P, @),
and T, where P can be warranted whenever () is blocked, and vice-versa. More-
over, suppose that 7' can be warranted when either P or () are warranted. Then,
according to the warrant recursive semantics, we would get two different outputs:
one where P and 1" are warranted and () is blocked, and the other one where () and
T are warranted and P is blocked. Then, adopting the intersection of both outputs
we would get that 7" would be ultimately warranted, however 7" should be in fact
rejected since neither P nor () are ultimately warranted conclusions.

According to this example, one could take then as the set of ultimately warranted
conclusions of RP-DeLLP programs those conclusions in the intersection of all out-
puts which are recursively based on ultimately warranted conclusions. However, as
in RP-DeLP there are levels of defeasibility, this approach could lead to an incom-
plete solution since we are interested in determining the biggest set of ultimately
warranted conclusions with maximum strength.

For instance consider the above example extended with two defeasibility levels as
follows. Suppose that P can be warranted with strength o whenever () is blocked,
and vice-versa. Moreover, suppose that 7" can be warranted with strength o« when-
ever P is warranted at least with strength o and that 7' can be warranted with
strength (3, with 5 < «, independently of the status of conclusions P and (). Then,
again we get two different outputs: one output warrants conclusions P and 7" with
strength « and blocks conclusion (), and the other one warrants conclusions () and
T with strengths a and (3, respectively, and blocks P. Now, adopting conclusions of
the intersection which are recursively based on ultimately warranted conclusions,
we get that conclusion 7’ is finally rejected, since conclusion 7' is warranted with
a different argument and strength in each output. However, as we are interested in
determining the biggest set of warranted conclusions with maximum strength, it
seems quite reasonable to reject 7" at level « but to warrant it at level .

Therefore, the maximal ideal output for an RP-DeLP program P = (II, A, <) is a
pair (Warr, Block) of warranted and blocked conclusions, respectively, with a max-
imum strength level such that the arguments of all of them are recursively based
on warranted conclusions but, while warranted conclusions do not generate any
conflict with the set of already warranted conclusions and any circular definition
of warranty characterized by a warrant dependency graph, blocked conclusions do.
In fact, in a different context, this idea corresponds to the maximal ideal exten-

24

sion defined by Dung, Mancarella and Toni [16,17] as an alternative skeptical basis
for defining collections of justified arguments in the abstract argumentation frame-
works promoted by Dung [15] and Bondarenko et al. [10].

Definition 16 (Maximal ideal output) 7The maximal ideal output for an RP-DeLP
program P = (II, A, <) is a pair (Warr, Block), where Warr = s-Warr U d-Warr
with s-Warr = {Q | Il Fgr Q}, such that d-Warr and Block are required to satisfy
the following recursive constraint: for every valid argument (A, Q) of strength « it
holds that:

- @ € Block(a) whenever one of the two following conditions holds:
(a) There exists a set G of valid arguments of strength « with (A, Q) ¢ G
such that the two following conditions hold:

(i) (A, Q) IZ (C,R), forall (C,R) € G, and

(ii) GU{(A, Q)} generates a conflict with respect to d-Warr(> a)U{ P |
there exists (B, P) C (C, R) for some (C,R) € GU{(A,Q)}}.

(b) There exists a set H of valid arguments of strength o such that the three
following conditions hold:

(i) (A, Q) iz (C,R), forall (C,R) € H.

(ii) There exists a set of arguments F of strength « that are almost valid
with respect to H U (A, Q) and such that there is a cycle in the
warrant dependence graph (V, E) for H U (A, Q) and F, and all
argument (C, R) € H is such that R is either a vertex of the cycle
or (C, R) does not satisfy Condition (a).

(iii) For some vertex v € V of the cycle either v is the vertex of conclu-
sion @) or v is the vertex of some other conclusion in H and there
exists a path from v to the the vertex of conclusion Q).

- Otherwise,) € d-Warr(«).

The intuition underlying the maximal ideal output definition is as follows. The con-
clusion of every valid (not rejected) argument (A, @)) of strength « is either war-
ranted or blocked. Then, it is eventually blocked if either (a) it is involved in some
conflict with respect to d-Warr(> «) and a set G of valid arguments whose supports
do not depend on (A, @), or (b) the warranty of (A, ()) depends on some circular
definition of conflict between valid and almost valid arguments; otherwise, it is
warranted. Condition (b) checks whether the warranty of (A, ()) depends on some
circular definition of conflict between a set of valid arguments H whose supports
do not depend on (A, Q) and a set of almost valid arguments F whose supports de-
pend on some argument in HU (A, Q). In fact, the idea here is that if the warranty of
(A, Q) depends on some circular definition of conflict between the arguments of
and F, one could consider two different outputs (status) for conclusion (): one with
() warranted and another one with () blocked. Therefore, conclusion () is blocked
for the maximal ideal output. In general, the arguments of H and F involved in a
cycle are respectively warranted and rejected for the maximal ideal output.

25

For instance, consider again the recursion case from the scope of political debates
developed in the last section. Figure 1 showed the warrant dependency graph for

the set of valid arguments H = {({G1},G1), ({G2},G2), ({G3},G3)} and the
set of almost valid arguments

F = {({G2,G3, R1},~G1), ({G1,G3, R2}, ~G2), ({G1, G2, R3}, ~G3)}.

Then, as for every valid argument in H there is a a cycle, the maximal ideal output
for the RP-DeLP program is Warr = () and Block = {G1, G2, G3}.

Consider now the RP-DeLLP program Pg; of the last section. Figure 2 showed the
warrant dependency graph for the set of valid arguments H = {({p},p), ({¢},¢)}
and the set of almost valid arguments F = {{({q,r < q¢},7), ({p,s < p}, s)}.
Again, as for every valid argument there is a cycle, the maximal ideal output for
Pro is Warr = {y} and Block = {p, q}.

Finally, consider that we extend Pg; with the following defeasible rules {t,t <+
p,t < ¢} and two defeasibility levels; i.e. consider the RP-DeLP program Pgy =
(IT, A, <) with

II ={y,~y < pAr,~y <+ qAs},
A ={p,q,t,r < q,8 p,t < p,t < ¢} and

two defeasibility levels for A as follows: {t} < {p,q,7 < q,s + p,t < p,t < q}.
Assume « is the level of {p,q,7 < ¢,s < p,t < p,t < q} and «s is the level
of {t}, with 1 > oy > ay > 0. Obviously, s-Warr = {y} and, at level oy, H; =
({p},p) and Hy = ({q}, ¢) are valid arguments. Moreover, F; = ({q,7 < q},r),
Fa = {{p,s + p},s), Fzs = ({q,t < ¢}, t) and Fy = ({p,t < p},t) are almost
valid arguments with respect to {#1, H }. Figure 3 shows the warrant dependency
graph for {#H, H,} and {F;, F», F3, F4}. As for every valid argument there is a
a cycle, conclusions p and ¢ are blocked, and conclusions r and s are rejected for
the maximal ideal output. Remark that conclusion ¢ is also rejected at level oy
since the support of F3 depends on p, the support of F; depends on ¢, and p and ¢
are blocked. Therefore, s-Warr = {y}, d-Warr(c;) = () and Block(a) = {p, q}.
Finally, at level aw, ({t},t) is the unique valid argument and therefore conclusion
t is warranted. Hence, d-Warr(as) = {t} and Block(ay) = 0, and thus, Warr =

{y,t} and Block = {p, q}.

<— - - — —

Fig. 3. Warrant dependency graph for Pr» at level a;.

26

Next proposition states that the maximal ideal output for an RP-DeLLP program is
unique.

Proposition 17 (Unicity of the maximal ideal output) Ler P = (II, A, <) be an
RP-DeLP program. The pair (Warr, Block) of warranted and blocked conclusions
that satisfies the maximal ideal output characterization for P is unique.

Proof: Suppose that (Warr, Block) and (Warr', Block') are pairs of warranted and
blocked conclusions that satisfy the maximal ideal output characterization for P.
Obviously, s-Warr = s-Warr'. Suppose that for some «, d-Warr(a) # d-Warr' («)
and d-Warr(8) = d-Warr (3), for all 3 > «. As d-Warr(«) # d-Warr (), suppose
that (A, Q) of strength « is valid with respect to (Warr, Block) and (Warr’, Block')
but Q & d-Warr(a) and Q € d-Warr (). Then, Q € Block(«) and (A, Q) is (a)
either involved in a conflict with respect to d-Warr(> «) and a set G of valid argu-
ments of strength o which supports do not depend on (A, @), or (b) the warranty
of (A, Q) depends on a circular definition of conflict between a set # of valid ar-
guments which supports do not depend on (A, @)) and a set F of almost valid argu-
ments which supports depend on some argument in H U (A, Q). Moreover, (A, Q)
is not involved in any conflict with respect to d-Warr’ (> «) and all set G’ of valid
arguments of strength oz which do not depend on (A, @)) and the warranty of (A, Q)
do not depend on any circular definition of conflict between all set ' of valid ar-
guments and the set F’ of almost valid arguments which supports depend on some
argument in H'U(A, Q). As all sets G and H of valid arguments of strength o« which
supports do not depend on (A, Q) are also valid with respect to (Warr’, Block') and
all sets G’ and H’ of valid arguments of strength o which supports do not depend
on (A, Q) are also valid with respect to (Warr, Block), there should exist at least an
argument (B, P) such that (i) it is almost valid with respect to a set H of valid argu-
ments that satisfy Condition (b)) for argument (A, Q) and output (Warr, Block), and
(i) it is not almost valid with respect to H and (Warr’', Block'). Therefore, (B, P)
should violate Condition (AV5) with respect to H and (Warr’, Block'), and thus, for
some subargument (C, R) T (B, P) of strength « it must hold that R ¢ Warr' («)
and (C,R) ¢ H and R or ~R € Block'(> «). Now, as (C,R) ¢ H and (B, P)
is almost valid with respect to H and (Warr, Block), either R € d-Warr(a), or
R,~R ¢ Block(> «).If R € d-Warr(«), because of the recursive warrant se-
mantics, (A, Q) IZ (C, R), and thus, R € Warr'(«). If R ¢ d-Warr(«), we have
R,~R & Block(> «) and R or ~R € Block'(> «). As Block(3) = Block'(j3)
for all 3 > «, R,~R & Block(a) and R or ~R € Block'(«). Then either
R € d-Warr(a) or (C, R) is not valid with respect to (Warr, Block), and thus,
(A, Q) C (C, R). Now, as the warranty of (A,) depends on a circular definition
of conflict between the set H and a set F of almost valid arguments which supports
depend on some argument in H U (A, Q) with (B, P) € F, there is a cycle in the
warrant dependence graph (V, E) for H and F and any argument C € H is such
that the conclusion of C is either a vertex of the cycle or C does not satisfy Condi-
tion (a). Then, if R or ~R € Block'(«) and (C, R) ¢ H, R or ~R € Block(«).
Hence, d-Warr(a) = d-Warr'(«) and Block(ca) = Block'(«v) for all defeasibility

27

level a. O

Since the set of conclusions that are blocked at a level is decisive for determining
which arguments are valid at the next level, we have to analyze how the closure
postulate reads for the maximal ideal output for an RP-DeLLP program.

Proposition 18 (Closure for RP-DeLLP programs) Let P = (II, A, <) be an RP-
DeLP program with defeasibility levels 1 > ay > ... > «, > 0 for A, and let
(Warr, Block) be the maximal ideal output for P. Then, if 11 U d-Warr(> ;) Fr @
and 11U d-Warr(> «;) /g Q, then either Q) € d-Warr(«;), or Q € Block(> «;), or
~(Q) € Block(> «;).

Proof: Suppose that for some o; € {ay,...,a,}, IIU Warr(> «;) Fr Q and
ITU Warr(> ;) ¥r Q and Q & d-Warr(a;) and Q, ~Q & Block(> «;). Then, as
U Warr t/ L, TTUWarr(> «;) U{Q} ¥/ L, and thus, there exists a valid argument
(A, Q) for conclusion @ of strength «;;. Now, as @) & d-Warr(c;), it can be the case
that there exists a set G of valid arguments of strength «;, with (4, Q) & G, such
that (i) (A, Q) Z C forall C' € G, and (ii)) G U {(A, Q) } generates a conflict with
respect to W = d-Warr(> «;) U{P | there exists (B, P) C_ C forsome C € G U
{{4,Q)}}. I GU{(A, @)} generates a conflict with respect to W, Conditions (C)
and (M) hold for W, and thus, TU W U{Q}U{P | (B,P) € G} F L and
OUWUSLH L forall S € {Q}U{P | (B,P) € G}. Consider W' = {R |
(B,Ry C (A,@Q)}. Then,as W/ C Wand TU W' kg Q,if TUW U{Q} U{P |
(B,P) € G} - L, then TUW U{P | (B,P) € G} L, and thus, either
Q € d-Warr(a;) , or Q € Block(> «;), or ~Q € Block(> «;); i.e. either @ is
warranted at level o, or () is rejected at level «; because () or ~() are blocked at
level 5 with 8 > «;. On the other hand, it can be the case that there exists a set of
valid arguments H of strength «; and a set of arguments F of strength a; which
are almost valid with respect to H U (A, @), and there is a cycle in the warrant
dependence graph (V) F) for H and F, and any argument (C, R) € H is such
that R is either a vertex of the cycle or (C, R) does not generate any conflict. As
ITU Warr(> «;) Fr Q and Q & Warr(> «;), we have that there exists a strict rule
of the form @ < Ly A ... A L, € IT with p > 1 such that L, € Warr(> «;) for all
L; € {Ly,...,L,}. Moreover, as II U Warr(> «;) t/r @, there exists at least one
literal L € {Ly, ..., L,} such that L € d-Warr(«;), and thus, L is not involved in a
cycle for all warrant dependence graph built over arguments at level «;. According
with the warrant dependence graph definition, as the vertex of conclusion () is a
vertex of the cycle or there exists a path from a vertex v of the cycle which is
associated with some conclusion in H to the vertex of conclusion (), there exists a
set of valid arguments H’ of strength o; with (A, Q) & H'and (D, L) € H', aset F’
of almost valid arguments of strength a; with (A4, Q) € F, and there is a cycle in
the warrant dependence graph (V, E) for H’ and F’, and any argument (C, R) € H’
is such that R is either a vertex of the cycle or (C, R) does not generate any conflict,
and there exists a path from a vertex v of the cycle which is associated with some
conclusion in ' to the vertex of conclusion L. Hence, either () € d-Warr(«;) , or

28

Q € Block(> «;), or ~Q € Block(> «;). O

Notice that for the particular case of considering a single defeasibility level for A,
the closure property reads as follows : if II U Warr - @, then) € Warr.

The following example shows the closure result for the maximal ideal output for an
RP-DeLP program.

Example 19 Consider the RP-DeLP program Pgrs = (11, A, <) with
M={~s<+ q,~r<+ hland A ={q<+ r,h« s,rs,q,h},

and two defeasibility levels for A: aq and as with 1 > oy > ag > 0. Consider that
A is stratified as follows:

level ay: {q < r,h < s,r,s} level as: {q, h}.
Obviously, s-Warr = (). Then, at level o, we have two valid arguments:
Hi = {r},r) and Hs = ({s}, s).
and four almost valid arguments with respect to {H, Hs}:

f1:<{r7q<_r}7q>) f3:<{T,q<—T,N5<—q},N3>,
‘FQ = <{S7h<_s}7h>: f4: <{S,h<_S,NT<—h}7NT>_
Figure 4 shows the warrant dependency graph for {H,, Ha} and {Fy, Fa, F3, Fu}.

The cycles express that either r or s can be warranted, but not both. Hence, at level
a1, we have two possible outputs for Prs:

d-Warry(ay) = {r}, Blocki(a1) ={s,q},
d-Warry(ay) = {s}, Blocks(ay) = {h,r}.

Then at level s, all arguments are rejected in both outputs, and thus, d-Warry(a) =
d-Warry(az) = 0 and Block, () = Blocks(ay) = 0. Therefore, the two possible
outputs for Prs are:

Warry = {r}, Block = {s,q},
Warry = {s}, Blocky = {h,r}.

Consider now the maximal ideal output for Pgs in which valid arguments involved

in cycles are blocked and almost valid arguments involved in cycles are rejected.
Obviously, s-Warrazima = 0 and, at level oy, the maximal ideal output for Prs is:

d'Warrma;Uimal(O‘l) - @, BZOCkmazimal(al) = {Ta S}-

29

Now, at level ay we have that arguments

({a}, q) and ({h}, h)

are valid with respect to d-Warr g ima (> a1) and Blockyazima (> a1) and none of
them is involved in a cycle neither in a conflict, and thus, q and h are warranted
conclusions at level oy (i.e. {q,h} C d-Warrpazima(2). Finally, although argu-
ments

({q,~s < q},~s) and ({h,~r < h},~1)

are recursively based on warranted conclusions, both violate Condition (V3) (i.e.
s, 7 € Blockyazima (> o1)), and thus, both arguments are rejected since they are
not valid. Hence, at level as, s and r are rejected for the maximal ideal output:

d'Warrmazimal(@Q) = {q7 h‘}’ BlOCkmaximal<a2) - @

Fig. 4. Warrant dependency graph for Prs.

6 On the computation of the maximal ideal output

From a computational point of view, the maximal ideal output of an RP-DelP
program can be computed by means of a level-wise procedure, starting from the
highest level and iteratively going down from one level to next level below. Then,
at every level it is necessary to determine the status (warranted or blocked) of each
valid argument. Next we design an algorithm which implements this level-wise pro-
cedure computing warranted and blocked conclusions by checking the existence
of conflicts between arguments and cycles at some warrant dependence graph.
In the following we use the notation W (1) for s-Warr, W («a) and W (> «) for
d-Warr(«) and d-Warr(> «), respectively, and B(«) and B(> «) for Block(«) and
Block(> «), respectively.

Algorithm Computing warranted conclusions
Input P = (II, A, <): An RP-DeLP program

Output (¥, B): maximal ideal output for P

Method

30

W(1) =1{Q| s Q}

B:=1

o :=maximum_level(A)

while (o > 0) do
level_computing(a, W, B)
a:=next_level(A)

end while
end algorithm

The algorithm Computing warranted conclusions first computes the set
of warranted conclusions W (1) form the set of strict clauses II. Then, for each
defeasibility level 1 > a > 0, the procedure level_ computing determines all
warranted and blocked conclusions with strength .. Remark that for every level o,
the procedure level computing receives W (> «) and B(> «) as input and
produces W (> «) and B(> «) as output.

Procedure 1evel_computing (in o; in_out W, B)
VA : = {{A, Q) with strength « | (A, Q) is valid}

while (VA # () do

while (3(A, Q) € VA | - cycle(a, (A,Q), VA, W, almost_valid(a, VA, W, B))
and - conflict(a, (A, Q), VA, W, not_dependent (a, (4, Q), VA, W, B)) do

W(a) :=W(a) U{Q}

VA := VA\{(4, Q)} U {(C, P) with strength « | (C, P) is valid}

end while
I'={(A,Q) € VA | conflict(a, (4,Q), VA, W, ()

or cycle(a, (4,Q), VA, W, almost_valid(a, VA, W, B))}
B(a) = B(a) U{Q | (A4,Q) € I}
VA := VA\I

end while
end procedure

For all level « the procedure level computing first computes the set VA of
valid arguments with respect to W (> «) and B(> «). Then, this set of valid ar-
guments is dynamically updated depending on new warranted and blocked con-
clusions with strength . The procedure level_computing finishes when the
status for every valid argument is computed. The status of a valid argument is com-
puted by means of the four following auxiliary functions.

31

Function almost_valid(in o, VA, W, B) return AV: set of arguments
AV := {(C, P) with strength « such that

(C, P) satisfies Conditions (AV1)-(AV6) with respect to VA}
end function

Function not_dependent(in «, (4, Q), VA, W, B)
return ND: set of almost valid arguments which do not depend on)

AV :=almost_valid(a, VA, W, B)
ND = {{C, P) € AV| (A,Q) ¢ (C, P)}

end function

Function conflict(in «, (A, Q), VA, W, ND) return con : Boolean
con:=3 5 C VA\{(A4,Q)} UND such that

NUW(>a)U{P|(C,P)ec S}t L and

NUW(>a)U{P|(C,P)e S}U{Q}+ L
end function

Function cycle(in o, (A, Q), VA, W, AV) return cy: Boolean
cy := there is a cycle in the warrant dependence graph for VA and AV

and the vertex of (A, () is a vertex of the cycle or there exists a

path from a vertex in VA of the cycle to the the vertex of (A, Q)
end function

The function conflict checks (possible) conflicts among the argument (A, Q)
and the set VA of valid arguments extended with the set ND of arguments. The set
ND of arguments takes two different values: the empty set and the set of almost
valid arguments whose supports depend on some argument in VA\{(A, Q)}. The
empty set value is used to detect conflicts between the argument (A, @Q)) and the
arguments in VA, and thus, every valid argument involved in a conflict is blocked.
On the other hand, the value set of almost valid arguments which do not depend on
argument (A, @) is used to detect possible conflicts between the argument (A, Q))
and the arguments in VAUND, and thus, every valid argument involved in a possible
conflict remains as valid. In fact, the function almost_valid computes the set
of almost valid arguments that satisfy Conditions (AV1)-(AV6) with respect to the
current set of valid arguments. The function not__dependent considers almost
valid arguments with respect to the current set of valid arguments which do not
depend on (A,). Finally, the function cycle checks the existence of a cycle in
the warrant dependence graph for the current set of valid arguments and its set of
almost valid arguments, and verifies whether the vertex of argument (A, @) is in
the cycle or there exists a path from a vertex of the cycle to it.

32

One of the main advantages of the maximal ideal warrant recursive semantics for
RP-DeLP is from the implementation point of view. Warrant semantics based on
dialectical trees, like DeLLP [12,14], might consider an exponential number of argu-
ments with respect to the number of rules of a given program. The previous algo-
rithm can be implemented to work in polynomial space, with a complexity upper
bound equal to PNF,

This can be achieved because it is not actually necessary to find all the valid ar-
guments for a given literal (), but only one witnessing a valid argument for () is
enough. Analogously, function not _dependent can be implemented to generate
at most one almost valid argument, not dependent on (A, ()), for a given literal. The
only function that in the worst case can need an exponential number of arguments
is cycle, but next we show that whenever cycle returns true for (4, @), then a
conflict will be detected with the almost valid arguments not dependent on (A, @),
so warranted literals can be detected without function cycle. Also, blocked liter-
als detected by function cycle can also be detected by checking the stability of
the set of valid arguments after two consecutive iterations, so it is not necessary to
explicitly compute warrant dependency graphs.

Proposition 20 (Optimization) Ler P = (11, A, <) be an RP-DeLP program with
defeasibility levels 1 > a; > ... > ay, > 0 for A, and let W and B be two sets
of warranted and blocked conclusions with strength > «;, respectively. If VA is the
set of all d-arguments of strength «; that are valid with respect to (W, B) and AV
is the set of all d-arguments of strength «; that are almost valid with respect to VA,
we get the following results:

(i) If there is a cycle in the warrant dependence graph for VA and AV, and
(A, Q) € VA is such that the vertex of conclusion () is a vertex of the cycle
or there exists a path from a vertex of the cycle to the the vertex of conclu-
sion @), then there exists a set ND C AV such that (A, Q) Z (R, P) for all
(R, P) € ND, and there exists a set S C VA\{(A, Q) } such that TUW U{P |
(B,P) € SFUNDV/ Landl1UW U{P | (B,P) € S}UNDU{Q} + L.

(ii) If for all (A, Q) € VA there exists a set ND C AV such that (A, Q) Z (R, P),
for all (R, P) € ND, and there exists a set S C VA\{(A,Q)} such that
NUWU{P|(B,P) e SSUNDV LandI1TUW U{P | (B,P) € S} U
NDU{Q} = L, then there is at least a cycle in the warrant dependence graph
for VA and AV, and every (A, Q) € VA is such that the vertex of conclusion Q)
is a vertex of a cycle or there exists a path from a vertex of a cycle to the the
vertex of conclusion ().

Proof:

(i) If the vertex of conclusion () is a vertex of the cycle, because of the warranty
dependency graph definition, we can consider the set ND C AV such that the
vertex of each conclusion in NV D is a vertex of the cycle and (4, Q) Z (R, P)
for all (R, P) € ND, and then, there should exist a set S C VA\{(A, @)} such

33

(ii)

that TUW U{P | (B,P) € SFUNDt/ LandTUW U{P | (B,P) €
S}UNDU{Q} F L.1If the vertex of conclusion () is not a vertex of the cycle
and there exists a path from a vertex of the cycle to the the vertex of conclusion
(), we can consider the set N D C AV such that the vertex of each conclusion
in ND is a vertex of the cycle. Now, because of the warranty dependency
graph definition, (A, Q) Z (R, P) for all (R, P) € ND and there should
existaset S C VA\{(A,Q)} such that HUW U{P | (B,P) € SfUNDI/ L
and[TUW U{P | (B,P) e SFUNDU{Q} I L.

We have that for all S C VA, ITUW U{P | (R, P) € S} I/ L and that for
all (A, Q) € VA there exists a set ND C AV such that (A, Q) Z (R, P) for all
(R, P) € ND, and there exists a set S C VA\{(A, @)} such that TUW U{P |
(B,P) € SJUND I/ Land ITUWU{P | (B, P) € S}UNDU{Q} I L. Then,
for all (A, Q) € VA, we have that the warranty of () depends on a possible
conflict with a set S C VA\{(A,Q)} and a set ND C AV such that (A, Q) £
(R, P) for all (R, P) € ND. Therefore, because of the warranty dependency
graph definition, there should exists a cycle in the warrant dependence graph
(V, E) for VA and AV such that the vertexes of conclusions of N D are vertexes
of the cycle and the vertexes of conclusions of S and { (A4, @)} are vertexes of
the cycle or there exists a path from a vertex of the cycle to the the vertex of
these conclusions.

O

Finally, observe that the following queries can be implemented with NP algorithms:

o))

2)

Whether a literal P is a conclusion of some argument returned by

not_dependent(q, (A, Q), VA, W, B).
To check the existence of an almost valid argument (C, P) not dependent
on (A, @), we can non-deterministically guess a subset of rules, and check in
polynomial time whether they actually generate the desired argument for P, as
all the conditions for an almost valid argument can be checked in polynomial
time and also the condition of not being dependent on the literal ().
Whether the function

conflict(in o, (A, Q), VA, W, ND)

returns true. To check the existence of a conflict, we can non-deterministically
guess a subset of literals S from {P | (C,P) € VA\ {(A,Q)} UND} and
check in polynomial time whether i) IIU W (> o) U S t/ L and i) ITU W (>
a)USU{Q}F L.

Then, as the maximum number of times that these queries need to be executed
before the set of conclusions associated with VA becomes stable is polynomial in

the size of the input program, the

PNP ypper bound follows.

34

7 SAT encodings for finding warranted literals

From a computational point of view, the maximal ideal output for an RP-DelP
program can be computed by means of a level-wise procedure, starting from the
highest level and iteratively going down from one level to next level below. At ev-
ery level it is necessary to determine the status (warranted or blocked) of each valid
argument by checking the existence of both conflicts between arguments, and cy-
cles at the warrant dependence graphs. In the previous section we showed that this
level-wise procedure can be implemented to work in polynomial space. On the one
hand this can be achieved because it is not actually necessary to find all the valid
arguments for a given literal, it is enough to find only one. Actually, in our imple-
mentation to explain the existence of a valid argument for a literal () we simply
record the last rule of the argument, that is, a rule with () as conclusion, and with
all the literals of its body as warrants. To give a full explanation for a valid argu-
ment, we recursively give explanations for all the warrants of the body of the rule.
Something similar applies to the computation of at most one almost valid argument
for a given literal. This will be done with the first of the two SAT encodings we
present next, and it allows also to explicitly give an almost valid argument for a
literal, not only to check the existence. On the other hand, the existence of cycles
in the warrant dependency graph among valid and almost valid arguments can be
validated by checking the stability of conflicts between valid and almost valid argu-
ments, so it is not necessary to explicitly compute the warrant dependency graphs.
Hence, the procedure to find warranted literals needs to compute two main queries
during its execution: (i) whether an argument is almost valid, and (ii) whether there
is a conflict among valid and almost valid arguments.

In this section we present SAT encodings for these two main combinatorial queries.
The input and output specification of each query is as follows:

(i) Almost valid argument: It takes as input a defeasibility degree «, a lit-
eral P, sets W and B of warranted and blocked literals of strength > «, respec-
tively, a set VA of valid arguments of strength «, and an argument (A, Q) € VA.
It computes an almost valid argument (C, P) of strength « that does not depend
on (A, Q).

(i) Conflict: It takes as input a defeasibility degree «, a set W of warranted
literals of strength > «, a set VA of valid arguments of strength «, a valid argu-
ment (A, Q) of strength «, and a set ND of almost valid arguments of strength «
that do not depend on (A, Q). It checks (possible) conflicts among the argument
(A, Q) and the set VA of valid arguments extended with the set ND of almost
valid arguments.

35

7.1 Looking for almost valid arguments

The idea for encoding the problem of searching almost valid arguments is based
on the same behind successful SAT encodings for solving STRIPS planning prob-
lems [21]. In a STRIPS planning problem, given an initial state, described with a
set of predicates, the goal is to decide whether a desired goal state can be achieved
by means of the application of a suitable sequence of actions. Each action has a
set preconditions, when they hold true the action can be executed and as a result
certain facts become true and some others become false (its effects). Hence execut-
ing an action changes the current state, and the application of a sequence of actions
creates a sequence of states. The planning problem is to find a sequence of actions
such that, when executed, the obtained final state satisfies the goal state.

In our case, the search for an almost valid argument (C, P) can be seen as the search
for a plan for producing P, taking as the initial set of facts some subset of a set of
literals in which we already trust. We call such initial set the base set of literals '°,
and we say that they are true at the first step of the argument. For looking for an
almost valid argument (C, P), we will consider what rules should be executed, such
that starting from the initial set will finally obtain the desired goal P. We say that
arule R can be executed starting from a set of literals S, when Body(R) C S, and
that when it is executed we obtain a new set S U { Head(R)}. We have to consider
only some rules for looking for almost valid arguments of strength « for literals not
yet warranted, as we have explained in the previous section, that is, the a—rules we
have defined before.

We use the following sets of literals and rules to define our SAT encoding. Consider
first the initial set Sp:

So={L|LeW(>a)or3C, L)€ VA}

which is the base set of warranted and valid literals. If we execute all the av—rules
that can be executed from S, that is:

Ry ={R| R € a—rules, Body(R) C Sy}

we obtain a new state S; that contains Sy plus the heads of all the executed rules.
This process can be repeated iteratively, obtaining a sequence of sets of literals S =
{So, S1,...,S:} and a sequence of sets of executed rules R = { Ry, Ry, ..., Ri_1},
until we reach a final state S; in which the execution of any possible rule does
not increase the set of literals already in .S;. If starting from an initial set S, that
contains all the current valid and warranted literals the final state .S; contains P, that
means that an almost valid argument for P could be obtained from the sequence
of executed rules, if we could find a subset of rules such that they can form an
argument that satisfies all the conditions for an almost valid argument for P.

10 For an almost valid argument, the base set can contain only warranted and valid literals.

36

Observe that an almost valid argument (C, P) with strength « can only exist if the
following conditions, that can be checked in polynomial time, are satisfied:

(1) P ¢ W(> a)UB(> «). This is actually condition (AV2).

(2) ~P ¢ B(> «). This is actually the first part of condition (AV3).

(3) There does not exist a valid d-argument for conclusion P of strength «. This
is actually condition (AV4).

4) PesS,.

If the previous conditions are satisfied, we proceed the search for (C, P) with
strength o with a SAT encoding from the sequences S and R defined above.

That is, a SAT instance with variables to represent all the possible literals we can
select from each set S;:
{v | LeS;,0<i<t}

plus variables to represent all the possible rules R we can select from each set R;:
(v, |R€ R;,0< i<t}

In order to check that the variables set to true represent an almost valid argument,
we add clauses for ensuring that:

(1) If variable v} is true, then either v% ! is true or one of the variables vi; *, with
Head(R) = L, is true.

(2) If a variable v, is true, then for all the literals L in its body v% must be true.

(3) If variable v} is true, then v%t is also true.

(4) The variable v!, must be true.

(5) No two contradictory variables v} and v’ ; can be both true.

In addition, in order to satisfy the consistency of the literals of the argument with
respect to the closure of the strict knowledge II, we create also an additional set of
variables Vi and set of clauses Rp. The set of variables Vf; contains a variable UE
for each literal that appears in the logical closure of the set S; U W with respect to
the strict rules.

Then, we add the following clauses to check the consistency with II:

(1) If a literal is selected for the argument (v} set to true) then UE must also be
true.

(2) Forany L € W, v}l must be true.

(3) For any rule R € II that was executed when computing the logical closure, if
for all the literals L in its body ;! is true, then vy, 4z must be true.

(4) No two contradictory variables v}l and v'!; can be both true.

Observe that this layered encoding for searching almost valid arguments allows
to explicitly recover the full structure of the argument, because we have both the

37

literals and the rules that have generated them at each step of the argument.

We next show that any solution for a formula obtained with this SAT encoding
gives an almost valid argument (C, P); i.e. we show that (C, P) satisfy Conditions
(AV1)-(AV6):

(AV1) Given that the only possible rules that can be selected for building the almost
valid argument are those defined as a-rules, the conclusion of an a-rule can only
become valid with strength at most a.. So, the only possible subarguments with
strength greater than « are the ones corresponding to literals that can selected
from the set Sy. Observe that the literals in the set Sy are all the literals at the
current set W (> «) plus the current set of literals with valid arguments with
strength «. It follows that the only subarguments of strength 5 > « that can be
implicitly used are the ones corresponding to warranted literals.

(AV2) This condition is actually checked before creating the SAT encoding. That
18, if the condition is not satisfied, we answer that there is no such almost valid
argument.

(AV3) The first part of this condition ~ P ¢ B(> «) is also checked before creating
the SAT encoding. For the second part, first observe that for any subargument
(C,R) C (B, P), vl will be true, due to the clauses in (A3), as long as v’ (due
to the clauses in (A4)). Then the clauses in (B1) ensure that for any literal L
with v! true, the corresponding variable v} of the second part of the encoding
will be also true. Finally, the clauses in (B2), (B3) and (B4) will ensure that all
such true literals are consistent with II U .

(AV4) As in the condition (AV'2), this condition is checked before creating the
SAT encoding.

(AV5) Any literal L that is part of the argument (v} = true) will be either gener-
ated by an a-rule, so it holds that L,~L ¢ W (> a) U B(> «) U VA, or it is
already true at the initial set (v9 = true), so it is warranted or valid.

(AV6) Observe that there is no R € «-rules such that Head(R) € B U W U VA,
then it cannot be that all the rules used in the argument for P depend only on
warranted literals from S, because that would mean that P is indeed valid (so
P would have to be in VA). So, from the initial set Sy at least one valid, but not
warranted, literal will be activated, if any almost valid argument for P exists.

7.2 Looking for collective conflicts

We reduce the query computed by function conflict, to a query where we con-
sider finding the set of conflict literals that are the conclusions of the correspond-
ing conflict set of arguments. Basically, for finding this conflict set of literals S
for a valid argument (A, Q) from the base set of literals considered in function
conflict,ie.theset G ={P | (C,P) € VA\ {(4,Q)} UND}, we have to find
two arguments (A, L) , (A2, ~ L) using only rules from II, literals W U{Q} and a

38

subset S from G, but such that when @) is not used, no conflict (generation of L and
~ L for any L with strict rules) is produced with such set S. So, this can be seen
as a simple extension of the previous query, where now we have to look for two
arguments, instead of only one, although both arguments must be for two contra-
dictory literals. That is, the SAT formula contains variables for encoding arguments
that use as base literals W U G U {Q} and rules from II (with the same scheme of
the previous SAT encoding for almost valid arguments), with an additional set of
conflict variables to encode the set of possible conflicts that can be, potentially,
generated from W U G U {Q} using rules from II, in order to be able to force the
existence of at least one conflict. There is also an additional set of variables and
clauses for encoding the subproblem of checking that S, when () is not used, does
not generate any conflict.

So, the SAT formula contains two different parts. A first part is devoted to checking
that the selected set of literals .S plus {Q} is a conflict set (i.e. if [IU W (> «) U
S U{Q} F L). This set of variables and clauses is similar to the previous one for
finding almost valid arguments, but in this case is used for finding two arguments
starting from a subset of W U G and forcing the inclusion of {Q}. That is, the SAT
clauses of this first part are:

(1) A clause that states that the literal () must be true at the first step.

(2) A clause that states that at least one conflict variable c¢;, must be true.

(3) For every conflict variable ¢y, a clause that states that if ¢, is true then literals
L and ~ L must be true at the final step of the argument.

(4) The rest of clauses are the same ones described in the first part of the previous
encoding, except the clauses of the item 5 that are not included, but now con-
sidering as possible literals and rules at every step the ones computed from the
base set W U G U {Q} and using only strict rules.

The process for computing the possible literals and rules that can be potentially ap-
plied in every step of the argument is the same forward reasoning process presented
for the previous encoding. This same process is used for discovering the set of con-
flict variables c;, that need to be considered, because we can potentially force the
conflict ¢y, if at the end of this process both L and ~ L appear as reachable literals.

A second part of the SAT formula is devoted to checking that the selected set of
variables and clauses S at the first step, without using (), does not cause any conflict
with the strict rules. So this second part of the formula contains a variable for any
literal that appears in the logical closure of G U W with respect to the strict rules.
Actually, this second part of the formula is analogous to the second part of the
formula for the previous encoding.

Observe that this encoding for searching conflicts for () not only allows to check

the existence of conflicts, but it also gives an explicit conflict set: the variables set
to true that represent the chosen set S, together with almost valid arguments for

39

those literals in S that have arguments in ND. So, we can explain the reasons for
each conflict detected.

40

8 Average computational cost and easy/hard problem instances

To study the scaling behavior of the (average) computational cost of our PV* algo-

rithm as the size increases, as well as how different characteristics of the problem
instances affect its computational cost, we have implemented our algorithm and
conducted a series of experiments.

The main algorithm has been implemented with python, but for solving the SAT
formulas presented in the previous section, the algorithm uses a SAT solver, that
can be either MiniSAT [18] or Glucose [8]. However, our architecture easily allows
to use any other SAT solver that appears in the future. Minisat is one of the publicly
available SAT solvers which implements most of the current state-of-the-art solv-
ing techniques such as conflict-clause recording and conflict-driven backjumping,
among others. Glucose, that has some common parts with MiniSAT, implements
some new learning mechanisms which made it award winning on SAT 2011 com-
petition. As we have mentioned at the introduction, we have a preliminary version
of the algorithm that works with ASP encodings [4] instead of with SAT encod-
ings, although the current ASP based version only works with one defeasible level.
In the near future, we plan to improve the ASP based version to be able to work
with multiple levels.

In the experiments the algorithm solves different test-sets of problem instances
obtained with a random generation algorithm. To study and analyze how our RP-
DeLP algorithm behaves as different characteristics of the problem change, we
generated our instances using one and two levels of defeasibility and changing the
other parameters of the problem instances.

8.1 Random generation of RP-DeLP problem instances

We used different parameters to control the generation of random RP-DeLLP prob-
lem instances with different sizes, defeasibility levels and other characteristics. We
focused or experimentation first on one set of problems with only one defeasible
level and then on another set with two defeasible levels. In both cases we were in-
terested in how the resolution time differs when the ratio of clauses to the number
of variables increases. Then, in the first case with only one defeasible level, we
were also interested in the results when the fraction of clauses of the program at
the strict knowledge level is modified, ranging from no strict knowledge at all to
all clauses at the strict knowledge level. For the case of two defeasible levels, we
have investigated the effect of modifying the fraction of clauses between the two
defeasible levels. We next explain the generation of our problem instances.

Generation of instances with one defeasible level. Given a number of variables

41

(V), a maximum clause length (ML), a ratio of clauses to variables (C'//V), and
a fraction (f), between 0.0 an 1.0, of strict knowledge, the algorithm generates a
RP-DeLP problem instance by generating C' clauses, such that the length of ev-
ery clause is selected uniformly at random from [1, ML| (clauses with length 1 are
facts). The variables of the literals of a clause are selected uniformly at random
without repetition, and are negated with probability 0.5. From the C clauses, f - C
clauses are in the strict knowledge and the rest in the defeasible set.

Two defeasible levels instance generation. Similar to the previous instance gen-
erator with a number of variables (1), a maximum clause length (ML), a ratio of
clauses to variables (C'/V'), now we fix the fraction of strict knowledge (f) to 0.1.
Then two defeasible levels are built assigning a fraction [between 0.0 and 1.0 of the
total number of defeasible clauses to the first defeasible level and 1-/ to the second
defeasible level.

8.2 Test instances considered

We generated two different groups of test sets: test sets with one defeasible level
and test sets with two defeasible levels. In both groups, test instances were created
with a number of variables (V') selected from {20, 30}, ' and with maximum
clause length (ML) selected from {2,4}.

In the case of one defeasible level, for each combination (V, ML), different test sets
of instances were created by selecting a number of total clauses, such that the ratio
C'/V ranged from 1 to 12 in steps of 1, and the fraction of clauses in the strict
knowledge ranged from 0 to 0.9 in steps of 0.1. So, the total number of test sets for
each combination (V, ML) was 90. The number of instances generated in each test
set was 50.

In the case of two defeasible levels, for each combination (V, ML) and an strict
knowledge fraction set to 0.1, different test sets of instances were created by select-
ing a number of total clauses, such that the ratio C'/V ranged from 1 to 12 in steps
of 1, and the fraction of clauses in the first level [ranged from 0.1 to 0.9 in steps of
0.1.

8.3 Empirical results

For one defeasible level, we analyze the results for instances with 30 variables and
maximum clause length 2. The left plot of Figure 5 shows the median time to solve

L Notice that the total number of literals will be two times the number of variables.

42

the instances with our algorithm when solving instances with different ratio of the
number of total clauses to number of variables (axis labelled with C/V in the plots)
and with different fraction of strict knowledge (axis labelled with strict knowledge).
The plot shows that for a strict knowledge fraction of 0.0, there is an increase of
the median time as the total number of clauses increases. By contrast, as the strict
knowledge fraction increases, the time increases only up to certain value of the
number of total clauses, and then drops significantly. This is probably because of
two causes. The more strict knowledge we have, the more possibilities to have
inconsistent instances, that are detected in polynomial time by our algorithm, and
the more unacceptable arguments and blocked literals we can have.

To check the possible role of inconsistent instances on the complexity of the prob-
lem, we have also computed what fraction of the instances, for each test set of
50 instances, are inconsistent (II =). The right plot of Figure 5 shows this
information. The color scale ranges from points with a fraction of instances with
inconsistent strict knowledge equal to O (dark blue color) to points with such frac-
tion equal to 1.0 (red color). Apart for the obvious case of strict knowledge fraction
equal to 0.0, where there are never inconsistent instances, for a fraction of strict
knowledge equal to 0.1 up to the ratio C'/V = 6 no inconsistent strict knowledge is
generated, but the time needed to solve the instances is smaller than the one needed
for instances with no strict knowledge at all.

As the fraction of strict knowledge increases, test instances with inconsistent strict
knowledge appear more frequently for a lower ratio C'/V and the interval of val-
ues of C'/V with instances with significant computation time (greater than 0)
decreases. Also, the highest computation time obtained decreases as the fraction of
strict knowledge increases.

To further understand the reasons for such differences on the computation time, we
have also studied the average ratio of warranted literals and average ratio of blocked
literals, with respect to the total number of variables, for each test set. The left
plot of Figure 6 shows the ratio of warranted literals and the right plot the ratio of
blocked literals. Looking at both plots, we observe that for instances with low C'//V/,
if its strict knowledge fraction is also low, we have a small, but non-negligible,
fraction of warranted literals, that starts to increase as we increase C'/V/, but only
up to certain limit C'/V (around 2.0), and above that limit the fraction of warranted
literals starts to decrease, coinciding with an increase in the fraction of blocked
literals. A plausible explanation for this is that for very low C'/V instances have
very few valid arguments, so few warranted and blocked literals are produced. As
C'/V increases, more valid arguments start to appear, but obviously as the number
of valid arguments increases more and more of them will be part of a conflict set of
arguments. So, it seems that the highest computation times are found for instances
with enough clauses such that many valid arguments are found, but many of them
are also found to be part of a collective conflict set.

43

When the strict knowledge fraction increases, as the fraction of instances with
inconsistent strict knowledge increases, it is clear that on average warranted and
blocked literals will decrease, and this is observed on both plots. It is also natu-
ral that even on instances with a consistent strict knowledge, when this fraction is
larger, less literals will have valid arguments, because consistency with the strict
knowledge will hold for less arguments. However, we still find remarkable the in-
crease of easy instances for a strict knowledge fraction of only 0.2, because at this
strict knowledge fraction for C'/V up to 5.0 instances still have warranted literals.
A possible explanation for this increase of easy instances even when we still have
a considerable number of warranted literals, is that the fraction of strict knowledge
produces the pruning of larger arguments, so the arguments found for warranted
literals are shorter and easier to find.

Variables = 30; MaxClauseLength = 2 Variables = 30; MaxClauselLength = 2

strict know. (respect to #clauses)
@
3
3
time (s.)
strict know. (respect to #clauses)

Fig. 5. Median time to solve the instances (left) and fraction of inconsistent instances (right)
forV =30, ML = 2.

Variables = 30; MaxClauseLength = 2 Variables = 30; MaxClauseLength = 2
0.6

strict know. (respect to #clauses)
o
w
Warr / V
strict know. (respect to #clauses)

Fig. 6. Warranted literals (left) and blocked literals (right) for V' = 30, M L = 2.

Next, we analyze the effect on complexity of having two defeasible levels, instead
of just one. For these instances we have fixed the strict knowledge fraction to 0.1
because we wanted to test the hardest possible instances we can have when there
is a fraction of strict knowledge greater than zero, so we still can have non-trivial
conflicts between arguments due to the role of the strict knowledge on collective
conflicts.

44

0.8

0.6

o
=
% unsatisfiability

0.2

0.8

0.6

0.4

02

Block / vV

The left plot of Figure 7 shows the median time to solve the instances with our
algorithm when solving instances with different ratio of the number of total clauses
to number of variables (axis labelled with C/V in the plots) and with different frac-
tion of defeasible knowledge at the first defeasible level (axis labelled with fraction
[). The right plot of the same figure shows the percentage of consistent instances.
We observe that as before, just up to the ratio where almost all instances are incon-
sistent, there is an increase on the median time.

However, the lowest computation times are found on a range of values for the first
level fraction around 0.5, and where this fraction is near O or 1 the computation time
increases. A possible explanation for this concentration of the hardest instances
when the defeasible knowledge is unbalanced (concentrated almost in one level)
may be the following.

When almost all the clauses are in one level, we have more possible acceptable
arguments in that level. Then, the space of possible collective conflicts at that level
is also larger, so the computation times for the conflict queries will be higher. How-
ever, there is an slight difference in the computational cost when (I ~ () and when
(I = 1). Despite in both cases we have the same unbalance of clauses between lev-
els, having (I ~ 0) means that the contribution to the output of the program due to
the first level will be small and quickly computed. At the second level, where the in-
put will include the warrants from the strict part plus some warrants obtained from
the first defeasible level, we will have less possible acceptable arguments from the
second level than we would have if the first defeasible level would be empty. So,
the total computational effort should be smaller than if all the defeasible knowledge
would be only at one level. When we have the situation where (I ~ 1), almost all
the defeasible knowledge is at the first level, so the computational effort to compute
the output of the first level increases. That is, the input for the first defeasible level
will contain only the warrants from the strict part, so the set of possible acceptable
arguments will be larger (compared with the second defeasible level when (I ~ 0))
and the set of possible warrants and blocked literals to check will be larger. Observe
that the plot for blocked literals at the right of Figure 8, shows a larger ratio | B|/V
for [= 0.9, as the number of clauses increases, than for [= 0.1.

So, when the fraction of clauses at the two defeasible levels is near 0.5, the number
of warrants obtained from the first defeasible level will increase with respect to [=
0.1, but the number of blocked literals will be smaller than for [= 0.9, because the
number of clauses at the first deafeasible level is smaller. At the second defeasible
level, the warrants and blocked literals will decrease, with respect to the case [=
0.1, given the input from the previous level. Looking at the left plot of Figure 8, that
shows the ratio of warranted literals and the right plot the ratio of blocked literals,
we clearly observe that more warranted literals are obtained around [/ = (.5 but less
blocked literals than at the extreme values of [.

Those results show that when defeasible levels are balanced in terms of number of

45

clauses, there are less conflicts between arguments at the same level. That means
that more literals can be warranted, and as it has been shown the lack of conflicts
decreases the computation time of the output.

Variables = 30; MaxClauseLength = 2 Variables = 30; MaxClauseLength =2
160

1st respect to 2nd level
©
8

time (s.)

1st respect to 2nd level
o
o

% unsatisfiability

Fig. 7. Average computational cost (left) and fraction of inconsistent instances (right) for
V =30, ML = 2, fraction of strict knowledge = 0.1 and two defeasible levels.

Variables = 30; MaxClauseLength =2 Variables = 30; MaxClauseLength =2
0.8

o o o o o
@) 3 @ ©

Block / V'

1st respect to 2nd level
o
=

1st respect to 2nd level

o o o
= N w

o

Fig. 8. Warranted literals (left) and blocked literals (right) for V' = 30, M L = 2, fraction
of strict knowledge = 0.1 and two defeasible levels.

46

9 Conclusions and future work

In this paper we have introduced a new recursive semantics for determining the
warranty status of arguments in defeasible argumentation. The distinctive features
of this semantics, e.g. with respect to Pollock’s critical link semantics, are: (1) it
is based on a non-binary notion of conflict in order to preserve consistency with
the strict knowledge and (ii) besides the set of warranted and rejected conclusions,
we introduce the set of blocked conclusions, which are those conclusions which
are based on warranted information but they generate a conflict with other already
warranted arguments of the same strength.

As future work, we plan to improve the efficiency of an algorithm we have already
designed by minimizing the effective number of NP queries that have to be made
during its execution. Also, with the aim of obtaining an algorithm able to scale up
with problem size, we will design polynomial time reductions of the NP queries to
be performed to the SAT problem, so that we can take profit of state-of-the-art SAT
solvers for solving the most critical subproblems during the search.

References

[1] Teresa Alsinet, Ramén Béjar, and Lluis Godo. A characterization of collective conflict
for defeasible argumentation. In Computational Models of Argument: Proceedings of
COMMA 2010, volume 216 of Frontiers in Artificial Intelligence and Applications,
pages 27-38. 10S Press, 2010.

[2] Teresa Alsinet, Ramén Béjar, and Lluis Godo. A computational method for defeasible
argumentation based on a recursive warrant semantics. In Advances in Artificial
Intelligence - IBERAMIA 2010, volume 6433 of Lecture Notes in Computer Science,
pages 40-49. Springer, 2010.

[3] Teresa Alsinet, Ramén Béjar, Lluis Godo, and Francesc Guitart. Maximal ideal
recursive semantics for defeasible argumentation. In Proceedings of the 5Sth
International Conference on Scalable Uncertainty Management (SUM 2011), pages
96-109, 2011.

[4] Teresa Alsinet, Ramén Béjar, Lluis Godo, and Francesc Guitart. Using answer
set programming for an scalable implementation of defeasible argumentation.
In Proceedings of Tools with Artificial Intelligence (ICTAI), 2012 24th IEEE
International Conference on, pages 1016-1021, 2012.

[5] Teresa Alsinet, Carlos I. Chesfievar, and Lluis Godo. A level-based approach to
computing warranted arguments in possibilistic defeasible logic programming. In
Computational Models of Argument: Proceedings of COMMA 2008, volume 172 of
Frontiers in Artificial Intelligence and Applications, pages 1-12. 10S Press, 2008.

47

[6] Teresa Alsinet, Carlos I. Chesiievar, Lluis Godo, and Guillermo R. Simari. A logic
programming framework for possibilistic argumentation: Formalization and logical
properties. Fuzzy Sets and Systems, 159(10):1208-1228, 2008.

[7] Leila Amgoud. Postulates for logic-based argumentation systems. In Proceedings of
the ECAI-2012 Workshop WLAAI pages 59—67, 2012.

[8] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern
sat solvers. In Proceedings of the 21st international jont conference on Artifical
intelligence, IJCAI’09, pages 399-404, San Francisco, CA, USA, 2009. Morgan
Kaufmann Publishers Inc.

[9] Philippe Besnard and Anthony Hunter. Elements of Argumentation. The MIT Press,
2008.

[10] Andrei Bondarenko, Phan Minh Dung, Robert A. Kowalski, and Francesca Toni. An
abstract, argumentation-theoretic approach to default reasoning. Artif. Intell., 93:63—
101, 1997.

[11] Martin Caminada and Leila Amgoud. On the evaluation of argumentation formalisms.
Artif. Intell., 171(5-6):286-310, 2007.

[12] Laura A. Cecchi, Pablo R. Fillottrani, and Guillermo R. Simari. On the complexity

of DeLP through game semantics. In Proc. 11th Intl. Workshop on Nonmonotonic
Reasoning (NMR 2006), pages 386—394, May 2006.

[13] Carlos I. Chesifievar, Ana G. Maguitman, and Ronald P. Loui. Logical Models of
Argument. ACM Computing Surveys, 32(4):337-383, December 2000.

[14] Carlos I. Chesiievar, Guillermo R. Simari, and Lluis Godo. Computing dialectical trees
efficiently in possibilistic defeasible logic programming. In LPNMR, pages 158-171,
2005.

[15] Phan Minh Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.,
77(2):321-358, 1995.

[16] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. A dialectic procedure for
sceptical, assumption-based argumentation. In Computational Models of Argument:
Proceedings of COMMA 2008, volume 172 of Frontiers in Artificial Intelligence and
Applications, pages 145-156. 10S Press, 2006.

[17] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. Computing ideal sceptical
argumentation. Artif. Intell., 171(10-15):642-674, 2007.

[18] Niklas Eén and Niklas Soérensson. An extensible sat-solver. In SAT, volume 2919 of
LNCS, pages 502-518. Springer, 2003.

[19] Alejandro J. Garcia, Jiirgen Dix, and Guillermo R. Simari. Argument-based logic
programming. In Iyad Rahwan and Guillermo R. Simari, editors, Argumentation in
Artificial Intelligence, chapter 8, pages 153—171. Springer, 2009.

48

[20] Alejandro J. Garcia and Guilermo R. Simari. Defeasible Logic Programming: An
Argumentative Approach. Theory and Practice of Logic Programming, 4(1):95-138,
2004.

[21] Henry A. Kautz and Bart Selman. Unifying sat-based and graph-based planning. In
1JCAI, pages 318-325, 1999.

[22] John L. Pollock. A recursive semantics for defeasible reasoning. In Iyad Rahwan and
Guillermo R. Simari, editors, Argumentation in Artificial Intelligence, chapter 9, pages
173-198. Springer, 2009.

[23] Henry Prakken and Giovanni Sartor. Argument-based extended logic programming
with defeasible priorities. Journal of Applied Non-classical Logics, 7:25-75, 1997.

[24] Henry Prakken and Gerard Vreeswijk. Logical Systems for Defeasible Argumentation.
In D. Gabbay and F.Guenther, editors, Handbook of Phil. Logic, pages 219-318.
Kluwer, 2002.

[25] Iyad Rahwan and Guillermo R. Simari, editors. Argumentation in Artificial
Intelligence. Springer, 2009.

[26] Gerard Vreeswijk. Abstract argumentation systems. Artif. Intell., 90(1-2):225-279,
1997.

49

	postprint024927
	024927

