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Abstract 9 

10 

Renewable energies are main players to ensure the long-term energy supply. Solar power plants 11 

with thermal energy storage (TES) are one of the available renewable technologies which have 12 

more potential. Nowadays, there are still several aspects in the design and operation of these 13 

power plants which need to be improved, such as the correct operation of some specific 14 

instrumentation, the compatibility between TES materials and storage tanks materials, and 15 

operational process strategies. This paper presents the acquired experience during the design, 16 

start-up, and operation of a kWh scale pilot experimental facility built at the University of 17 

Lleida (Spain) together with Abengoa Research (Spain) in 2008. The versatility of this facility 18 

has allowed simulating real working conditions and therefore testing different TES systems, 19 

TES materials, solar power plant components, and operational strategies focused on TES for 20 

temperatures up to 400 ºC. In the present paper, the authors show the lessons learnt at pilot and 21 

present the main problems and limitations encountered, and give advices of this experimental 22 

set-up to extrapolate the data to real plant, to provide solutions to technical problems and reduce 23 

the cost of commercial plants.  24 
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1. Introduction 29 

 30 

The current model of economic development is based on the intensive use of fossil energy 31 

resources, which causes high environmental impacts and socio-economic imbalances. Hence, 32 

new models of sustainable development are required to accelerate the development of advanced 33 

energy technologies to address the global challenges of clean energy, climate change and 34 

sustainable development. To achieve the necessary reductions in energy-related CO2 emissions, 35 

the International Energy Agency (IEA) has developed a series of global low-carbon energy 36 

technology roadmaps, under international guidance and in close consultation with industry [1]. 37 

Renewable energies are main players of these roadmaps. They are located close to the 38 

consumption users and they ensure a long-term energy supply. Nowadays, with the aim of 39 

reducing the dependence on foreign energy, several governments have stated different 40 

economic, social and environmental policies focused on optimizing the use of available energy 41 

resources and on increasing the environmental awareness of the society. 42 

 43 

Among the different renewables technologies, the generation of electricity with solar energy has 44 

experienced a noticeable increase as a result of the construction of large solar farms and 45 

concentrated solar power (CSP) plants. The total photovoltaic capacity installed in the world 46 

was increased from 23 GW at 2009 to 176.2 GW at 2014. And the CSP capacity installed was 47 

increased from 600 MW to 4.9 GW [2]. Focusing on CSP plants, there are basically two 48 

commercial systems which have drawn more attention: parabolic trough and tower. A parabolic 49 

trough is a type of solar thermal collector. In a parabolic trough CSP plant, the solar field is 50 

modular and is composed of many parallel rows of solar collectors aligned on a north-south 51 

horizontal axis. Each solar collector has a linear parabolic shaped reflector that focuses the sun’s 52 

direct beam radiation on a linear receiver located at the focus of the parabola. The collectors 53 

track the Sun from east to west during the day to ensure that the sun is continuously focused on 54 

the linear receiver. A heat transfer fluid (HTF), usually oil, is heated as it circulates through the 55 

receiver and returns to series of heat exchangers in power block where the fluid is used to 56 

generate high-pressure superheated steam. The superheated steam feeds then a conventional 57 

reheat steam turbine/generator to produce electricity. The spent steam from the turbine is 58 

condensed in a standard condenser and returned to the heat exchangers via condensate and feed-59 

water pumps to be transformed back into steam. After passing through the HTF side of the solar 60 

heat exchangers, the cooled HTF is recirculated through the solar field. On the other hand, solar 61 

power towers use a field of sun tracking reflectors, called heliostats, which reflect and 62 

concentrate the sunrays onto a central receiver placed in the top of a fixed tower. In the central 63 

receiver, heat is absorbed by a heat transfer fluid (HTF), which then transfers heat to heat 64 

exchangers to obtain enough superheated steam to operate in a steam Rankine power cycle [3].  65 
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 66 

However, CSP plants highly depend on the weather conditions and the discontinuities may 67 

occur when clouds block the Sun, after sundown, or in early morning when power demand steps 68 

up [4]. Hence, CSP plants need to be equipped with a back-up system if a continuous electricity 69 

generation process is required. The most common used back-up systems are the ones driven by 70 

fossil fuels, which increase the energy-related CO2 emissions [5]. On the other hand, thermal 71 

energy storage (TES) systems have gradually been introduced in CSP plants. They are low 72 

energy-related CO2 emissions system which allows managing the electricity generation to 73 

whenever it is most needed throughout the day, overnight, or the following day, as determined 74 

by the utility or system operator. Storage temperatures for parabolic trough plants range 75 

between 280 ºC and 400 °C, but can be above 550 ºC for tower plants. Therefore, a good 76 

integration of the TES system within a CSP plant helps buffering during transient weather 77 

conditions, adjusting the dispatchability or time-shifting, increasing the annual capacity factor, 78 

which is a performance parameter that compares the net electricity delivered by the plant to the 79 

energy that it could have produced under continuous full-power operation during a year, above 80 

40%. TES also enables achieving full load operation of the steam cycle at high efficiencies [6-81 

8]. However, there are some key technical requirements which need to be fulfilled for a proper 82 

integration of a TES system. These requirements are high TES material energy density, good 83 

heat transfer between heat transfer fluid (HTF) and the TES material, mechanical and chemical 84 

stability of the TES material, chemical compatibility between the TES material and the TES 85 

storage tank, complete reversibility for a large number of charging/discharging cycles, low 86 

thermal losses, and controllability of the charging/discharging processes [9-11]. 87 

 88 

As a result of the high level of competition on the world solar thermal energy market and the 89 

above-mentioned advantages of incorporating TES in CSP plants, continued research is required 90 

to reduce costs and to increase the efficiency of CSP plants. Abengoa, which is a Spanish 91 

company focused on providing solutions for sustainability in the energy and environments 92 

sectors from renewable sources, has built and manages several CSP plants located around the 93 

world (Table 1). Abengoa is at the cutting edge of developing technology for building and 94 

operating CSP plants that use TES systems. By the time of the work reported in this paper, there 95 

were still several aspects in the design and operation of CSP plants coupled with TES systems 96 

that needed to be improved, such as the operation of some instrumentation, the compatibility of 97 

materials under real operation conditions (dynamic corrosion) and test different components as 98 

electrical tracing, heaters, valves, insulation, etc.  99 

 100 

Abengoa, prior to the installation of the first oil parabolic trough commercial plant coupled with 101 

TES, validated the TES technology through two pilot plants at different scales. The first pilot 102 
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plant consisted of two-tank molten salts of 8.5 MWhth located in Seville (Spain) [12],while the 103 

second one consisted of two-tank molten salts pilot plant of 0.3 MWhth with same aspect ratio 104 

(ratio between height and diameter of the storage tank) than TES tanks of commercial plants, 105 

which is located at the University of Lleida (Spain). Other pilot plants for molten salts testing 106 

have been built later, such as that at Plataforma Solar de Almería (Spain) by CIEMAT, with two 107 

39-ton salt tanks [13], at Cologne (Germany) by DLR, with one thermocline packed bed tank 108 

[14], and at Antofagasta (Chile) by University of Antofagasta, with one 1-ton salt tank [15]. 109 

They all aimed to work with the philosophy of learning in demo plants. Their configuration 110 

allows testing real CSP storage operation processes at lower scale and with the advantage of 111 

having a lot of measurement equipment to fully understand how the processes develop. The idea 112 

is to acquire knowledge in design, construction, start-up and operation with two-tank TES and 113 

provide useful information for future designs and construction of experimental and commercial 114 

plants to avoid future technical problems and to reduce the investment and operation cost of 115 

these plants.  116 

 117 

The size of this pilot plant goes in line with the new tendency of pretotyping [16]. Failure is an 118 

unavoidable part of the innovation process, but some failures are much harder to take, and 119 

survive, than others. Pretotyping is an approach to develop and launch innovation that might 120 

help to determine if the basic design is right before investing a lot of time, resources and time to 121 

properly build it. In agreement with this concept, the pilot plant located at the University of 122 

Lleida was ideated by Abengoa and the University of Lleida as a new product or service that 123 

could fail fast, cheaply and able to test an elevate number of critical and risky operation modes, 124 

instrumentation and materials. Any change in the process, any new implementation in the 125 

optimization of it, or any preliminary study can be done with less time, resources and energy 126 

than a commercial plant. Therefore, the present paper is focused on this pilot plant facility and it 127 

is divided in three main parts: description and design of the pilot plant, operational modes of the 128 

pilot plant, and finally, the start-up and operation. In the description and design, a detailed 129 

description of the pilot plant and its components is showed, as well as the justification of the 130 

different design aspects. In the second section of this study, the operational modes that can be 131 

carried out in this pilot plant have been described. Finally, in the start-up and operation section, 132 

the different steps of the start-up process of the plant and the causes of malfunction, limitations 133 

and possible recommendations for future designs plant are showed. 134 
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Table 1. CSP Plant built or managed by Abengoa [17,18] 135 

Name 
CSP plant 

Location Start year 
CSP 

system 
Plant 

capacity  
Operation 

temperatures  
TES 

system 
TES 

system type 
TES 

material 
Storage 
capacity 

Atacama-1 
Atacama Desert, 

Chile 

Under 
constructi

on 
Tower 110 MW 300-550 ºC Yes Direct two-tank Molten salts 17.5 h 

Solana Arizona, USA 2013 Parabolic trough 280 MW 293-393 ºC Yes Indirect two-tank Molten salts 6 h 

Kaxu Solar one 
Poffader, South 

Africa 
2015 Parabolic trough 100 MW 293-393 ºC Yes Indirect two-tank Molten salts 2.5 h 

Khi Solar one  
Upington South 

Africa 
2017 Tower 50 MW 530 ºC Yes Steam storage  Steam 2 h 

Xina Solar one  
Poffader, South 

Africa  
2017  Parabolic trough 100 MW 293-393 ºC Yes  Indirect two-tank Molten salts 5 h 

Solnova 1, 3, 4 
Sanlúcar la Mayor, 

Spain 
2009 Parabolic trough 50 MW 293-393 ºC No --- --- --- 

PS10 
Sanlúcar la Mayor, 

Spain 
2007 Tower 

11.02 
MW 

250-300 ºC Yes Steam storage  Steam 1 h 

PS20 
Sanlúcar la Mayor, 

Spain 
2009 Tower 20 MW 250-300 ºC Yes Steam storage  Steam 1 h 

Helionergy 1, 2 Écija, Spain 
2011, 
2012 

Parabolic trough 50 MW 293-393 ºC No 
--- --- --- 

Helio 1, 2 
Puerto Lápice, 

Spain 
2012 Parabolic trough 50 MW 293-393 ºC No 

--- --- --- 

Solabén 1,2,3,6 Logrosán, Spain 2013 Parabolic trough 50 MW 293-393 ºC No --- --- --- 

Shams 1 
Abu Dhabi, United 

Arab Emirates 
2013 Parabolic trough 100 MW 300 ºC-400 ºC No 

--- --- --- 

 136 
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Table 4. Thermal and geometrical characteristics of the molten salts – HTF heat exchanger installed at the 239 

pilot plant facility. 240 

Characteristics Units HTF loop Molten salts loop 

Design pressure bar 20 10 

Test pressure bar 26 13 

Design temperature ºC 400 400 

Directions of the fluids - Both Both 

Length x Width x Height mm 208 x 191 x 618  

Plate material - Stainless steel alloy 316 

Plate thickness mm 0.40  

Number of passes - 10 (both sides) 

Heat transfer area m2 3.8  

Number of plates - 38 

 241 

 242 

2.4. Storage system 243 

 244 

The storage system consists of two identical 0.57 m3 TES tanks designed and built by the 245 

GREA research group from the University of Lleida. They are based on the two-tank molten 246 

salts concept of the CSP plants which is implemented by Abengoa in commercial developments. 247 

One of the TES tanks contains the molten salts at higher temperature, from now on “hot tank”, 248 

and the other one at lower temperatures, from now on “cold tank”, to create the initial 249 

conditions previous to both the charging and discharging processes  250 

 251 

The design of the tank consists of a cylinder-shaped vessel closed with a Klöpper cover welded 252 

on the top. The material used is stainless steel 316L to withstand the elevate temperatures, to 253 

avoid galvanic corrosion, and to avoid compatibility problems between the molten salts and the 254 

tank itself. Both the tank walls and cover are manufactured with some openings with the aim of 255 

placing the electrical heaters, which are used to heat up the molten salts up to de desired 256 

temperatures, the different measuring instrumentation, and the molten salts pump. Moreover, a 257 

drainage piping is placed on the bottom of the tank to drain the molten salts from the tank. 258 

 259 

The design of the tank was done to be as similar as possible to the ones existing in real CSP 260 

plants. It was decided to keep the same aspect ratio, which is the ratio between the diameter and 261 

the height. Regarding to the material, both the hot and the cold tanks are constructed with the 262 

same material for future research purposes, contrary to what it is done in commercial plants. 263 

Moreover, the cold tank incorporates more electrical heaters than standard commercial tanks 264 
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with the aim of melting the molten salts within the tank. Table 5 shows the main geometrical 265 

characteristics of the tanks. 266 

 267 

Table 5. Geometrical characteristics of the molten salts storage tanks installed at the pilot plant facility 268 

Parameter Units Value 

Material Stainless steel 316L 

Internal Diameter mm 1200 

Cylinder height mm 500 

Klöpper cover height mm 267 

Total height mm 767 

Thickness of the walls mm 4 

Surface area-to-volume ratio  - 3.36 

Aspect ratio  - 0.41 

 269 

In order to move the salts from one tank to the other, a vertical centrifugal pump 270 

commercialized by Friatec-Rheinhütte was installed at the top of each tank. This pump can be 271 

also used to recirculate the salts within the same tank to homogenize the temperatures. One of 272 

the biggest problems of this type of pumps is that they are not dimensioned to work at pilot 273 

plant scale, and therefore three main adjustments were performed to adjust them to the scale of 274 

the facility. First, a reduction of the length of the shaft sleeve was done by the supplier; second, 275 

a by-pass is incorporated inside the pump, and third, variable-speed drives are connected to the 276 

pumps. These last two modifications were introduced to reduce the molten salts flow rate due to 277 

the fact that the flow rate of the experimentation carried out at the pilot plant facility is lower 278 

than the minimum flow rate that the pump provides. Table 6 shows the main characteristics of 279 

the molten salts vertical centrifugal pump installed at the pilot plant facility. 280 

 281 

Table 6. Main characteristics of the molten salts vertical centrifugal pumps installed at the pilot plant 282 

facility. 283 

Characteristics Units Value 

Model GVSO 40/160Z 

Operational flow rate m3/h 1.3-3 

Nominal power kW 2.5 

 284 

In order to maintain the heat losses to the surroundings at values between 40 W/m2, which are 285 

the accepted values in commercial power plants, and 80 W/m2, which are the accepted values 286 

for experimental facilities [Dr. Cristina Prieto, Abengoa, personal communication, April 4th, 287 

2017], rock wool is placed around the walls and cover of the tanks. Moreover, refractory 288 
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are connected to the hot tank to test the influence of the piping and the behaviour of different 312 

electrical components. Finally, the fourth circuit is another by-pass on the cold tank which goes 313 

through the heat exchanger and allows the molten salts leaving the heat exchanger to enter to the 314 

cold tank again and increase faster their temperature.  315 

 316 

In order to minimize the heat losses to the surroundings and potential thermal bridges, rock 317 

wool is used as insulation. Two layers are placed around the piping to ensure a higher efficiency 318 

(Table 8). 319 

 320 

Table 8. Characteristics of the insulation used on the piping of the pilot plant facility. 321 

Insulation material Units Thickness 

Internal layer: Rockwool shell (RWL POROX PS 964 1”) mm 40 

External layer: Rockwool (Rock wool (Isover SPINTEX 342G and 

TECH WIRED MT 5.1) 
mm 240 

 322 

2.5.2. Nitrogen circuit 323 

 324 

Three independent nitrogen circuits are installed in the pilot plant facility to ensure proper 325 

operation conditions. The first circuit is located at the highest point of the facility and is 326 

connected to the heat exchange system. Its main objective is to drain both the heat exchanger 327 

and the molten salts loop when the processes are finished. Hence, the molten salts are forced to 328 

return to the storage tanks and solidifications can be prevented. Moreover, this circuit also helps 329 

avoiding mechanical stress of the heat exchanger plates caused by the molten salts thermal 330 

expansion. The second circuit connects the two storage tanks and the nitrogen tank. Its main 331 

objectives are to create an inert protective atmosphere inside the tank in front of a potential HTF 332 

leak, and to help draining the storage tanks when they need to be emptied. Finally, the third 333 

circuit is connected to the expansion vessel of the electrical heater HTF storage tank. Its 334 

objective is to provide an inert atmosphere in the HTF loop so to avoid fire hazards, to provide 335 

pressure to the system to absorb the oscillations in the system because of the HTF thermal 336 

expansion, and to prevent the formation of vapours. 337 

 338 

These three circuits are connected to two electric heaters, whose power is 2 kW and 0.8 kW, to 339 

ensure a minimum inlet temperature of the nitrogen at the molten salts loop, and therefore, to 340 

prevent solidifications because of the contact between the molten salts and the nitrogen at a 341 

lower temperature. 342 

 343 



15 
 

2.5.3. Valves  344 

 345 

Several bellow-seal valves (model ARI-FABA-Plus from A.R.I) and globe valves (model WTA 346 

11.1-S-SE-SBV from Schubert-Salzer) are placed in both the HTF and the molten salts loops, 347 

respectively. Their hand wheels are located at 210-320 mm from the piping to improve the 348 

handling of the valve at high temperatures. The function of these valves is the modification of 349 

the flow direction of both the molten salts and HTF to adjust them to the desired operational 350 

processes and flow arrangements. The selection of this type of valves was mainly due to their 351 

resistance and operation facility at high temperatures, and the way they are connected to the 352 

piping of the different loops: while on the molten salts loop they are welded to the piping, on the 353 

HTF loop they are connected to the piping with flanges. 354 

 355 

2.6. Molten salts electrical heating system  356 

 357 

The molten salts electrical heating system consists of two elements: the electrical heat tracing, 358 

which is installed in the molten salts piping, and the immersed electrical resistances, which are 359 

placed inside the molten salts storage tanks.  360 

 361 

2.6.1. Electrical heat tracing 362 

 363 

The electrical heat tracing is an essential element for the proper operation of the high 364 

temperature pilot plant facility due to the fact that helps avoiding solidifications inside the 365 

piping, and helps maintaining a more uniform and controlled temperatures of the molten salts in 366 

the piping, especially in critical points such as curves, T’s, valves, and supports, which are 367 

considered the biggest thermal bridges of the system.  368 

 369 

The electrical heat tracing installed in the pilot plant facility is divided three different circuits. 370 

Each one has a nominal power of 2.4 kW at 230/48 Vac and consists of a series type heating 371 

cable with a mineral insulation and Inconel sheath supplied by AKO company which provides 372 

heat by the Joule effect. The division of the tracing system in different circuits was done to 373 

ensure a more accurate control of the temperatures. Therefore, it can help avoiding problems of 374 

overheating and salts solidification in the above-mentioned critical points from the molten salts 375 

loop. Each circuit is controlled by different temperature sensors, which are carefully placed to 376 

the most critical (on the surface of the pipe of each circuit and on the surface of the recirculation 377 

pipe of both tanks, cold and hot) and optimal locations along the piping to avoid the previous 378 

problems, and connected to a controller. 379 

 380 
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2.7.4. Pressure sensors 474 

 475 

In order to measure pressure values of both the HTF and the molten salts at different points of 476 

the two loops, different types of pressure sensors are used. On one hand, the HTF loop 477 

incorporates three mechanical manometers and five digital pressure transmitters. The 478 

mechanical manometers are installed at the inlet and outlet of the heating system and at the 479 

expansion vessel. The first ones are used to visually know the pressure drop within the electrical 480 

heater while the third one is used to visually control the HTF thermal expansion. Three of the 481 

digital pressure transmitters are installed at the same locations than the mechanical manometers 482 

and are used to record and control the pressure variables of the HTF loop. The two other digital 483 

pressure transmitters are installed at the inlet and outlet of the heat exchange system to record 484 

and control the pressure drop of the HTF within the heat exchanger. On the other hand, the 485 

molten salts loop incorporates three bellow-type pressure sensors with digital pressure 486 

transmitters. One of them is located at the inlet part of the heat exchanger to know the pressure 487 

of the nitrogen at heat exchange system and the other two sensors are placed at both ends of the 488 

orifice plate flowmeter.  489 

 490 

3. Operational modes of the pilot plant facility 491 

 492 

The pilot plant facility presented in this paper allows simulating charging and discharging 493 

processes of commercial two-tank molten salts TES systems with both parallel and counter flow 494 

arrangements (Figure 11). In a parallel flow arrangement (Figure 11a Figure 11c), the hot fluid 495 

and the cold fluid move in the same direction, while in a counter flow arrangement (Figure 11b 496 

Figure 11d), the hot fluid and the cold fluid move in the opposite direction. 497 

During the charging process (Figure 11a and Figure 11b), the molten salts are pumped from the 498 

cold tank to the hot tank through the heat exchange system. There, the molten salts are heated 499 

up with the HTF which has been previously heated up with heating system. The charging 500 

process is considered to be finished when the level of the molten salts at the cold tank reaches 501 

the lowest level for a proper performance of the molten salts pump, which turns to be 23 cm 502 

from the bottom of the tank. On the contrary, during the discharging process (Figure 11c and 503 

Figure 11d) the molten salts are pumped from the hot tank to the cold tank through heat 504 

exchange system.  505 

 506 
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4.1. Start-up 521 

 522 
4.1.1. HTF loop  523 

 524 

The following steps need to be followed for the start-up of the HTF loop: 525 

 526 

i. The first step is to fill the HTF loop with pressurized air to check the proper operation of 527 

the pressure and temperature sensors, and to check the absence of leaks in the circuit, 528 

which is done verifying that there are no air pressure drops. 529 

ii. The second step is to fill up the HTF loop with the selected HTF. In the present facility, 530 

it was done by pumping the whole volume of HTF with a manual pump from the lowest 531 

point of installation, so the existing air in the piping could be drained by the relief valve.  532 

iii. The third step is to introduce nitrogen through the HTF expansion vessel to reach the 533 

minimum heating system working pressure, and therefore to be able to pump the HTF at 534 

ambient temperature at different flow rates, which will let the remaining air to be 535 

drained.  536 

iv. Once it is verified that the HTF loop has no presence of air, a dehumidification process 537 

needs to be carried out to eliminate the moisture in the loop. This process consists of a 538 

progressive increasing of the HTF temperature, 5 ºC every 5 minutes until it reaches 170 539 

ºC. Afterwards, the HTF is kept at this temperature for a whole day to be further cooled 540 

down to 50 ºC.  541 

v. Finally, when the dehumidification process is successfully done, the HTF need to be 542 

gradually heated up to its maximum working temperature to calibrate the control system 543 

and the alarms of the heating system. 544 

 545 

4.1.2. Molten salts loop  546 

 547 

The following steps need to be followed for the start-up of the molten salts loop: 548 

 549 

i. The first step is to check that there are no leaks and to check the correct operation of the 550 

temperature and pressure sensors by introducing nitrogen in the storage tanks and 551 

piping, which is done in the same way than in the HTF loop. 552 

ii. After verifying the absence of leaks, the next step is the installation of the electrical 553 

tracing system and insulation. 554 

iii. Afterwards, and once it is checked that the electrical tracing system operates properly, 555 

both the tracing and the resistances need to be set at 280 ºC to ensure an initial 556 

preheating temperature for the molten salts at the piping. This temperature is the set-557 
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point in real CSP plants to ensure that the molten salts do not solidify. Once this 558 

temperature is reached, it is possible to fill up the storage tanks with the molten salts. In 559 

the present facility, the biggest amount of material was introduced in the cold tank to 560 

take advantage of the presence of more electric resistances that the other one.  561 

Unlike commercial CSP plants, where the molten salts melting during the filling 562 

process is carried out by an external system, in the present facility the melting process 563 

was carried out for the first time inside the storage tanks with the heat transferred by the 564 

electrical resistances. The process consisted of progressively increasing the molten salts 565 

temperature, with temperature gradients below 50 ºC to avoid the thermal stress of the 566 

storage system, until it reached 250 ºC. Once the molten salts were fully melted, the 567 

temperature was increased up to the working temperatures (298 ºC at the cold tank and 568 

388 ºC at the hot tank) and they were pumped to perform the charging and discharging 569 

processes. 570 

 571 

4.2. Main issues during operation and recommendations  572 

 573 
4.2.1. HTF loop  574 

 575 

The main issues detected in the HTF loop during operation are the presence of air and vapours 576 

in the piping and the presence of HTF leakages. These problems are key factors on keeping the 577 

required minimum HTF level of the pump, keeping the proper pressure in expansion vessel, and 578 

avoiding the cavitation of the pump. The presence of air is basically due to human 579 

manipulations on the piping and valves. In order to avoid or minimize this problem, the present 580 

facility incorporates two drainages, which are located at the highest point of the HTF loop and 581 

at the HTF pump, and that are able to relief the accumulated air. The presence of vapours is due 582 

to values of the HTF pressure in the expansion vessel which are lower than the HTF vapour 583 

pressure. In order to avoid it, it is necessary to keep the pressure of the HTF loop always higher 584 

than the HTF vapour pressure, especially at high temperatures. Finally, HTF leakages were 585 

mainly due to poor connections in critical points such as metallic flanges, pipe joins, and 586 

instrumentation fitting. In order to avoid leakages for large periods of time at high pressures and 587 

temperatures, the use of spiro-metallic gaskets between the flanges and pipe joints, as well as a 588 

constant revision of the instrumentation fitting have been found as a good solution. 589 

 590 

Figure 12a shows a good characteristic behaviour of a charging process in the HTF–salts heat 591 

exchanger and Figure 12b shows a problem in the HTF loop with a decrease of the HTF inlet 592 

temperature. 593 

 594 
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5. Conclusions 675 

 676 

This paper presents the acquired experience during the design, start-up and ordinary operation 677 

since 2008 of two-tank molten salts TES for CSP applications pilot plant scale built at the 678 

University of Lleida (Spain) in conjunction with Abengoa (Spain). This test facility is used to 679 

experimentally investigate different materials, components and operational strategies regarding 680 

TES at a temperature up to 400 ºC.  681 

 682 

The authors show the problems and limitations encountered, and give advices of this 683 

experimental set-up to extrapolate the data to real plant, to provide solutions to technical 684 

problems and reduce the cost of commercial plants.  685 

 686 

One of the points to be exposed is that many items or components of the pilot plant were 687 

designed and/or built specifically for this set up, since they are not standardized. Moreover, 688 

some instrumentation was tested in this application for the first time in this pilot plant.  689 

 690 

Pilot plants should always be designed taking into account the scalability of its results. The 691 

results obtained in a pilot plant do not always have the same impact in a real commercial plant. 692 

For example, heat losses in a pilot plant such as the one presented in this paper will have a 693 

mucho lower impact than in a commercial plant. Contrary, this plant shows lower stratification 694 

than commercial ones. 695 

 696 

In the start-up process two conclusions are drawn. The first one is an expected one, the first 697 

heating should be done progressively to avoid thermal stress in the container metals and to 698 

avoid presence of air and HTF vapours. The second one is that it is possible to melt the salts just 699 

with the immersion heaters, which was not expected and had not been tested before in bigger 700 

plants. 701 

 702 

To avoid malfunctions found in the pilot plant, the following recommendations, which can be 703 

extrapolated to commercial plants, can be given: leaks and salts solidification in cold points are 704 

the main problems in the HTF-salts circuit; a good installation of the electrical heat tracing and 705 

insulation is a key factor for the proper operation of these plants, especially in low-scale plants 706 

as the one described because they have many disadvantages derived of its scale factor, for 707 

example more heat losses and less thermal inertia in the piping. Also there is a need to protect 708 

the signal wires against disturbances and high temperatures; radar level meters are extremely 709 

sensitive to disturbances; it is important to avoid the presence of salts inside any mechanical 710 
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level meter; bellow-type pressure sensors are not good for salts; and plate orifice flowmeters can 711 

be a good and accurate solution with good pressure sensors. 712 

 713 
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