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Abstract 

Together with a cyclin-dependent kinase (CDK) partner G1 cyclins control cell cycle 

entry by phosphorylating a number of nuclear targets and releasing a transcriptional 

program at the end of G1 phase. Yeast G1 cyclins also operate on cytoplasmic targets 

involved in the polarization of the cytoskeleton and vesicle trafficking. These processes 

are mainly controlled by the small GTPase Cdc42, and G1 cyclins regulate the activity 

of this and other small GTPases through the modulation of their regulators and 

effectors. This regulation is key for different developmental outcomes in unicellular 

organisms. In mammalian cells cytoplasmic G1 cyclin D1 has been shown to promote 

the activity of Rac1 and Ral GTPases and to block RhoA. Regulation of these small 

GTPases by G1 cyclins may constitute a mechanism to coordinate proliferation with 

cell migration and morphogenesis, important processes not only during normal 

development and organogenesis but also for tumor formation and metastasis. Here we 

briefly review the evidence supporting a role of G1 cyclins and CDKs as regulators of 

the activity of small GTPases, emphasizing their functional relevance both in budding 

yeast and in mammalian cells. 



Introduction 

 Cyclin-dependent kinases (CDKs) are a family of serine/threonine protein kinases 

whose enzymatic activation requires the binding of a regulatory cyclin subunit. 

Although they constitute the central components of the cell cycle control system, cyclin-

CDK complexes are also involved in other cellular processes.1 Broadly, CDKs may be 

grouped in two classes: those binding multiple cyclins and related to the cell cycle, 

exemplified by the yeast CDKs Cdc28 and Pho85; and those related to transcription 

and bound by single cyclins.2 But even those CDKs and cyclins that regulate the cell 

cycle events show non-canonical functions.3 During the G1 phase of the cell cycle, 

cyclin expression and localization are precisely regulated by temporal and spatial cues 

in order to coordinate growth and proliferation. Under favorable circumstances, the 

nuclear accumulation of G1 cyclins (Cln3-Cdc28 in yeast, cyclins D-CDK4,6 in 

mammals) triggers the commitment to undergo a new round of cell division: a process 

called Start in yeast and the Restriction Point (RP) in mammalian cells.4 This involves 

the induction of a transcriptional program that includes, among other targets, the 

likewise G1 cyclins Cln1, Cln2, Pcl1 and Pcl2 in yeast and cyclin E in mammals. Cln1 

and Cln2 complexed with Cdc28 and cyclin E with CDK2 participate in a positive 

feedback loop to assure the irreversible execution of Start/RP.4  

 In the yeast Saccharomyces cerevisiae cell cycle, the G1/S transition encompasses 

the initiation of DNA replication, the duplication of the spindle pole body (analogous to 

the mammalian centrosome), and the formation of a bud. This last event entails the 

polarization of the cytoskeleton and the canalization of secretion towards a point. 

Mammalian cells do not bud, but they do polarize their cytoskeleton and vesicle 

trafficking in order to adhere, migrate and acquire specific shapes. These processes 

are controlled in both yeast and mammals by a number of small GTPases.5,6 In turn, 

there is mounting evidence that in yeast Pcl cyclins in association with Pho85, and Cln 

cyclins with Cdc28 are key regulators of these small GTPases, and there is emerging 

data supporting an analogous view in mammalian cells. Here we briefly review the 

evidence supporting the role of G1 cyclins and CDKs as regulators of the activity of 

small GTPases, emphasizing their functional relevance both in budding yeast and 

mammalian cells. 



Yeast 

 In the yeast Saccharomyces cerevisiae, and other fungi, the Rho family GTPase 

Cdc42 acts as a master regulator of the process of budding and its associated 

polarized growth. There are four known GAPs for Cdc42 (Bem2, Bem3, Rga1 and 

Rga2) but only one GEF (Cdc24). Bud emergence ultimately depends on CDK activity 

at G1, with no budding when G1 CDKs are lacking, and showing premature induction 

of budding when CDKs are activated prematurely.6,7 Although it contains a serine 

residue within a minimal (SP) CDK phosphorylation motif, yeast Cdc42 does not seem 

to be phosphorylated. Instead the regulation of its activity by G1 CDKs is mediated by 

its regulators (GAPs and GEF) and effectors. In principle, Cdc24 made a good 

candidate for CDK regulation because, as Cdc42, it is also required for bud emergence 

and cytoskeleton polarization,8,9 it is hyperphosphorylated in vivo in a cell cycle-

regulated manner that depends on Cdc28-Cln activity,10 and it is an in vitro substrate of 

G1 CDKs.11,12 However, the expression of a constitutively activated form of Cdc42 is 

sufficient to induce hyperphosphorylation of Cdc24, even in cln1,2,3 depleted cells, and 

mutation of six putative CDK consensus sites or up to 35 phospho-sites detected by 

mass spectrometry has no impact on Cdc24 function.10,13 Hence, whether Cdc24 is 

phosphorylated by G1 CDKs in vivo and whether this potential phosphorylation may be 

of any physiological significance remain mysterious. Cdc28 activity in G1 is 

nonetheless required for Cdc24 release from the nucleus in late G1, a prerequisite for 

its localization at sites of polarized growth.14,15 During G1 Cdc24 remains sequestered 

in the nucleus by association with Far1, which acts otherwise as a CDK inhibitor during 

the mating pheromone response. In the absence of pheromone, Far1 is 

phosphorylated by Cdc28-Cln activity and targeted for degradation, which allows 

Cdc24 to be exported to the cytoplasm. This, however, cannot be the sole function of 

G1 CDKs in triggering cellular polarization as cytoplasmic mutant forms of Cdc24 are 

unable to induce polarized growth in cells lacking Cdc28-Cln activity.10,14,15 

 Cdc42-directed GAPs have been detected as putative CDK substrates in a number 

of systematic studies;16–18 in particular, Rga1 and Bem3 have been associated with 

Cln2-Cdc28.17 Cln2 interaction with Rga1 likely involves a recently described new 

docking site in Cln2 because when mutated their interaction is considerably reduced, 

and it tames the effects of overexpressed Cln2 on polarized growth,19 although other 

targets may mediate this effect. In addition to Cln2-Cdc28, Rga1 may also be 

phosphorylated by the Pho85 kinase and its associated cyclins Pcl1 and Pcl2 because 

when overexpressed in a pcl1∆ pcl2∆ background Rga1 severely inhibits polarized 

growth.20 Likely, Bem3 - and also possibly Bem2 - is a physiological target of Cln2-



Cdc28. The protein gets phosphorylated at bud emergence in a Cdc28-Cln dependent 

manner and it is phosphorylated in vitro by immunoprecipitated Cln2. Moreover, 

mutating five CDK consensus sites in the protein renders it immune to phosphorylation 

in vivo under conditions of high Cdc28-Cln activity, and expression of this 

nonphosphorylatable mutant is toxic in an otherwise wild type background.21 Another 

Cdc42 GAP that has been the focus of several studies is Rga2. Overexpression of 

Rga2 is lethal in a number of conditions where G1 CDK activity is compromised (i.e., 

cln1,2∆; pcl1,2∆; pcl1,9∆; pho85∆),22,23 supporting a negative regulation of Rga2 by 

phosphorylation. Furthermore, Rga2 is hyperphosphorylated in vivo in a Cdc28- and 

Pho85-dependent manner, and is a specific target of Cln2-Cdc28 and Pho85 

complexes in vitro.12,22 It co-immunoprecipitates with Pcl1, Pcl2 and Pcl9, and 

overexpression of nonphosphorylatable mutants of Rga2 produces clear phenotypes.22 

More evidence for Rga2 regulation by G1 CDKs comes from the human pathogen 

Candida albicans, a filamentous fungus able to grow in a variety of morphological 

forms: from unicellular budding yeast to long filaments named hyphae.24 During hyphal 

development polarized growth must be very active, and Rga2 is prevented from 

localizing to the hyphal tips, where Cdc42 is accumulated.25,26 However, in the absence 

of Hgc1 (a hypha-specific G1 cyclin associated to Cdc28) full hyphae cannot develop, 

and Rga2 is enriched at the tip of the incipient hypha. Deletion of Rga2 restores hyphal 

development in hgc1∆ cells, Rga2 co-immunoprecipitates with and its phosphorylation 

depends on Hgc1, and mutation of 16 CDK consensus sites abolishes the 

hyperphosphorylation observed upon induction of hyphal growth.26 Hence, it is likely 

that Rga2 is regulated by phosphorylation by Hgc1-Cdc28 during hyphal development. 

Although all these results make a compelling case for a model whereby Cdc42-GTP 

would be kept low during G1 by high GAP activity that would become inhibited by 

phosphorylation as CDK activity increases during the G1-S transition, as yet, 

biochemical evidence that phosphorylation inhibits GAP activity is lacking. 

 Another level in which G1 CDKs may control the activity of Cdc42 is through the 

regulation of its effectors and adaptor proteins. These may include Boi1 - and its 

paralog Boi2 - which interacts in vivo with Cdc24, is phosphorylated in a Cdc28-

dependent manner in vivo, and is a Cln2-Cdc28 target in vitro. In addition, the mutation 

of 12 CDK consensus sites in the protein shows clear defects in polarization.12 The 

scaffold protein Bem1 is still another likely target of G1 CDKs. Although Bem1 is not 

necessary to localize Cdc24 to the incipient bud site, it is required to stabilize active 

Cdc24 at the plasma membrane.10 In a cln1,2∆ background, both deletion or 

overexpression of Bem1 is lethal.23 In the phytopathogen fungus Ustilago maydis a 



physical interaction between Bem1 and the Cdk5/Pho85 kinase at the cell tip has been 

described, which is in turn essential for the interaction between Bem1 and Cdc24 and 

its accumulation at the cell pole.27 A distinctive feature in U. maydis is that Cdc24 

functions as GEF for a Rac1 homolog (not Cdc42), which is nonetheless involved in the 

regulation of polar growth.28 In S. cerevisiae Cdc42 not only controls polarized growth 

but it is also involved in vacuolar homotypic fusion. This process is specifically 

regulated by Cln3-Cdc28 in a Bem1-dependent manner: Bem1 phosphorylation 

depends on Cdc28, it is phosphorylated in vitro by Cln3-Cdc28, and mutation of a 

single serine at position 72 in Bem1 abrogates the regulatory effects of Cln3 and 

abolishes the appearance of a phospho-form of the protein that is present in wild type 

cells but is also absent in a cln3∆ background.29 

 Another small GTPase, not essential for polarization, but crucial for bud growth and 

cell wall biosynthesis is Rho1. The GDP/GTP cycle of Rho1 is cell cycle regulated, and 

Cln2 overexpression (but not Cln3, Clb2, Clb3 or Clb5) increases the levels of active 

Rho1.30 The Rho1-directed GEF Tus1 is required for the augmented levels of active 

Rho1 both during the cell cycle and upon Cln2 overexpression. Tus1 is very likely an in 

vivo substrate of Cln2-Cdc28 because it is phosphorylated in vivo in a Cdc28-

dependent manner and it co-immunoprecipitates with Cln2. Moreover, Tus1 

phosphorylation is required for the Cln2-dependent activation of Rho1.30 Recently, it 

has been described a new docking site in Cln2 that is likely involved in the interaction 

with Tus1.19 Another Rho1-directed GEF, Rom2, is phosphorylated in vitro by the G1 

complex Pcl1-Pho85,31 although the biological significance of this phosphorylation is 

unknown. 

 Still another instance of a small GTPase regulated by G1 CDK activity is the case of 

Sec4 during hyphal growth in Candida. This Rab GTPase mediates the post-golgi 

transport of secretory vesicles at the growing tip, and their docking with the exocyst 

before their fusion to the cell membrane; essential processes to maintain polarized 

growth.32 and references therein Sec4 is activated by its GEF Sec2, and Sudbery and co-

workers have shown that phosphorylation of serine 584 in Sec2 is critical for hyphal 

development. The pattern of phospho-forms of Sec2 during hyphal growth depends on 

Cdc28 activity. Partial inhibition of cdc28 prevents normal hypha formation but this 

phenotype is readily rescued by a phosphomimetic S584E form of Sec2. Besides, G1 

cyclins Ccn1 and Hgc1 show genetic and physical interactions with Sec2.32 Thus, it is 

likely that Sec2 is a substrate of G1 cyclins-Cdc28 at least in C. albicans. 



 Figure 1 summarizes our current knowledge about the regulatory network controlled 

by G1 cyclins and involving the activities of small GTPases in yeast. 

Mammals 

 In mammalian cells adhesion, migration and morphogenesis require the polarization 

of vesicle trafficking and the cytoskeleton, which are controlled by several small 

GTPases.5,6 Here there is recent evidence that also G1 cyclins, specifically cyclin D1, 

may regulate the activity of these small GTPases through different mechanisms. 

Admittedly the evidence is sketchier than in yeast and the mechanisms may involve 

more indirect relationships. An early observation that cyclin D1 may affect both cell 

adhesion and migration was the correlation of its expression with the metastatic 

potential of some tumors,33 indicating a role in the regulation of the invasion capacity of 

tumor cells and not only on their proliferation rate. Accordingly, cyclin D1-/- mouse 

embryonic fibroblasts (MEFs) present reduced cellular motility, higher levels of 

spreading, and stronger adhesion to substrate.34 Several studies mechanistically link 

cyclin D1 with the regulation of adhesion through the small GTPases Rho, Rac and Ral 

(Figure 2).  

 One way cyclin D1 promotes cell motility is by constraining RhoA activity. RhoA is 

activated in response to tension on integrins, and promotes actin polymerization and 

stress fiber assembly leading to increased adhesion to the cell matrix. This is 

accomplished through the activation of the RhoA-activated kinase II (ROCKII), a RhoA 

downstream effector, that itself activates myosin light chain 2 and the LIM kinase, 

which in turn phosphorylates and inhibits the actin-depolymerizing protein cofilin.35 

Cyclin D1-associated activity represses transcription of ROCKII.34 Accordingly, cyclin 

D1-/- MEFs show high ROCKII activity, increased stress fiber formation, and low 

migration efficiency. Another mechanism whereby cyclin D1 regulates RhoA activity 

involves the CDK inhibitor p27Kip1. This protein interferes with RhoA activation by 

physically impeding the interaction of the GTPase with its GEFs.36 This cell-cycle 

independent role of p27 occurs after its sequestration and stabilization in the 

cytoplasm, which depends upon the phosphorylation of three residues - Ser10, Thr157, 

and Thr198 – in the protein.37 Cyclin D1 promotes the accumulation of p27 by 

repressing Skp2, a component of the E3 ubiquitin ligase targeting p27Kip1, and by 

favoring the phosphorylation of p27 at serine 10.38 Thus, it seems that cyclin D1-

associated activity induces cell migration by promoting the accumulation of p27 in the 

cytoplasm that in turns reduces RhoA activity. Intriguinly, cyclin D1 and p27 have both 

been found physically associated to activated RhoA.38 Although this result is 



controversial with an inhibitory role on RhoA activity, it opens the possibility for a more 

direct implication of cyclin D1 in RhoA regulation.  

 Another mechanism by which cyclin D1 regulates motility involves the scaffold 

protein paxillin and the Rac GTPase. Paxillin is a focal adhesion protein that impinges 

on the regulation of these small GTPases via different mechanisms acting on their 

GEFs and GAPs.39 For instance, the interaction of cells with substratum induces 

integrin signaling that promotes FAK (focal adhesion kinase) and SRC activation. Both 

kinases phosphorylate paxillin at tyrosines 31 and 118 and allow its interaction with the 

Rac1 GEFs DOCK180 and PIX, which activates Rac1. Also, phosphorylation of paxillin 

at serine 83 by extracellular signal-regulated kinase (ERK) induces Rac1 activation and 

cell migration in epithelial cells.40 It is thought that phosphorylation at serine 83 

promotes the association of paxillin with FAK, which in turn would induce 

phosphorylation of paxillin at tyrosine residues leading to Rac1 activation. A similar 

mechanism is envisioned for the induction of cell migration by the c-Jun N-terminal 

kinase (JNK)-dependent phosphorylation of paxillin at serine 178.41 However, in these 

proposed mechanisms the participation of DOCK180 and PIX has not been 

demonstrated. Cyclin D1-Cdk4 phosphorylates a membrane-associated subpopulation 

of paxillin at serines 83 and 178.42 Cyclin D1 overexpression triggered Rac1 activation 

in the presence of wild type paxillin, but not in the presence of a non-phosphorylatable 

version of the protein (S83A, S178A). Alternatively, the expression of a 

phosphomimetic version of paxillin (S83E, S178E) caused Rac1 activation even in the 

absence of cyclin D1. Then, the phosphorylation of paxillin by cyclin D1-Cdk4 gives rise 

to Rac1 activation and a concomitant  promotion of membrane ruffling in MEFs and 

tumor cells, leading to increased invasion capacity and metastatic potential.42 Rho and 

Rac activities need to be tightly regulated for proper migration. By using specific FRET 

biosensors for Rho and Rac activities, it has been demonstrated that Rac1 and RhoA 

operate antagonistically through spatial separation and precise timing.43 Considering 

that cyclin D1 can inhibit Rho activity (see above) and induce Rac1 activity, it is 

tempting to speculate of a possible role for cytoplasmic cyclin D1 in coordinating Rac 

and Rho activities during migration. 

  Finally, Ral GTPases bind to several components of the exocyst and regulate 

vesicle traffic. Exocytosis and vesicle recycling are essential processes required for cell 

attachment and motility, and accordingly the activation of Ral GTPases is required for 

cell motility.44 Cytoplasmic cyclin D1-Cdk4 also modulates Ral GTPase activity.45 Cyclin 

D1 physically interacts with both Ral A and Ral B, it shows extensive cytoplasmic co-

localization with these small GTPases, and it was found physically associated to Ral-



GTP forms in a pull down assay for activated Ral. In addition, cyclin D1 also interacts 

with the Ral GEF Rgl2, which is phosphorylated in vitro by the complex. Expression of 

cyclin D1 increases the levels of activated Ral B in a manner that depends on the 

assembly of an active kinase complex. Hence it is likely that cyclin D1 regulates the 

activity of Ral GTPases through the phosphorylation of Rgl2 and possibly through more 

direct mechanisms. Consistently, the expression of a hyperactive allele of Rgl2 

subverts the motility defect of cyclin D1-defective fibroblasts.45   

Concluding Remarks and Perspectives 

 Developmental outcomes in unicellular organisms as well as tissue and organ 

formation in multicellular ones require a complex set of molecular mechanisms to 

coordinate proliferation with morphogenetic processes and differentiation. In this 

scenario, G1 cyclins may play an important role in cell-fate decision making. On the 

one hand, through their well-described nuclear function G1 cyclins control cell 

proliferation, and on the other hand, chiefly through a cytoplasmic activity they regulate 

cell morphogenesis. Importantly, this effect on morphogenetic processes appears to be 

achieved mainly, although not exclusively, through the regulation of the activity of 

several small GTPases. There is abundant evidence for this in yeast, and strong 

indications that the same is truth in mammalian cells. Because distinct functions of G1 

cyclins take place in different cellular compartments the regulation of the localization of 

G1 cyclin-CDK complexes may constitute an important mechanism in determining cell 

fate.  

 In addition to their role during development, alterations in the amount and 

localization of G1 cyclins in mammalian cells, in particular cyclin D1, are related to 

oncogenesis and metastasis. While the overexpression of cyclin D1 has unmistakable 

effects on the proliferation capacity of tumor cells, it also promotes migration, boosting 

the invasive capacity and metastatic potential of tumor cells. Hence, the 

characterization of the mechanisms involved in the regulation of small GTPases by G1 

cyclins should be of obvious interest in the field of molecular oncology. 

 Some small GTPases participate in signaling pathways involved in the regulation of 

the expression and activity of G1 cyclins (not reviewed here). Hence the 

communication between G1 cyclins and small GTPases in some cases may go in both 

directions. This allows the existence of positive feed-back loop modules that may 

enhance different cellular processes, as it is the case for cell migration. Feed-back 

mechanisms provide plasticity to cell signaling regulation and to GTPase-controlled 



mechanisms46. Thus, it will be of interest to elucidate whether such mechanisms are 

actually into place in the case of cyclin D1 with Rac1, and also with RhoA.    
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Figure 1. Representative diagram of the regulatory network of small GTPases and G1 

cyclins in yeast. When both Cdc28-Cln and Pho85-Pcl complexes participate, we use 

the notation G1 CDKs. Cln2 is partially redundant with Cln1; we only indicate Cln2 to 

simplify the diagram. Phosphorylation events are indicated by a triangle; dotted line 

means poor in vivo evidence. Color code: purple - small GTPases; green - GEFs; red - 

GAPs; blue - effectors/adaptors; brown - CDK complexes; orange - Far1 inhibitor. 

 

 



 

 

Figure 2.  Representative diagram of cyclin D1-Cdk4 cytoplasmic targets. Red squares 

represent the direct targets and substrates of the cyclin D1-Cdk4 complex. Triangles 

characterize phosphates but the phosphorylation by Cdk4 has still not been 

demonstrated in vivo for Rgl2 (dotted line). Purple circles symbolize small GTPases 

regulated by the complex. Green arrows are other proteins involved in the transduction 

pathways. Dashed square indicate a target transcriptionally repressed by cyclin D1-

Cdk4. A possible positive feed-back loop for Rac1signaling is depicted (dotted line).  
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