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Abstract 
In the last decade TTCC have been unveiled as key regulators of cancer cells biology and thus have been 

proposed as chemotherapeutic targets. Indeed in vitro and in vivo studies indicate that TTCC 

pharmacological blockers have a negative impact on the viability of cancer cells and reduce tumor size, 

respectively. Consequently mibefradil, a TTCC blocker approved in 1997 as an antihypertensive agent but 

withdrawn in 1998 because of drug-drug interactions, was granted 10 years later the orphan drug status by 

the FDA to investigate its efficacy against brain, ovary and pancreatic cancer. However, the existence of 

different channel isoforms with distinct physiological roles, together with the lack of selective 

pharmacological agents, has hindered a conclusive chemotherapeutic evaluation. Here we review the 

available evidence on TTCC expression, value as prognostic markers and effectiveness of their 

pharmacological blockade on cancer cells in vitro and in preclinical models. We additionally summarize the 

status of clinical trials using mibefradil against glioblastoma multiforme. Finally, we discuss the future 

perspectives and the importance of further development of multidisciplinary research efforts on the 

consideration of TTCC as biomarkers or targetable molecules in cancer. 

 

Introduction 

T-type Ca2+ channels  (TTCC) were first reported by Hagiwara and colleagues in the 1970s in voltage-

clamped starfish eggs (1). These channels could be distinguished from other voltage-gated Ca2+ channels 

(VGCC) on the basis of their fast activation and inactivation at negative potentials and slow deactivation 

kinetics. Because of these peculiarities and small single channel conductance, they were later coined as T-

type Ca2+ channels (T for transient and tiny, TTCC) or low voltage-activated (LVA) channels, in contrast with 

the high voltage-activated channels (HVA) comprising the rest of VGCC families. It took quite a few years 

before the molecular cloning of the first member of the TTCC family, 1G (2), termed Cav3.1 by the 

nomenclature established in 2000 (3). This was shortly followed by the molecular identification of the two 

other members of TTCC, 1H (Cav3.2)(4) and 1I (Cav3.3)(5).  

TTCC were initially linked to membrane excitability, such as cardiac pacemaker potentials (6) and neuron 

oscillatory firing (7)(8). TTCC are present in central and peripheral neurons, and abnormalities in their 

expression or function have been linked to a range of neurological diseases, including absence seizures, 

epilepsies and neuropathic pain (9)(10). Nonetheless, TTCC provide a key pathway for Ca2+ entry in non-

excitable cells, and eventually their expression was found to be enhanced during the G1/S transition in 

proliferating cells (11)(12).  
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G1 to S phase transition requires Ca2+ influx through multiple Ca2+ channels at the plasma membrane (13). 

As cells re-enter the cell cycle in early G1, Ca2+ elevations promote the activation of AP-1 (Fos/Jun), cAMP-

responsive element binding, and nuclear factor of activated T-cell (NFAT) transcription factors, which 

control the expression, assembly or stability of cyclin/cyclin dependent kinase (CDK) complexes essential 

for progression to the S phase (14) (Fig. 1).  

The contribution of TTCC to cell cycle control is based on their distinct biophysical properties. From a 

closed-deactivated state, TTCC activate by weak membrane depolarization, which is rapidly followed by 

adoption of a closed-inactivated (refractory) state. At the steady-state, overlap between activation and 

inactivation potential ranges leaves a small fraction of TTCC open, enabling sustained inward Ca2+ currents 

(termed window currents) that may regulate Ca2+-sensitive processes (15)(16). Membrane potential (Vm) is 

a key regulator of cell cycle and is subject to fluctuations in proliferating cells (17). Of note, Vm is 

hyperpolarized in the G1 and S phases, corresponding to the activation or increased expression of different 

K+ channels, including Ca2+-activated K+ (K(Ca2+)) channels which form functional tandems with TTCC 

(7)(15). G1/S hyperpolarization could lead to increased Ca2+ window currents, or TTCC availability, 

especially in cells with more depolarized mean Vm, such as stem or cancer cells. The involvement of TTCC in 

cell cycle progression promoted by growth factors was modelled by Gray and colleagues (12): production of 

inositol triphosphate triggers Ca2+ release from the endoplasmic reticulum (ER), activating K(Ca2+) channels. 

The ensuing membrane hyperpolarization removes TTCC inactivation, facilitating a Ca2+ influx that, upon 

Ca2+ binding to S100 proteins, inhibits the p53/p21 pathway to pass the G1/S restriction point. However, 

the signaling mechanisms that control cell cycle downstream of TTCC-mediated Ca2+ entry do not appear to 

be limited to p53 inactivation. Proven transducers of TTCC activity are calmodulin (CaM)and downstream 

effector calmodulin kinase II (CaMKII) (18). Activation of Cav3.1 heterologously expressed in HEK293 cells 

has been shown to transiently activate the Ras/MEK/extracellular signal-regulated kinase (ERK) pathway 

(19), whereas TTCC blockade inhibits the PKB/Akt pathway in GBM, being both signaling routes involved in 

G1/S progression (20). It is also known that Cav3.2 regulates the calcineurin (CaN)/NFAT pathway through 

both Ca2+ entry and direct binding to CaN, to induce cardiac hypertrophy (21). In addition, Ca2+ influx via 

Cav3.2 regulates the expression of the Sox9 transcription factor by CaN/NFAT activation during tracheal 

chondrogenesis (22). Furthermore, Cav3.1-deficient T helper cells showed a reduced nuclear translocation 

of NFAT, in turn leading to a decreased secretion of Granulocyte-macrophage colony-stimulating factor and 

unveiling a role for TTCC in lymphocyte differentiation (23). Thus and notwithstanding the proven role of 

TTCC in G1/S progression, the expression of TTCC can also be associated to cell cycle exit (Fig.1).  
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TTCC as prognostic markers in cancer  

Increased basal Ca2+ influx and remodeled Ca2+ signaling pathways may contribute to tumor progression by 

enhancing proliferation, promoting invasiveness and conferring chemotherapeutic resistance (24)(25). 

Hence, important questions are whether TTCC are differentially expressed in cancer cells, and if the TTCC 

signature has prognostic value. 

Available data indicates that TTCC expression levels depend on cancer type, stage and TTCC isoform (Table 

1). Immunohistochemical staining (IHC) showed that both Cav3.1 and Cav3.2 expression were increased in 

tumoral vs normal ovarian tissue (26). According to Human Protein Atlas, 82% of glioblastoma multiforme 

(GBM) biopsies expressed Cav3.1 and 27% expressed Cav3.2. The same database indicates that all prostate 

cancer samples expressed Cav3.2, while 75% expressed Cav3.1. The expression of Cav3.3 was not 

determined (27). Maiques and colleagues performed IHC against TTCC comparing normal skin, melanocytic 

nevi and different types of melanoma (28). TTCC immunoexpression increased gradually from normal skin 

to common naevi, dysplastic naevi and melanoma samples, with differences in the distribution of isoforms. 

Particularly, Cav3.2 was highly expressed in metastatic compared to primary melanoma. Positive 

correlations were found between Cav3.2, proliferative and hypoxia markers, and between Cav3.1, 

autophagy markers and the BRAFV600E mutation. Furthermore, Cav3.2 transcripts and protein were highly 

expressed in a subset of GBM tumors enriched in glioma stem cells (GSC) (20), consistent with a previously 

described role for this isoform in stemness (29). However, the expression of the Cav3.1 isoform, which was 

previously shown at the mRNA level in a vast array of GSC lines (30), was not investigated.  

Nonetheless, both up- and down-regulation of TTCC can become cancer’s molecular signature. Phan and 

colleagues performed a bioinformatics analysis on the expression of TTCC transcripts in >4000 cancer tissue 

samples by accessing Oncomine, a microarray database (31). The three TTCC isoforms exhibited variable 

levels in several cancer subtypes, including over- and under-expression when compared to normal tissues 

(Table 1).  

The prognostic relevance of the TTCC gene signature in cancer is a crucial question. An in silico genomic 

analysis of The Cancer Genome Atlas (TCGA) database revealed that disease-free and overall survival 

correlated inversely with expression of Cav3.1 and Cav3.2 in melanoma (28). Another study using the TCGA 

database revealed alterations of the Cav3.2 gene in 15/136 GBM samples, and these cases presented a 

trend towards shorter overall survival (20). 

Querying the Kaplan-Meier plotter database, Fornaro and colleagues performed a correlation study 

between TTCC expression in solid tumors and patient survival. In gastric cancer patients, the expression of 

Cav3.1 was associated to an extended overall survival, whereas Cav3.2 (best single predictor) and Cav3.3 
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were associated with poorer outcomes. This trend was repeated for lung cancer, while in ovarian cancer 

patients Cav3.1 and Cav3.2 swapped the sign of their correlations with overall survival (32).  

Thus, overexpression of specific TTCC isoforms appears to have a protective effect on specific cancer types 

and stages. Conversely, DNA aberrant methylation of the CACNA1G gene (encoding Cav3.1 channels) has 

been found in 18-35% of different human primary tumors, including pancreatic (33), hepatic (34), gastric, 

colorectal and acute myelogenous leukemia (35)(36). The promoter region of CACNA1G is a target for the 

CpG island methylator phenotype, which implies the inactivation of multiple tumor suppressor genes 

(35)(36). The inactivation of CACNA1G may play a role in cancer development by favoring proliferation 

and/or avoiding apoptotic or autophagic pathways, but few studies have addressed these questions (Table 

1). 

 

Effects of TTCC blockade/gene silencing in cancer cells: in vitro studies 

The expression of TTCC in cancer cells was first reported in retinoblastoma Y79 cells shortly after their 

molecular identification (37). The notion that it was possible to halt cancer cell proliferation or induce 

cancer cell death by inhibiting TTCC, was built up in the following years through in vitro studies on a wide 

range of cancer cells.    

 

Reduced Proliferation 

Numerous studies have shown that TTCC pharmacological blockade or gene silencing reduce the 

proliferation of cancer cells (12)(38). However, only a few provided insights on the pathways triggered by 

TTCC blockade/silencing. Lu and colleagues reported that pharmacological inhibition of TTCC with 

mibefradil reduced cell proliferation via p53-dependent upregulation of CDK inhibitor p21 (39), halting 

G1/S progression (Fig.1). Further, mibefradil-induced activation of the p38-mitogen activated kinase 

(MAPK) pathway caused p53 accumulation, resulting in cell cycle arrest (and death) of colon cancer cells 

(40).  

 

Inhibition of neuroendocrine differentiation 

Unlike most cancer types, neuroblastoma can undergo a spontaneous complete regression through 

neuronal-like differentiation (41). Chemin and colleagues demonstrated that either pharmacological 

blockade of TTCC or interfering with the expression of Cav3.2 (using antisense nucleotides) prevented 

cAMP-induced neuritogenesis of neuroblastoma-glioma NG108-15 cells and HVA Ca2+ channel expression, 

indicating a dual role of TTCC in promoting morphological changes and membrane excitability at early 
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stages of neuronal differentiation (42). Moreover, H2S- induced differentiation of NG108-15 cells involved 

the phosphorylation of Src kinase and was abolished by ascorbic acid (a proven inhibitor of Cav3.2) and by 

mibefradil (43). Other than Src activation, Chemin and colleagues found that Ca2+ influx through TTCC 

promotes neuroblastoma differentiation by an autocrine mechanism (44).  

Cav3.2 channels also proved to be relevant for neuroendocrine differentiation of human prostate cancer 

cells (45)(46)(47). During this process, prostate cancer cells develop neurite-like processes and secrete 

diverse mitogenic factors with paracrine or autocrine actions (47). Opposite to neuroblastoma, 

differentiation of prostate epithelial cells is associated with an increased aggressiveness of prostate 

tumors, adoption of an androgen-refractory phenotype and poor prognosis (48). Two recent works 

confirmed the mediation of Cav3.2 channels in the differentiation of prostate cancer LNCaP cells subject to 

physiologically relevant stimuli: sodium butyrate increased the expression of Cav3.2 channels at the mRNA 

and protein level, and their pharmacological blockade decreased the number and length of neurite-like 

processes and cell viability (46). The same research group showed that interleukin-6 up-regulated Cav3.2 

channels by a posttranscriptional mechanism. Again, pharmacological blockade of TTCCs limited neurite 

number and extension (47).  

 

Decreased cell survival 

2013 was a turning point in the consideration of the physiological roles of TTCC in cancer cells. Dzigielewska 

and colleagues reported a dual effect of mibefradil on reducing proliferation and inducing caspase-

dependent apoptosis of colon cancer cells, by p38-MAPK activation and p53 upregulation (40). Our 

research group proved that the structurally unrelated TTCC blockers mibefradil and pimozide halt 

melanoma cell proliferation at the G1/S transition and induce the intrinsic apoptosis pathway with 

activation of caspases-3 and -9 (49). Death occurred after induction of the unfolded protein response to ER 

stress, followed by subsequent blockade of constitutive autophagy. siRNA-mediated silencing of Cav3.1 and 

Cav3.2 isoforms exerted similar effects, demonstrating that TTCC play a role in Ca2+ homeostasis 

maintenance and in sustaining basal macroautophagy. The sequence of events linking TTCC 

blockade/silencing and autophagy deregulation has only been partially elucidated. Huang and colleagues 

showed that mibefradil and its derivative NNC-55-0396 exerted a dual role on leukemia cells viability, by 

promoting both G1/S arrest and apoptosis, that was preceded by ER Ca2+-release and depolarization of the 

mitochondrial membrane (50). Earlier this year, Niklasson et al. performed a drug screening assay on GSC 

and found that, among different disruptors of Ca2+ signaling network, TTCC and K(Ca2+) channel blockers 

decreased their viability (30). Transcriptomics and proteomics analyses revealed that, upon channel 
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blockade, the GSC plasma membrane depolarized, intracellular Na+ increased and Na+-dependent transport 

was reduced, leading to nutrient starvation and cell death.  

Nutrient starvation is a stimulus for macroautophagy by activating AMP-activated protein kinase and/or 

inhibiting the mTOR complex (51). Accordingly, KYS05090, a dihydroquinazoline with TTCC-blocking 

properties, induced autophagy and apoptosis in lung carcinoma A549 cells through reactive oxygen species  

generation and subsequent inhibition of glucose uptake (52). Nevertheless, autophagy deregulation by 

TTCC inhibition appears to be double edged. It is known that Ca2+ is required for phagosome-lysosome 

function (53); in this scenario, it is tempting to speculate that TTCC inhibition could prevent the influx of 

Ca2+ necessary for autophagolysosomal formation, de facto blocking macroautophagy at a late step, as 

observed for the effects of mibefradil in melanoma cells (49).  

TTCC blockade/knockdown can also lead to apoptosis by inactivating Ca2+ signaling pathways relevant for 

cell survival. Valerie and colleagues showed that, in addition of inhibiting proliferation, mibefradil or siRNA-

mediated Cav3.1/Cav3.2 gene silencing induced the apoptotic death of GBM cells through 

dephosphorylation of pro-survival Akt and cleavage of caspase-3 and -7 (54). This pathway can also be 

triggered in ovarian cancer cells, resulting in reduced levels of anti-apoptotic survivin (55). Remarkably, 

these works demonstrated that TTCC inhibition also sensitizes cancer cells to the chemotherapeutic of 

choice (temozolomide for GBM and carboplatin for ovarian cancer), thus establishing the grounds for the 

use of TTCC blockers in combined therapies. 

Similarly, Zhang and colleagues have recently shown that mibefradil treatment reduced the viability of GSC, 

partly due to inhibition of pro-survival Akt/mTOR pathways and upregulation of p27 and BAX proteins (20). 

A further RNA-seq transcriptomic analyses on GSC found that mibefradil attenuated the expression of 

several oncogenes and promoted the expression of different tumor suppressor genes, proving that the 

signaling pathways stemming from TTCC blockade can be complex and intricate. 

Together, these works indicate that the role of TTCC spans beyond the control of cancer cell cycle into the 

regulation of cancer cell homeostasis, such that their pharmacological blockade or gene silencing 

deregulates Ca2+ dependent physiological processes pivotal for cell survival (Fig. 2). 

 

Effects of TTCC blockade/gene silencing on tumor growth: in vivo studies  

While TTCC blockade/gene silencing has shown to decrease the viability of cancer cells in vitro, albeit with 

notable exceptions regarding Cav3.1 knockdown, these strategies needed validation in preclinical models 

before consideration of TTCC targeting in clinical assays. 3D tumor growth implies a hypoxic 

microenvironment and altered focal/cell-cell adhesions that shape tumor progression, invasiveness and 
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sensitivity to therapeutic agents (56)(57). Chronic hypoxia triggers the transcriptional upregulation of 

Cav3.2 channels in several cell types, mediated by hypoxia inducible factors (HIFs) (58)(59). Thus, the TTCC 

gene signature in cancer cells is likely to depend on O2 availability and HIFs activity. Intriguingly, the 

connection between TTCC and HIFs appears to be bidirectional: exposure to mibefradil reduced hypoxia-

induced HIF1α and HIF2 in GSC (20). Furthermore, TTCC blockade using different pharmacological agents, 

or Cav3.2 silencing, resulted in a reduced stability of HIF1 protein and expression of Vascular Endothelial 

Growth Factor (VEGF), ultimately inhibiting GBM-induced angiogenesis (60).  

Pioneer studies by Jung and colleagues evaluated the antitumor activity of KYS05090 in a mouse lung 

adenocarcinoma A549 xenograft, which slowed down tumor growth upon intravenous (61) or oral 

administration (62). Another 3,4-dihydroquinazoline able to block TTCC, KYS05047, demonstrated 

antitumor efficacy in the same xenograft model when administered orally (63). 

Other groups studied the effect of mibefradil or NNC-55-096 against solid tumors growing in vivo. In a 

xenograft model of ovarian cancer, HO8910 cells developed smaller tumors when co-injected with NNC-55-

096 (26). A similar approach was performed on a U87 GBM xenograft model (60). In consonance with in 

vitro results, intraperitoneal injection of NNC-55-0396 delayed tumor growth by inhibiting angiogenesis 

with a concomitant reduction of angiogenetic regulators (such as HIF-1, VEGF and Platelet-endothelial cell 

adhesion molecule).  

More elaborated protocols of mibefradil administration have been performed against diverse 

subcutaneous and intracranial GBM xenografts. Keir et al. designed a chemotherapeutic strategy in which 

mibefradil was first administered in order to synchronize GBM cell cycle at the G1/S boundary, then 

withdrawn followed by administration of alkylating agent temozolomide (64). The rationale behind this 

approach, termed interlaced therapy, was that mibefradil exposure would reduce the time for DNA repair 

systems to act against temozolomide-induced damage. Indeed, this combined therapy enhanced the 

efficacy of best single treatment (temozolomide), increasing overall survival by 18-68% depending on 

tumor types, implant location and treatment schedule.  

In addition, TTCC pharmacological blockade might synergize with radiotherapy, a common therapeutic tool 

for GBM. A study on rats carrying intracranial C6 glioma implants, showed that intraperitoneal injection of 

mibefradil and simultaneous radiosurgery slowed tumor growth and extended median survival from 35 

(radiosurgery alone) to 43 days. The benefits of initiating mibefradil treatment 1 week prior to 

radiotherapy were even stronger, achieving 52 days of median survival (65). These results suggest that the 

response to mibefradil in conjunction with ionizing radiation is also schedule-dependent.  
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Recently, administration of mibefradil inhibited the growth of GSC-derived intracranially-implanted GBM 

murine xenografts, and sensitized tumors to temozolomide treatment (20). In this study, two cycles of 

mibefradil (oral) and/or temozolomide (intraperitoneal) were concurrently administered. IHC revealed that 

proliferation marker Ki67 and stem cell marker SOX2 decreased, whereas astrocyte marker GFAP and 

caspase 3 increased in mibefradil-treated tumors. Data also showed that single treatments inhibited tumor 

growth by a similar magnitude, and that the combined treatment inhibited tumor growth in an additive 

fashion. Consistently, both mibefradil and temozolomide alone significantly prolonged animal survival, 

which was further extended with the combined treatment.  

 

Clinical trials: 

Early results attained in murine xenografts encouraged the enrollment of high-grade GBM patients in 

clinical trials in which TTCC are pharmacologically targeted with mibefradil, a drug with a well-known 

pharmacokinetic and toxicity profile (66). Cavion Pharma LLC (formerly Tau Therapeutics LLC), a 

pharmaceutical company focused on drug development and on the repurposing of mibefradil for oncology 

and neurological disease, performed in 2012 a dose escalation study to assess the safety of mibefradil 

dihydrochloride in 30 healthy patients, which rendered only mild and self-limited adverse effects 

(NCT01550458). This was followed by the launch of a second phase I study, in conjunction with the 

National Cancer Institute, to assess the efficiency and optimal dosage of mibefradil sequentially 

administered in combination with temozolomide in patients with recurrent GBM (NCT01480050). The 

results for this trial indicate that the therapy was generally well tolerated (67). A third trial sponsored by 

the same company in collaboration with Yale University has also been conducted (NCT02202993, 2014-

2017). This was a dose-escalation study to determine the safety and the maximum tolerated dose of 

mibefradil combined with hypofractionated radiation in patients with recurrent GBM, with no results 

published to date. 

 

Conclusion: 

Pharmacological blockade of TTCC reduces the viability of cancer cells in vitro and tumor growth in vivo. 

Preclinical results spearheaded the first clinical trials employing mibefradil in combined therapies against 

GBM. Yet, a compelling evaluation of TTCC as prognosis markers and/or targetable proteins in cancer will 

require a comprehensive characterization of the TTCC molecular signature, and a deeper knowledge of the 

cell signaling pathways stemming from TTCC activation/inhibition. Individual TTCC isoforms play different 

roles in cancer pathophysiology, but this notion is hampered by the absence of selective pharmacological 
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modulators. The expression of Cav3.1, which showed a positive correlation with autophagy markers, is 

predominant in some cancer types, while epigenetically silenced in others. The expression of Cav3.2, which 

increases in hypoxic conditions, has been associated to cancer stemness, aggressiveness and metastasis. 

The expression of Cav3.3 across cancer tissues remains largely unexplored, in spite of current evidences for 

a negative correlation with survival of gastric, lung and ovarian cancer patients. In addition to cancer, TTCC 

are currently under the scope of different biomedical fields, including neurological and cardiovascular 

disease. Multidisciplinary research efforts are bound to facilitate the development of isoform-specific tools, 

and will hopefully galvanize fine-tuned approaches for different cancer types and stages.  
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Table 1: TTCC signature and value as prognostic markers in cancer 

TTCC 
isoform 

Tumor type Prognostic Expression level  
 

Assay References 

Cav3.1 
 

ovarian n.d. increased protein * IHC 26 

Cav3.2 
 

ovarian n.d. increased protein * IHC 26 

Cav3.1 
 

GBM (82% samples),  prostate (75% samples) 
 

n.d. n.d. IHC 27 

Cav3.2 GBM (27% samples), prostate (100% samples) n.d. n.d. IHC 27 

Cav3.1 
 

melanoma negative increased protein * IHC 28 

Cav3.2 
 

melanoma negative increased protein  *, ** IHC 28 

Cav3.2 subset of GBM enriched in GSC negative increased mRNA*and 
increased protein* 

RT-PCR and 
WB 

20 

 
Cav3.1 

sarcoma, lung, uterine, prostate, breast carcinoma, rectosigmoid carcinoma 
 
ovarian, renal, brain, bladder, mantel  cell lymphoma, colorectal carcinoma 

 
n.d. 

increased mRNA* 
 
decreased mRNA* 

MA,  
Oncomine database 

 
31 

 
Cav3.2 

renal, sarcoma, gastrointestinal stroma 
 
brain, ovarian, bladder, breast 

 
n.d.  

increased mRNA* 
 
decreased mRNA* 

MA,  
Oncomine database 

31 

 
Cav3.3 

breast, liposarcoma, esophageal adenocarcinoma 
 
GBM, anaplastic oligondendroglioma 

 
n.d. 

increased mRNA* 
 
decreased mRNA* 

MA, 
Oncomine database 

31 

Cav3.1 
 

gastric, lung 
ovarian 

positive 
negative 

n.d. MA, Kaplan- 
Meier database 

32 

Cav3.2 gastric, lung 
ovarian 

negative 
positive 

n.d. MA, Kaplan- 
Meier database 

32 

Cav3.3 gastric, lung ,ovarian negative 
 

n.d. MA, Kaplan- 
Meier database 

32 

Cav3.1 pancreatic, hepatic, gastric, colorectal, acute myelogenous leukemia  
(18-35% samples) 

n.d. hypermethylation  MSP 33-36 
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*relative to untransformed tissue; ** metastatic vs. primary tumors 

MA: microarray analysis; WB: Western blot; MSP: methylation-specific PCR 
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Legend to Figure 1 

TTCC form functional complexes with K(Ca2+) channels in the plasma membrane and trigger signaling 

pathways that may favor cell cycle progression or differentiation, depending on cell type and context. The 

figure combines a selection of relationships identified in different studies for TTCC-mediated signaling 

(green arrows) and effects of TTCC inhibition (red crosses/arrows), including activation of Cyclin/CDK 

complexes and CaM-dependent phosphorylation/dephosphorylation events. Arrow tips indicate whether 

the modulation is positive (pointed) or negative (round). Dashed lines indicate ion fluxes/transport across 

the plasma membrane.   

 

Legend to Figure 2  

TTCC-mediated signaling (green arrows) and effects of TTCC inhibition (red crosses/arrows) on cell 

survival/apoptosis. The figure combines a selection of relationships identified in different studies. Arrow 

tips indicate whether the modulation is positive (pointed) or negative (round). TTCC inhibition may induce 

apoptosis by PKB/Akt dephosphorylation or by activation of the p38-MAPK-p53 axis. TTCC/K(Ca2+) blockade 

may also cause plasma membrane depolarization and compromise Na+-dependent nutrient transport, in 

turn inducing the unfolded protein response (UPR) and the amino acid response (AAR), which may convey 

into apoptosis or autophagy. A question mark ‘?’ indicates that the contribution of TTCC to these Ca2+-

dependent processes is speculative.  
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