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Abstract 13 
 14 
Existing commercial parabolic trough power plants use thermal oil as a heat transfer fluid, with 15 
working temperatures in the region of 400 °C. In order to achieve more efficient generating 16 
systems, a second generation of parabolic troughs that operate at temperatures higher than 400 17 
°C is being developed. One possibility Abengoa Solar is assessing is the use of direct steam 18 
generation (DSG) inside parabolic troughs in order to achieve higher temperatures; in a first 19 
stage heating up to 450 °C and in a second stage heating up to 550 °C. For the future market 20 
potential of parabolic trough power plants with DSG, it is beneficial to integrate thermal energy 21 
storage (TES) systems. Different TES options based on the most known technologies, steam 22 
accumulators, molten salts (MS), and phase change materials (PCM), are presented and 23 
compared in this paper.  This comparison shows as main conclusion of the study that a 24 
combined system based on PCM-MS has a clear advantage in the ratio with 6 or more 25 
equivalent hours of storage, while with lower than 6 hours, steam accumulators are considered 26 
the best option. 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
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direct storage of saturated or superheated steam in pressure vessels is not economic due to the 1 
high investment cost of the pressure vessels and the low volumetric energy density. Therefore, 2 
indirect storage system materials have been used in order to transfer the energy from the 3 
primary heat transfer fluid to a separate storage. 4 
 5 
A steam accumulator consists of a steel pressure tank designed to resist high pressure and high 6 
temperature water/steam [8] [9]. For the design of such equipment it is important to consider 7 
thermal cycling during charge and discharge due to the change of the saturated conditions, so 8 
the material is able to withstand without any failure during the whole life of the plant. Limiting 9 
temperature gradients in the vessel walls is a key parameter to avoid thermomechanical stress on 10 
steam accumulators. Even if the materials commonly used for this kind of equipment is very 11 
well-known (e.g. boilers), corrosion phenomena should be taken into account regarding water 12 
content impurities. 13 
  14 
Steam accumulators may be of horizontal or vertical (standing) design but the main operational 15 
differences are characterised by their physical orientation. Horizontal accumulators have 16 
relatively shallow water level and large water surface area which are properties in direct contrast 17 
with those of vertical accumulators.  18 
 19 
Regarding the sizing, it will depend on the needs of storage capacity. There are limitations 20 
regarding the maximum size of the each steam accumulator, basically depending on the 21 
maximum operating pressure as well as transportation concerns to sites where solar plants are 22 
located. However, several units can be able to meet the total thermal energy storage capacity of 23 
the plant.  24 
 25 
For power cycles with high pressure water/steam, the direct storage of saturated or superheated 26 
steam in pressure vessels is not usually economic due to high investment cost of the pressure 27 
vessels and the low volumetric energy density.  28 
 29 

2.1.2. Molten salts 30 
Molten salts are the most widespread indirect storage system in commercial solar plants due to 31 
its good thermal properties and reasonable cost [10], [11], [12]. Nowadays, molten salts provide 32 
a thermal storage solution for the two most mature CSP technologies available on the market 33 
(e.g. parabolic trough and tower) and could be used as direct and indirect storage depending of 34 
the selected plant philosophy. Both, trough and tower technologies, use the double tank system 35 
as thermal storage configurations. This concept was successfully demonstrated in solar thermal 36 
demo plants [13]: CESA-1 (Spain), Themis (France), Central Receiver Test Facility (USA), and 37 
Abengoa 8.1 MWhth storage capacity TES-MS (Spain) [14] and are now in commercial 38 
operation. 39 
 40 
The molten salt fluids commonly used are nitrate mixtures with a weight composition of 41 
60wt.% NaNO3 and 40wt.% KNO3, also called solar salt, which optimizes cost and thermal 42 
properties. These mixtures have been well known in the solar industry for decades with wide 43 
bibliographic information and proven feasibility at both pilot and commercial scale [15], [16], 44 
[17], [18]. Their prices are significantly stable in the market. However, corrosion phenomena 45 
should be taken into account regarding material compatibility due to impurity contents of these 46 
mixtures [19], [20]. Nevertheless, good performance with the most common materials used in 47 
the industry can be assured.  48 
  49 

2.1.3. Phase change material (PCM) 50 
 51 
PCM solutions have been usually related with direct steam generation (DSG) technology 52 
because their property of storing and delivering energy for a given temperature. Since steam 53 
exchanges heat at constant temperature when evaporates and condensates, the heat exchanged 54 
between a PCM and the steam requires less temperature differences between the storage media 55 
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 1 
The storage systems were modelled using matrices based on the available energy and the energy 2 
required to run the power block. This means that the hourly or sub-hourly behaviour of the 3 
storage system was not captured in full detail in the model. We assume that all the TES have 5% 4 
of heat loss from the system overnight to try to capture some of the efficiency losses of the 5 
system. For the PCM-MS option the annual predictions were also obtained from a model. 6 
 7 
For each option a range of solar field sizes where examined for different design hours of 8 
storage. For AccumSH 1, 2, and 3 hours of storage were examined. For the two options with 9 
molten salt 3, 6, and 10 hours of storage were evaluated. The longer hours of storage for the 10 
AccumSH option were not considered because the actual discharge time would be longer than 11 
12 hours. In order to make performance and cost estimates for each considered TES design 12 
different assumptions and limitations were applied based on the design requirements. Where 13 
possible, these assumptions were kept constant to reduce differences in the results due to 14 
varying assumptions. 15 
 16 

3.1. Assumptions for AccumSH 17 
 18 
For the AccumSH design a detailed analysis was performed to optimize the size and operating 19 
conditions of the accumulator tanks. The following assumptions were used in this analysis and 20 
in the annual performance estimate: 21 
 22 

- Tanks designed with sufficient insulation to limit heat loss to 5oC in a 24 hour period at 23 
maximum tank level, minimum external temperature, and maximum wind speed. 24 

- Minimum water level will cover the tank ejectors to ensure proper function of the tank. 25 
- During discharging, flow originates from one base tank and superheating of this flow 26 

occurs from one superheating tank at a time. 27 
- Maximum tank pressure limited to 110 bar. 28 

 29 
One of the main sources of assumptions for the performance of this TES system is the design 30 
pressure levels during the discharging of the system. The restrictions and assumptions used to 31 
optimize the pressure levels are as follows: 32 
 33 

- Actual discharge time cannot exceed 12 hours. 34 
- Superheating accumulators are designed to have minimal oversizing and maximum 35 

utilization. 36 
- Pressure losses from the control value on the tank outlets will be around 2 bar. 37 
- Production of superheated steam at 50oC of superheat requiring the superheater 38 

accumulators to have temperature 57oC higher than the base accumulators. 39 
- Balance of increasing the superheater tank volume for higher pressure capacity (better 40 

cycle performance) and the increased cost for larger volume tanks. 41 
 42 
The performance estimates for the system were made based on the material and energy balances 43 
on each part of the system and on the system as a whole unit.  The result of the assumptions was 44 
two levels of pressure discharge (one at a high and the other at a low pressure) and a 45 
superheating accumulator volume smaller than the base accumulator volume for reduced costs.  46 
Based on the optimum tank designs, performance during charging and discharging was 47 
estimated for a range of desired hours of storage and matrices were compiled relating the energy 48 
in the system to the electrical power produced and the actual discharge times for the two 49 
different operational levels. 50 
 51 

3.2. Assumptions for AccumMS 52 
 53 
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For the AccumMS design a detailed analysis was performed to optimize the size and operating 1 
conditions of the system. The following assumptions were used in this analysis and in the 2 
annual performance estimate: 3 
 4 

- Accumulator tanks designed with sufficient insulation to limit heat loss to 5oC in a 24 5 
hour period at maximum tank level, minimum external temperature, and maximum 6 
wind speed. 7 

- Minimum accumulator water level will cover the tank ejectors to ensure proper function 8 
of the tank. 9 

- During discharging, flow originates from one accumulator tank at a time. 10 
- Maximum accumulator tank pressure limited to 110 bar. 11 
- Need to balance the benefits of the discharge pressure and the actual time for 12 

discharging. 13 
- Designed with minimal oversizing and maximizing utilization. 14 
- Charging and discharging strategy for molten salt will compensate for pinch point 15 

differences and useful energy gain. 16 
 17 
. The result of the assumptions was two levels of pressure discharge at a high and low pressure 18 
from the accumulator tanks with sufficient superheating occurring from heat exchange with the 19 
two tank molten salt system. Based on the optimum tank designs, performance during charging 20 
and discharging was estimated for a range of desired hours of storage and matrices were 21 
compiled relating the energy in the system to the electrical power produced and the actual 22 
discharge times for the two different pressure levels. 23 
 24 

3.3. Assumptions for PCM-MS 25 
 26 
For the PCM MS design a detailed analysis was performed to optimize the size and operating 27 
conditions of the system. The following assumptions were used in this analysis and in the 28 
annual performance estimate: 29 
 30 

- Desired PCM discharge pressure of 97 bar with a 2 bar pressure drop in the heat 31 
exchanger resulting in discharging outlet pressure of 95 bar. 32 

- Design system to produce maximum temperature of superheated steam possible. 33 
- Pinch point in heat exchanger of 5oC. 34 

 35 
In order to maximum the outlet steam temperature from the heat exchanger the cold salt 36 
temperature should be as close to 265oC as possible. With this cold temperature and the 37 
restriction of a pinch point of 2oC, the system can produce steam at around 521oC during the 38 
discharge cycles. At higher cold salt temperatures it is impossible to produce steam near even 39 
500oC. Under the desired cold salt temperature assumptions the following operational 40 
conditions are assumed: 41 
 42 
• Charging 43 

- Charging steam entering at 540oC and 106 bar.  44 
- Cooling of the superheated steam to saturated steam results in steam at 314oC and 104 45 

bar.  46 
- Salt temperatures increases from 265oC to 525.7oC. 47 
- Steam exits the PCM system as saturated water at 314oC and 104 bar. 48 

 49 
• Discharging 50 

- Cold salt used in preheating starts at 312oC and returns to the cold tank at 265oC. 51 
- Water from preheater enters PCM at 263.8oC and exits at 309oC and 97 bar. 52 
- Saturated steam from PCM enters superheater at 309oC and 97 bar and exits at 521oC 53 

and 95 bar. 54 
- Hot salt in used for superheating starts at 525.7oC and returns to cold tank at 312oC. 55 
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 1 
The final summary of the discharge conditions are included in Table 2. Energy balances were 2 
performed on the systems to generate estimates for the annual performance of the system for 3 
different sizes. 4 
 5 

Table 2. Summary of discharge conditions 6 

  AccumSH  AccumMS  PCM-MS  

Storage technology Steam accumulators 

Steam accumulators for 
saturated phase and 
molten salt for 
superheating 

PCM for saturated 
phase and molten 
salt for 
superheating 

Charge conditions Saturated steam temperature 
with 110 bar max

540oC and 106 bar 540oC and 106 bar

Pressure 
- Sliding pressure 
- Max 110 bars in 
accumulators 

- Sliding pressure 
- Max 110 bars in 
accumulators 

- 95 bars 

Temperature - 50ºC superheating - 490ºC - 521ºC 

 7 
 8 

3.4. Cost Assumptions  9 
 10 
This section focuses on the cost assumptions used to evaluate the viability and compare the 11 
different storage options. For the field components and power block costs, the same cost 12 
assumptions were used for these studies with TES as were used previously in the studies of the 13 
plant without storage. Cost estimates were made for each of the considered TES options for 14 
each of the different design hours of storage tested. The cost assumptions used for the 15 
accumulator system with superheating are listed in Table 3. 16 
 17 

Table 3. Cost assumptions for AccumSH 18 

Accumulator system Total Cost [$] Total Cost [$/kWhe] 

1 Hour System $28,496,508.90 $193.85 

2 Hours System $56,993,017.80 $193.85 

3 Hours System $85,489,526.70 $193.85 
 19 
The accumulator tank costs are dependent on the volume of the tank and the design operation 20 
pressure. Since the superheater accumulator will need to operate at a higher pressure the cost per 21 
volume is higher. For the different design hours of storage the total cost per kWhe produced is 22 
the same because the system is designed so one hour of storage is one base accumulator and one 23 
superheater accumulator. 24 
 25 
The cost assumptions used in the accumulator and two-tank molten salt design consider the 26 
same cost for the base accumulator tank as the accumulator system with superheating. The two-27 
tank molten salt part of the system is based on a cost per thermal energy stored with the 28 
assumption that for each accumulator in the system there is a set amount of thermal energy 29 
required in the two-tank molten salt system. The cost assumptions for the two-tank molten salt 30 
and the full AccumMS systems are listed in Table 4, which shows that the cost of the two-tank 31 
molten salt system in terms of cost per installed thermal capacity decreases with increasing size 32 
due to economies of scale.  33 
 34 
 35 
 36 
 37 
 38 
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Table 4. Cost assumptions 1 
Hours of storage 

[hr] 
MS system  
[$/kWhth] 

AccumMS system 
[$/kWhe] 

PCM-MS system 
[$/kWhe] 

3 102.58 336.14 216.46 
6 95.37 358.45 218.48 

10 59.99 320.28 180.3 
 2 
 3 
For the TES option PCM-MS, the costs assumptions for the two-tank molten salt system are the 4 
same as the cost assumptions used for AccumMS. The cost assumptions used for PCM-MS in 5 
terms of cost per installed thermal capacity are listed in Table 4 and the total costs for the two 6 
parts of the PCM-MS system are listed in Table 5. 7 
 8 

Table 5. Cost assumptions for PCM-MS 9 
Item Cost 

[$/kWth] 
PCM  65.65 

MS system for 3 hour 102.58 

MS system for 6 hours 95.37 

MS system for 8 hours 62.31 

MS system for 10 hours 59.99 

 10 
 11 
4. Economic Analysis 12 
 13 
This section discusses the results for the optimum plant layouts for the considered TES systems. 14 
The main result values for the optimum plants for the three different design hours of storage are 15 
listed in Table 6. In this table the power and cost values have been adjusted with the following 16 
considerations for fairer comparison with other projects: 17 
 18 

- Power 19 
o Corrected with degradation factor of 0.97 20 
o Modified with Monte Carlo factor of 0.99. Monte Carlo simulations are used to 21 

model the probability of different outcomes in a process that cannot easily be 22 
predicted due to the intervention of random variables [28] 23 

o Modified availability of the solar field at 0.97 24 
o Adjusted irradiation for Lathrop Wells Site (2760 kWh/m2·year) 25 

 26 
- Cost 27 

o Includes all of the direct capital costs for the field, power block, and TES 28 
system 29 

o Adjusted by 10% to account for indirect costs like engineering, guarantees, and 30 
insurance 31 

o Operational cost are not included 32 
 33 
 34 
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efficiency while the TES system is operating, and the added cost of the TES system. It is 1 
important to note that while the design with 1 hour of storage had a higher ratio there are some 2 
disadvantages to the 1 hour design.  Having only 1 hour of storage reduces the impact the TES 3 
system can have on the plant dispatchability and limits the amount of time that the plant is 4 
operating on a daily basis. Also the length of time required during the discharge phase for this 5 
design will also limit these benefits regardless of the design size.  6 
 7 
For the AccumMS, Figure 6 demonstrates that both the optimum number of evaporator and 8 
superheater loops is changing with the desired hours of storage for this storage option. This is a 9 
result of the storage system being charged using the excess superheated steam produced in the 10 
superheater field. In order to produce more excess superheated steam the size of both the 11 
evaporator and superheater solar fields need to be increased. The usefulness of increasing the 12 
solar field size is limited by a limited charging rate of 110 kg/s and the trade-off of the added 13 
cost of the solar field for the power gained from storage. This is particularly noticeable for 14 
increasing the superheater field size since the superheater field costs more per area of solar field. 15 
Similar to the previous case, adding more hours of storage results in an optimum plant size that 16 
is more expensive but produces more energy. As a note, the 10 hours of storage case was not 17 
included in this table because during the analysis it was determine that the 110 kg/s limitation 18 
made the current power block design not optimum for the higher hours of storage case. The 19 
ratios of the annual net power over that total plant cost capture the impact of the trade-off of the 20 
increased power for the increased plant cost. 21 
 22 
For the PCM-MS system, Figure 6  demonstrates that both the optimum number of evaporator 23 
and superheater loops is changing with the desired hours of storage for this storage option as the 24 
previous TES option assessed. Similar to the previous cases, adding more hours of storage 25 
results in an optimum plant size that is more expensive but produces more energy. The ratios of 26 
the annual net power over that total plant cost capture the impact of the trade-off of the 27 
increased power for the increased plant cost. As with the other two designs increasing the 28 
design hours of storage resulted in a decreased ratio for the optimum plant layout.   29 
 30 
The effect of the cost of the AccumSH TES system is examined in more detail in Table 7. For 31 
the 1 hour storage design, a 10% shift in TES cost results in around a 0.5% shift in the ratio, 32 
with a lower cost leading to a higher ratio and a higher cost leading to a lower ratio. For the 3 33 
hours storage design a 10% shift in TES cost is approximately a 1.3% shift in the ratio. This 34 
suggests that the TES cost becomes more important for the calculated ratio value the larger the 35 
TES is, which corresponds to the fact that the higher cost of larger storage systems represents a 36 
larger percentage of the total plant cost. 37 
 38 

Table 7. Cost Sensitivity Analysis on TES Costs for AccumSH 39 

Cost Sensitivity 
On Total TES 
Cost [kWhe/$] 

Variation in TES Cost 

-10% 0% 10% 20% 30% 40% 

1 hours 0.7030 0.6990 0.6951 0.6912 0.6873 0.6835 
2 hours 0.6925 0.6855 0.6787 0.6720 0.6654 0.6590 
3 hours 0.6749 0.6657 0.6567 0.6479 0.6394 0.6311 

 40 
Table 7 clearly shows that the ratio of annual power produced to total plant cost increases with 41 
fewer hours of storage, which is the same trend seen with the AccumSH option. The effect of 42 
the cost of the TES system on these ratios is examined in more detail in  43 
Table 8,  Table 9, and Table 10. 44 
 45 
The cost sensitivity analysis in  46 
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Table 8 shows the effect on the ratio of annual net power over the total plant cost for variations 1 
in the entire TES system cost. For this TES option, a 10% variation in the total cost is a 2% 2 
variation in ratio for the 3 hour design and 3.2% variation for the 6 hour design.  There is a 3 
larger change for this option, in comparison with the AccumSH design, because the TES cost 4 
for this option are a larger percentage of the total plant cost.  Since this TES option has two 5 
separate components the cost sensitivity analysis was expanded to examine the effect of 6 
variations in the cost of the accumulator tanks and the cost of the two-tank salt system.  7 
 8 
The comparison of the results shown in Table 9 and Table 10 clearly demonstrates that a change 9 
in the accumulator cost will have a larger impact on the ratio than a corresponding percent 10 
change in the molten salt system cost. This is the expected result since for the different design 11 
hours of storage the salt system is around 20% of the total TES system cost and suggests that 12 
reducing the accumulator system cost should take priority over reducing the molten salt system 13 
cost. 14 
 15 
The effect of the cost of the TES system on these ratios is examined in more detail in Table 11, 16 
Table 12, and Table 13 17 

 18 
Table 8. Cost Sensitivity Analysis on TES Costs for AccumMS 19 

Cost 
Sensitivity On 

Total TES 
Cost [kWhe/$] 

Variation in TES Cost 

-50% -25% -10% 0% 10% 25% 

3 hours 0.6411 0.6053 0.5856 0.5732 0.5613 0.5444 
6 hours 0.5718 0.5206 0.4940 0.4778 0.4625 0.4414 

 20 
Table 9 Cost Sensitivity Analysis on Accumulator Tank Costs for AccumMS 21 

Cost Sensitivity 
On Accumulator 

Tank Cost 
[kWhe/$] 

Variation in TES Cost 

-50% -25% -10% 0% 10% 25% 

3 hours 0.6248 0.5979 0.5828 0.5732 0.5639 0.5505 
6 hours 0.5430 0.5083 0.4895 0.4778 0.4665 0.4507 
 22 

Table 10. Cost Sensitivity Analysis on MS System Costs for AccumMS 23 
Cost 
Sensitivity On 
MS System 
Cost [kWhe/$] 

Variation in TES Cost 

-50% -25% -10% 0% 10% 25% 

3 hours 0.5871 0.5801 0.5760 0.5732 0.5705 0.5665 
6 hours 0.4936 0.4855 0.4808 0.4778 0.4747 0.4702 
 24 
The cost sensitivity analysis in Table 11 shows the effect on the ratio of annual net power over 25 
the total plant cost for variations in the entire TES system cost.  For this TES option, a 10% 26 
variation in the total cost is a 1.32% variation in ratio for the 3 hour design and 2.25% variation 27 
for the 10 hour design. The increasing variation for the larger hours of storage design is the 28 
same effect observed with the other TES options.  Since this TES option has two separate 29 
components the cost sensitivity analysis was expanded to examine the effect of variations in the 30 
cost of the PCM block and the cost of the two-tank salt system, as shown in Table 12 and Table 31 
13.  32 
 33 
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The comparison of the results shown in Table 12 and Table 13 clearly demonstrates that a 1 
change in the PCM system cost will have a larger impact on the ratio for larger capacity of TES 2 
than corresponding percent changes in the MS system cost. 3 
 4 

Table 11. Cost Sensitivity Analysis on TES Costs for PCM-MS 5 
Cost Sensitivity 
on Total TES 
cost [kWhe/$] 

Variation in TES Cost 

-50% -25% -10% 0% 10% 25% 

3 hours 0.728 0.703 0.689 0.680 0.671 0.657 

6 hours 0.729 0.689 0.668 0.654 0.641 0.622 

10 hours 0.754 0.708 0.683 0.667 0.652 0.631 
 6 
 7 

Table 12. Cost Sensitivity Analysis on PCM Costs for PCM-MS 8 
Cost Sensitivity 
on PCM System  
Cost [kWhe/$] 

Variation in PCM Cost 

-50% -25% -10% 0% 10% 25% 

3 hours 0.704 0.692 0.684 0.680 0.675 0.668 

6 hours 0.692 0.673 0.661 0.654 0.647 0.636 

10 hours 0.721 0.693 0.677 0.667 0.657 0.643 
 9 

Table 13. Cost Sensitivity Analysis on MS System Costs for PCM-MS 10 
Cost Sensitivity 
on MS System 
Cost [kWhe/$] 

Variation in MS Cost 

-50% -25% -10% 0% 10% 25% 

3 hours 0.702 0.691 0.684 0.680 0.675 0.669 

6 hours 0.686 0.670 0.660 0.654 0.648 0.639 

10 hours 0.695 0.681 0.673 0.667 0.662 0.654 
 11 

5. Conclusions 12 
 13 
This paper has compared three different TES configuration in DSG plants: accumulators with 14 
superheating (AccumSH), accumulators and two-tank molten salt (AccumMS), and phase 15 
change material and two-tank molten salt (PCM MS).  The conclusions in term of cost and 16 
feasibility of the systems depend on the capacity of the storage system in hours of discharge, 17 
being the best options AccumSH for storage lower than 3 h and Accum PCM for more than 6 18 
hours of storage.  19 
 20 
The study has shown that even though the AccumSH and PCM MS designs have similar results 21 
for 3 hours of storage, the PCM MS design has the significant advantage of having a much 22 
shorter discharging time and the discharging cycle occurs closer to nominal condition. This 23 
difference becomes important if the plant design is required to produce energy for storage in a 24 
specified amount of time or if the energy produced for storage is required to be closer to 25 
nominal conditions. Also since the resulting ratios were very similar it is important to repeat the 26 
analysis for one of the designs with the same model used for the other design.  This would 27 
provide a fairer comparison and a more accurate idea of the relationship between the two 28 
options. 29 
 30 
Comparing the 2 options for 6 h of storage; PCM-MS has 37% higher ratio than Acum-MS, and 31 
the main reason for this is the TES cost per production from TES is 55% lower in the first case.  32 
PCM MS options for more three hours of storage shows that the PCM MS option starts to 33 
produce much more power from storage than the AccumMS option which starts to level out at 34 
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around 135 GWe annually from TES. This is a consequence of the limitation to the charging 1 
mass flow rate for the AccumMS option.  The mass flow rate is limited to 110 kg/s for this 2 
option because of the need to preheat water for the accumulators during charging in the 3 
deaerator.  A higher mass flow rate would affect the turbine operation and would require a 4 
different design for the turbine. Since the flow rate is limited the maximum number of 5 
accumulators that can be charged in a 12 hour period is around 12 tanks, which results in the 6 
larger systems being underutilized.  On the other hand, PCM MS does not require extra water 7 
preheating in the deaerator since during charging the water exits the storage system and is 8 
mixed directly with the water returning to the field. 9 
 10 
Regarding to the AcumSH and PCM-MS systems, the main conclusion of the study is that based 11 
in the cost assumed for the two systems, the PCM-MS has a clear advantage in the ratio with 6 12 
or more equivalent hours of storage.  13 
 14 
Finally the study concludes that with lower than 3 hours, the Acum-SH is considered the best 15 
option because the higher technical maturity and the higher reliability in the estimated cost.  16 
 17 

 18 
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