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Abstract 

BACKGROUND: A widespread resistance of Cydia pomonella to organophosphates 

was demonstrated in populations from the Spanish Ebro Valley area that showed high 

levels of enzymatic detoxification. To determine the efficacy of new insecticides, 

neonate larvae bioassays were carried out on twenty field codling moth populations 

collected from three different Spanish apple production areas. Synergist bioassays were 

performed to detect the enzymatic mechanisms involved. 

RESULTS: The least active ingredients were methoxyfenozide, with 100% of the 

populations showing significantly lower mortality than the susceptible strain, and 

lambda-cyhalothrin, with very high resistant ratios (872.0 for the most resistant field 

population). Approximately 50% of the populations were resistant or tolerant to 

thiacloprid. By contrast, tebufenozide was very effective in all the field populations, as 

was chlorpyrifos-ethyl despite its widespread use during the last few years. Indoxacarb, 

spinosad and chlorantraniliprole also provided high efficacy, as did emamectin and 

spinetoram, which are not yet registered in Spain. 

CONCLUSION: The resistant Spanish codling moth populations can be controlled 

using new reduced-risk insecticides. The use of synergists showed the importance of the 

concentration applied and the difficulty of interpreting the results in field populations 

that show multiple resistance to different active ingredients.  
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1 INTRODUCTION 

Since the 1990s the integrated pest management (IPM) program in apple orchards in 

Spain has focused on biological control of Panonychus ulmi (Koch) (Acari: 

Tetranychidae), using naturally occurring phytoseiid populations and achieving great 

success in most orchards.1 Since the late 1990s, the main pest to control has been the 

codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Organophosphates 

(OPs), especially azinphos-methyl, have been the most important chemical insecticide 

group used to control codling moth in apple, pear and walnut orchards. They have been 

used intensively for the last thirty years in Spain and in other apple production regions 

of the world.2-6 The present control strategy for codling moth relies mainly on mating 

disruption, especially in apple and walnut orchards, where the pest is more difficult to 

control, but chemical insecticides are widely used to reinforce the system. In Spain, the 

characteristics of some parts of the production area, with small orchards and mixed 

crops, make the application of this strategy more complex and the use of insecticides 

more necessary.  

Codling moth resistance to pesticides is well documented and began a long time ago 

with arsenate and DDT.7,8 It now affects almost every class of synthetic insecticides and 

is spread throughout the world’s apple production regions .3, 5, 9-18 The number of 

available insecticides against codling moth has fallen drastically in the EU since the re-

registration of active substances covered by Directive 91/414/EEC, and some of the 

products most used to control codling moth are no longer available. When azinphos-

methyl was prohibited in Spain in 2008, widespread resistance to the product and to 

OPs in general was demonstrated in problematic orchards of the Ebro Valley area 

(Catalonia and Aragon, NE Spain).19-20 Chlorpyrifos-ethyl then became the most widely 

used insecticide and was very active against neonate larvae, the main target instar of 
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codling moth, despite also belonging to the chemical class of OPs.20 Negative cross-

resistance between chlorpyrifos-ethyl and two other OPs, azinphos-methyl and methyl-

parathion, was observed in field populations of codling moth adults in California by 

Dunley and Welter,3 and also in neonate larvae of Spanish populations by Rodríguez et 

al.20 During the last few years, the use of pyrethroids has also increased due to the low 

prices of fruits and the attempt of growers to reduce production costs. Knight et al.21 

report a gradual increase in the use of lambda-cyhalothrin since 2005. OPs and other 

broad spectrum insecticides, such as pyrethroids and carbamates, act by contact and/or 

ingestion and are effective against multiple pests and different target instars, but they 

have low selectivity to natural enemies and high mammalian toxicity, and cause 

environmental contamination.  

A number of codling moth insecticides classified as reduced-risk or OP alternatives 

have been registered in Spain since the 1980s and are recommended by IPM programs: 

the insect growth regulator fenoxycarb, the neonicotinoid thiacloprid, the ecdysone 

receptor agonists methoxyfenozide and tebufenozide, the voltage-dependent sodium 

channel blocker indoxacarb, the nicotinic acetylcholine receptor allosteric modulator 

spinosad and, recently, the ryanodine receptor modulator chlorantraniliprole. Codling 

moth cross-resistance among some of these reduced-risk insecticides groups and OPs 

and pyrethroids have been detected in some European countries,12,14,22 the USA23,24 and 

Canada,25 even with pesticides that have been registered recently12,26 or have not yet 

been registered.27 No codling moth susceptibility study has been reported with these 

new chemical insecticides, except thiacloprid, which has been tested in Spanish field 

populations, showing general high levels of enzymatic detoxification, mainly due to 

cytochrome P450 polysubstrate monooxygenases (PSMO) (in neonate larvae, adults and 
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post-diapausing larvae), but also due to glutatione S-transferases (GST) (in adults and 

post-diapausing larvae) and esterases (EST) (in post-diapausing larvae).19,20  

The objectives of this work were to evaluate the insecticide resistance of C. pomonella 

in three areas of apple production in Spain with two completely different management 

systems and to determine the efficacy of some new insecticides in controlling codling 

moth neonate larvae, paying special attention to populations that showed insecticide 

resistance with the most commonly used products. French field populations from the 

neighboring area were also tested. Tests with synergists were performed on some field 

populations to explain the enzymatic mechanisms that may be involved in resistance.  

2 MATERIALS AND METHODS 

2.1. Insects  

Twenty field populations of codling moth were collected as diapausing larvae in 2010, 

2011 and 2012 (Table 1). The populations came from three different Spanish apple 

production areas: eleven from Catalonia, three from Aragon (both located in the Ebro 

Valley, northeast Spain, with a maximum distance of about 190 km between orchards) 

and three from Asturias (northern Spain). Three field populations from the southeast of 

France (Provence-Alpes-Côte d’Azur region) were also studied. The populations were 

mostly from IPM orchards, but the population Coll (from Catalonia) was an organic 

orchard with codling moth control problems. The three Asturian orchards produced 

cider-apples and the rest produced table apples, so we had two, well-distinguished pest 

management systems. The susceptible strain S_Spain was collected from an abandoned 

apple orchard in Lleida in 1992 and has been reared since then using a semi-artificial 

dehydrated apple diet at the joint IRTA (Institute for Food and Agricultural Research 

and Technology) and UdL (University of Lleida) laboratory (Lleida, Spain).  

2.2. Insecticides and synergists 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
Ten insecticides (expressed below with mode of action followed by chemical class) 

were tested using commercial formulations (Table 2). Two of them are or were 

commonly used in the IPM orchards to control codling moth: the acetylcholinesterase 

inhibitor organophosphate chlorpyrifos-ethyl (prohibited at present), and the sodium 

channel modulator pyrethroid lambda-cyhalothrin. Four of them are hardly used: the 

nicotinic acetylcholine receptor competitive modulator neonicotinoid thiacloprid, the 

ecdysone receptor agonist diacylhydrazines methoxyfenozide and tebufenozide, and the 

voltage-dependent sodium channel blocker oxadiazine indoxacarb. Other products 

tested were recently or not yet registered in Spain at the moment of field population 

collection: the nicotinic acetylcholine receptor allosteric modulator spinosyns spinosad 

(registered in 2013) and spinetoram (not yet registered), the ryanodin receptor 

modulator diamide chlorantraniliprole, or Rynaxypyr, (registered in October 2011), and 

the glutamate-gated chloride channel allosteric modulator avermectin emamectin 

benzoate (not yet registered).28 The synergists used were piperonyl butoxide (PBO, 90% 

purity, distributed by Fluka) as a microsomal monooxygenase inhibitor (PSMO), diethyl 

maleate (DEM, 97% purity, distributed by Sigma Aldrich) as a GST inhibitor, and 

S,S,S-tributyl phosphorotrithioate (DEF, 98% purity, distributed by Sigma Aldrich) as 

an EST inhibitor. The insecticides were diluted in distilled water and the three 

synergists in 96% acetone.  

2.3. Insecticide efficacy bioassays 

The bioassay to test the insecticide efficacy of each product was performed using the 

diagnostic concentrations that produced approximately 90% mortality in the susceptible 

population, S-Spain, hereinafter LC90. These concentrations (Table 2) were previously 

determined from a concentration-mortality curve and were corroborated every year in 

the susceptible population during the field population treatments (from 2012 to 2014). 

This article is protected by copyright. All rights reserved.
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Microplate wells were filled with 150 µL of artificial diet (Stonefly Industries Ltd) and 

6 µL of each insecticide’s LC90 was applied to the surface of the diet. Distilled water 

replaced the insecticide in the controls. Thirty minutes after the treatment, newly 

hatched larvae (0-24 h old) were individually placed in each well and transferred to 

controlled conditions (25 ± 1ºC and 16:8 [L:D] h photoperiod). Mortality was recorded 

after 4 days. Larvae were considered dead when they did not respond to a probe with 

dissecting forceps. Missing larvae were subtracted from the initial number. Fourteen 

Spanish (eight from Catalonia, three from Aragon and three from Asturias) and two 

French field codling moth populations were treated. Depending on the neonate larvae 

obtained in the progenies, 3–10 insecticides per population were tested.  

2.4. Synergist bioassays 

The synergists were dissolved in acetone and the concentrations used were 2.5 mg a.i./L 

for PBO, 10 mg a.i./L for DEM and 5 mg a.i./L for DEF. The concentration of each 

synergist to be applied was previously calculated with the laboratory population, S-

Spain, and was the one that produced approximately 10% mortality. The neonate larvae 

were exposed by contact to the synergist for 1 h before feeding on the treated diet 

following the same methodology as in the insecticide efficacy bioassays. The 

insecticide concentrations used are shown in Table 2 and were those that produced 

approximately 50% mortality in S-Spain, hereinafter LC50. Six Spanish (five from 

Catalonia and one from Aragon) and one French field codling moth populations were 

treated. Only three field populations had a sufficient number of progeny for insecticide 

and synergist bioassays to be performed. The insecticides chlorpyrifos-ethyl and 

lambda-cyhalothrin and the synergist PBO were prioritized in the assays.  

2.5. Data analysis 
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A
cc

ep
te

d 
A

rti
cl

e
The mortalities were corrected using Abbot’s formula.29 To calculate the insecticide 

efficacy, the correction factor was the mortality of the solvent-treated control (water), 

and for the synergistic effect the correction factor was the mortality produced by the 

synergist. In the insecticide efficacy studies, the difference between the efficacies of 

each insecticide in the field populations was compared with that in S-Spain, tested in the 

same year of the field population bioassay using a Pearson χ2 test. Resistance ratios 

(RR) were determined by dividing the mortality of S-Spain, obtained with the LC90, by 

that of the field population. Populations were classified as resistant (RR ≥ 10), tolerant 

(1 < RR < 10) and susceptible (RR ≤ 1).25 To assess the degree of synergism, 

synergistic ratios (SR) were calculated by dividing the mortality obtained by the LC50 of 

the insecticide plus synergist application by that of the insecticide alone. The 

differences between the corrected mortality obtained by each insecticide was compared 

with that obtained by the synergist plus the insecticide using a Pearson χ2 test. 

3. RESULTS 

3.1. Insecticide efficacy bioassays 

During each year of the study the S-Spain population showed similar mortality levels 

when tested with the LC90 concentration of each individual insecticide (Table 3). The 

only exception was during the 2013 bioassays, when methoxyfenozide produced 84.2% 

mortality, which was significantly lower than that obtained in the 2012 and 2014 

bioassays, 92.4% and 97.1%, respectively.  

The level of susceptibility of the codling moth field populations to the tested 

insecticides differed greatly depending on the apple production area. The field 

populations from Asturias were in general as susceptible as, or even significantly more 

susceptible than, the S-Spain population in three out of 19 bioassays (AstAb to lambda-

cyhalotrin and chlorantraniliprole: dF = 1, χ2 = 4.43, p = 0.0354 and dF = 1, χ2 = 4.43, p 
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= 0.0012, respectively). The products that showed significantly lower mortality than S-

Spain in some field populations were chlorpyrifos-ethyl (AstN: dF = 1, χ2 = 4.39, p = 

0.0362) and methoxyfenozide (AstN and AstC: dF = 1, χ2 = 8.11, p = 0.0044 and dF = 

1, χ2 = 4.33, p = 0.0373, respectively). The Asturian population with the lowest 

susceptibility was AstN, which was significantly different from S-Spain in two of the 

seven bioassays.  

In the efficacy bioassays, the three field populations from Aragon showed significantly 

lower mortality than S-Spain in five of the 18 bioassays tested. The Tamarite and La 

Almunia populations were as susceptible as S-Spain in all the bioassays, but the 

Albalate de Cinca (ADC) population was significantly less susceptible than S-Spain in 

five of the ten bioassays: lambda-cyhalothrin (dF = 1, χ2 = 57.47, p = 3.43 x 10-14), 

methoxyfenozide (dF = 1, χ2 = 34.68, p = 3.90 x 10-9) thiacloprid, (dF = 1, χ2 = 34.68, p 

= 27.85 x 10-7), indoxacarb (dF = 1, χ2 = 11.36, p = 0.0008) and chlorantraniliprole (dF 

= 1, χ2 = 10.45, p = 0.0012). However, the ADC population was significantly more 

susceptible than S-Spain to spinosad (dF = 1, χ2 = 7.71, p = 0.0301). 

In the efficacy bioassays the eight field populations of Catalonia showed significantly 

lower mortality than S-Spain in 24 of the 61 bioassays tested. The populations SAS, 

Mir7/84 and Tossal showed lower susceptibility than S-Spain in two out of four of the 

products tested and PuigverdC in seven out of ten. Linyola was the only field population 

as susceptible as S-Spain to all the five products tested. Methoxyfenozide showed 

significantly lower mortality than S-Spain in all the six Catalan field populations: SAS 

(dF = 1, χ2 = 40.09, p = 8.71 x 10-11), PuigverdB (dF = 1, χ2 = 13.93, p = 0.0002), 

Poalbud (dF = 1, χ2 = 11.78, p = 0.0006), PuigverdC (dF = 1, χ2 = 59.55, p = 1.19 x 10-

14), Mir7/84 (dF = 1, χ2 = 60.55, p = 7.19 x 10-15) and Tossal (dF = 1, χ2 = 50.92, p = 

9.60 x 10-13). Lambda-cyhalothrin showed significantly lower mortality than S-Spain in 
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six out of eight populations: SAS (dF = 1, χ2 = 30.30, p = 3.70 x 10-8), PuigverdB (dF = 

1, χ2 = 67.61, p = 1.99 x 10-16), PuigverdC (dF = 1, χ2 = 73.63, p = 9.42 x 10-18), Mir7/84 

(dF = 1, χ2 = 73.63, p = 9.42 x 10-18), Tossal (dF = 1, χ2 = 52.17, p = 5.10 x 10-13) and 

Paradet (dF = 1, χ2 = 5.39, p = 0.020). Thiacloprid showed significantly lower mortality 

than S-Spain in four out of six populations: SAS (dF = 1, χ2 = 9.87, p = 0.0017), 

PuigverdB (dF = 1, χ2 = 6.99, p = 0.0082), PuigverdC (dF = 1, χ2 = 46.10, p = 1.12 x 10-

11) and Mir7/84 (dF = 1, χ2 = 23.40, p = 1.32 x 10-6 ). Two out of four populations tested 

with indoxacarb obtained significantly lower susceptibility than S-Spain (PuigverdC: dF 

= 1, χ2 = 1.17, p = 0.0074, and Mir7/84: dF = 1, χ2 = 5.95, p = 0.0147). All the 

populations tested with spinosad were as susceptible as S-Spain, but two populations of 

the five tested with spinetoram were significantly less susceptible than S-Spain 

(PuigverdB: dF = 1, χ2 = 4.38, p = 0.0363 and PuigverdC: dF = 1, χ2 = 17.02, p = 3.70 x 

10-5). Despite being hardly used, chlorpyrifos-ethyl showed significantly lower 

mortality than S-Spain in just two of the seven populations tested: PuigverdC (dF = 1, χ2 

= 21.17, p = 4.20 x 10-6) and Mir7/84 (dF = 1, χ2 = 6.21, p = 0.0127). This was the same 

proportion as for the new active ingredient chlorantraniliprole in SAS (dF = 1, χ2 = 

26.39, p = 2.79 x 10-7) and PuigverdC (dF = 1, χ2 = 11.72, p = 0.0006). Emamectin 

obtained significantly lower mortality than S-Spain in only one of the eight field 

populations treated, SAS (dF = 1, χ2 = 12.91, p = 0.0003). In contrast with the 

methoxyfenozide results, all five field populations tested with tebufenozide were as 

susceptible as S-Spain.  

The two field populations from France were significantly less susceptible than S-Spain 

in seven of the 14 bioassays. Neither of them was treated with chlorpyrifos-ethyl due to 

the number of available neonate larvae. Both the Pompiers and Le Thor populations 

were significantly less susceptible than S-Spain to lambda-cyhalothrin (dF = 1, χ2 = 
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12.79 and p = 0.0003 and dF = 1, χ2 = 19.52 and p = 9.93 x 10-6, respectively), 

methoxyfenozide (dF = 1, χ2 = 38.87, p = 4.54 x 10-10 and dF = 1, χ2 = 13.64 and p = 

0.0002, respectively) and thiacloprid (dF = 1, χ2 =19.82, p = 8.53 x 10-6 and dF = 1, χ2 

=9.27 and p = 0.0023, respectively), and both were as susceptible as S-Spain to 

indoxacarb, spinetoram and emamectin. Only Le Thor was treated with tebufenozide 

and spinosad, and tebufenozide produced a significantly lower mortality in the field 

population than in S-Spain (dF = 1, χ2 = 13.63, p = 0.0002). 

According to these results, methoxyfenozide was the least effective insecticide, 

obtaining significantly lower mortality than in S-Spain in 100% of the field populations 

tested, regardless of their origin, followed by lambda-cyhalothrin and thiacloprid, which 

obtained significantly lower mortality in 60% and 54% of the populations, respectively. 

The most effective insecticides were spinosad and emamectin, which were as effective 

as in S-Spain in 100% and 94% of the field populations, respectively, while 

tebufenozide, spinetoram and chlorpyrifos-ethyl were significantly less effective in 

13%, 20% and 23% of the treated populations, respectively. Indoxacarb and 

chlorantraniliprole obtained significantly lower mortality than in S-Spain in 33% and 

25% of the populations, respectively.  

Considering RRs, lambda-cyhalothrin was the insecticide with most resistant field 

populations (PuigverdC, Mir7/84 and PuigverdB, with RRs of 872, 148 and 15.4, 

respectively). PuigverdC and Mir7/84 were also resistant to methoxyfenozide (RRs of 

14.6 and 15.9, respectively) and PuigverdC was also resistant to thiacloprid (RR of 

11.2). All the populations treated with methoxyfenozide were resistant or tolerant to the 

product. Of the field populations 81% and 87% were susceptible to emamectin and 

spinosad, respectively (RR ≤ 1). For the rest of the products, the percentage of 

susceptible field populations ranged from 42% to 60%.  
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3.2. Synergist bioassays 

Only three field populations in which insecticide efficacy bioassays were performed had 

enough larvae to also allow bioassays to be carried out with synergists (Tamarite, 

PuigverdC and PuigverdB). The field populations named Tossal were collected in two 

different years and were considered distinct populations. Table 4 shows the corrected 

mortality produced by the LC50 used in the synergist bioassays. The mortality obtained 

in the control treatment of the eight field populations ranged between 0.00% and 

11.11%. Lambda-cyhalothrin was the product with a highest number of populations 

with significant lower mortality than S-Spain in PuigverdB (dF = 1, χ2 = 43.75, p = 3.73 

x 10-11), PuigverdC (dF = 1, χ2 = 20.04, p = 7.59 x 10-6), Torregrossa (dF = 1, χ2 = 5.03, 

p = 0.0249) and Tossal (dF = 1, χ2 = 41.86, p = 9.80 x 10-11), and chlorpyrifos-ethyl 

showed significantly lower mortality than in S-Spain only in PuigverdC (dF = 1, χ2 = 

5.63, p = 0.0177). By contrast, some emamectin treatments showed significant higher 

mortality than in S-Spain: PuigverdC (dF = 1, χ2 = 9.47, p = 0.0021), Torregrossa (dF = 

1, χ2 = 14.29, p = 0.0002) and Tossal (dF = 1, χ2 = 18.01, p = 2.20 x 10-5).  

The corrected mortality obtained with the application of the different synergists before 

the treatment with chlorpyrifos-ethyl, lambda-cyhalothrin, emamectin and 

chlorantraniliprole to some field populations is shown in Table 5. In no cases did the 

application of a synergist modify the mortality obtained in the susceptible population, 

S_Spain. A significant synergistic effect was observed with PBO only in a few field 

populations when it was applied before any tested insecticides. The corrected mortality 

significantly increased with the synergist in one of the eight field populations treated 

with chlorpyrifos-ethyl, Torregrossa (dF = 1, χ2 = 13.79, p = 0.0002), and in one of the 

eight field populations treated with lambda-cyhalothrin, Tossal (dF = 1, χ2 = 21.86, p = 

2.90 x 10-6). A significant increase in mortality was also observed when PBO was 
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applied before emamectin in the field population PuigverdB (dF = 1, χ2 = 3.94, p = 

0.0470). No significant synergistic effect was observed with DEM in lambda-

cyhalothrin treatments. In two field populations treated with chlorpyrifos-ethyl, 

treatment with DEM resulted in a significant increase of mortality: Noves (dF = 1, χ2 = 

4.12, p = 0.0424) and Torregrossa (dF = 1, χ2 = 8.42, p = 0.0037). The same occurred in 

two other treatments of emamectin: Tamarite (dF = 1, χ2 = 15.86, p = 6.80 x 10-5) and 

PuigverdB (dF = 1, χ2 = 10.77, p = 0.0010). The synergist DEF significantly increased 

mortality to chlorpyrifos-ethyl and emamectin in the same field populations as DEM 

did. It increased mortality to chlorpyrifos-ethyl in Noves (dF = 1; χ2 = 4.01, p = 0.0453) 

and Torregrossa (dF = 1; χ2 = 10.01 and p = 0.0016), and it increased mortality to 

emamectin in Tamarite (dF = 1, χ2 = 15.86, p = 6.80 x 10-5) and PuigverdB (dF = 1, χ2 = 

6.31, p = 0.0120). The mortality also increased significantly when DEF was applied to 

the Torregrossa field population before the treatment with lambda-cyhalothrin (dF = 1, 

χ2 = 4.68, p = 0.0306), which showed significantly less susceptibility than S-Spain.  

The highest SR obtained was 17.1, when PBO was applied before lambda-cyhalothrin 

in the field population Tossal. For the rest of the field populations and treatments in 

which the application of synergists significantly increased the mortality, the SR ranged 

between 2.0 (PBO + chlorpyrifos-ethyl in Torregrossa) and 1.1 (DEM or DEF + 

chlorpyrifos-ethyl in Noves). The SRs obtained when chlorantraniliprole was applied 

after a synergist ranged between 0.6 and 1.0. Significantly lower mortality was obtained 

in all the field populations previously treated with PBO and in two of the three field 

populations treated with DEM.     

4. Discussion 

4.1. Insecticide efficacy bioassays 
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As was expected, the field populations from Asturias were susceptible to all the 

insecticides tested, unlike the field populations from the other three areas of production. 

The Asturian apple orchards are for cider production and the most important pests to 

control are the rosy apple aphid, Dysaphis plantaginea Pass. (Homoptera: Aphididae), 

and the codling moth.30 In the production area of Asturias, the codling moth has 1.5 

generations per year, while in the other areas it has 2.5 generations. Since the early 

1990s, in the new semi-intensive Asturian orchards, using mating disruption and 

selective insecticides, such as granulovirus and insect growth regulators (IGR), the level 

of codling moth damage has been maintained below 2% and biological control of the 

European Red Mite (Panonychus ulmi (Koch) (Acari: Tetranychidae)) has been 

achieved with phytoseids.31 To control rosy apple aphid, neem derivates are currently 

used, though some less selective treatments are applied occasionally. The efficacy 

bioassays showed a significantly lower susceptibility of the Asturian field populations 

to methoxyfenozide, although the RR in these populations ranged between 1.3 and 1.2. 

These values are very low, and it should be noted that with S-Spain it was also possible 

to calculate a ratio of 1.2 when the mortalities obtained with methoxyfenozide were 

compared during the years studied (Table 3). In addition, an RR of 1.1 or 1.2 was found 

in many of the efficacy bioassays where no significant differences from the susceptible 

strain were found. These results imply that RR values ranging between 1.1 and 1.2 

cannot be attributed to the population’s tolerance to the insecticide but may be due to 

assay variability coupled with population response variability.  

The field populations from Catalonia and Aragon showed a similar low susceptibility to 

the tested insecticides. In both areas it was possible to find field populations as 

susceptible as S-Spain to all or almost all the products (Tamarite and La Almunia in 

Aragon, and Linyola and Poalbud in Catalonia) and populations that had low 
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susceptibility to half or more than half the insecticides used in the bioassay (ADC in 

Aragon and PuigverdC, Mir7/84 and some others in Catalonia). No French field 

population was susceptible to all the products but few orchards were tested, and a 

similar situation to that of Catalonia and Aragon can be expected.12  

In the apple production area of Lleida (Catalonia), since azinphos-methyl use was 

prohibited, 24% and 16% of the chemical applications against codling moth have been 

with chlorpyrifos-ethyl and lambda-cyhalothrin, respectively (data obtained from the 

record of treatments of 2875 ha of apples and pears during the year 2008 in Lleida). 

Chlorpyrifos-ethyl was surprisingly effective and the susceptibility of the field 

populations had not diminished in the last five years in spite of its high frequency of 

use. This high efficacy was also found by Rodríguez et al.20 in field populations 

collected in the same area in 2006 and 2007, in which a great loss of susceptibility to 

azinphos-methyl was detected. Reyes et al.32, in laboratory selected populations, found 

that the azinphos-methyl–resistant laboratory strain was significantly more susceptible 

to chlorpyrifos-ethyl than the sensitive strain. Dunley and Welter3 found a negatively 

correlated cross-resistance between chlorpyrifos-ethyl and azinphos-methyl in codling 

moth and suggested the possibility of developing a resistance management strategy 

based on it, which was in fact done by advisors and growers some years ago in Spain 

when azinphos-methyl was banned. On the other hand, a high frequency of populations 

tolerant or resistant to lambda-cyhalothrin, the insecticide with the highest RRs, was 

found particularly in the production area of Catalonia, where 148- and 872-fold 

resistance was found in two orchards. The use of pyrethroids, specifically lambda-

cyhalothrin, has gradually increased in the last few years in Spanish apple production 

areas. It is applied not only to control codling moth, particularly near harvest, but also to 

control Ceratitis capitata (Wied.) (Diptera: Tephritidae) and other pests. This practice is 
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currently threatening the mite control strategy with indigenous phytoseids, widely 

established in the area since the 1990s, and is being favored by the stringent market 

requirements in terms of number of active substances detected and their level in fruit at 

harvest, obviating the need for active ingredient rotation for resistance management.  

According to the results, methoxyfenozide was the least effective insecticide, obtaining 

significantly lower mortality than in S-Spain in all the field populations tested, 

regardless of their origin. The product is not registered in France against codling moth,33 

but both the French populations tested were tolerant to the insecticide. The highest 

methoxyfenozide RRs were found in field populations from Catalonia but this active 

ingredient was hardly used in the area. This finding may suggest a cross-resistance with 

organophosphates, particularly azinphos-methyl (heavily used before 2008) and 

phosmet, which was suitably demonstrated in previous works.12,19 Cross-resistance of 

methoxyfenozide with organophosphates has been proven by several authors in codling 

moth (in North Carolina (USA)23, in Michigan (USA)24 and in Canada25) and other 

tortricid pests (obliquebanded leafroller, Choristoneura rosaceana (Harris) in New 

York (USA)34 and Michigan (USA)35, and Planotortrix octo Dugdale in New 

Zealand).36 The Spanish field populations resistant to methoxyfenozide were susceptible 

to tebufenozide but the French population tolerant to methoxyfenozide was also tolerant 

to tebufenozide. Reyes et al.12 suggested cross-resistance between azinphos-methyl and 

tebufenozide in codling moth field populations from Switzerland, and this cross-

resistance has been proven in other tortricids34,35, but it was not the case for Spanish 

field populations. A high selection pressure with IGRs (mainly diflubenzuron) has 

occurred in southern France since the 1980s and has produced a cross-resistance with 

tebufenozide, even when it was a new mode of action.27 Therefore, the tolerance in the 

tested populations may be due to an intensive use of the product or to a cross-resistance 
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previously described in the area. Tolerance or resistance to thiacloprid was found in 

50% of the field populations. The product is rarely used in apple orchards of the Ebro 

Valley but it is often applied to control aphids or psylla in pears. The residual activity of 

the insecticides and the flux of populations between neighboring orchards may also 

contribute to these results. Brunner et al.37 obtained high levels of mortality of C. 

pomonella neonates even 28 days after the treatment in the field with different 

neonicotinoids. The possibility of a negative cross-resistance between thiacloprid and 

chlorpyrifos was also pointed out by Isci and Ay18 in some field populations from 

Turkey. The field population PuigverdC showed an 11.2-fold resistance to thiacloprid 

and an 872.0-fold resistance to lambda-cyhalothrin, and the rest of the populations 

tolerant to thiacloprid coincided with those tolerant or resistant to lambda-cyhalothrin. 

Reyes and Sauphanor38 found a significant decrease in susceptibility to thiacloprid in 

neonate larvae of laboratory strains resistant to azinphos-methyl, diflubenzuron and the 

pyrethroid deltamethrin. In Canada and Greece, Grigg-McGuffin et al.25 and Vodouris 

et al.22, respectively, obtained low susceptibility to thiacloprid in neonate larvae and 

fifth-instar diapausing and non-diapausing larvae when the product was recently 

registered. These field populations, as in the present study, showed tolerance to multiple 

active ingredients. The Spanish populations of this study were not exposed to 

indoxacarb (not used to control codling moth) and chlorantraniliprole (registered in 

Spain at the end of 2011). However, 33% and 36% of the tested populations were 

tolerant to these products, respectively, although with RR of only 1.2 to 2.2. Some 

codling moth field populations tolerant to indoxacarb were also found in Michigan 

(USA)24 when it was a new compound. No resistance to chlorantraniliprole has been 

reported in codling moth21,25, but a slight reduction in susceptibility was found in some 

of our field populations when the LC90 was applied. The three field populations tested 
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with the LC50 of chlorantraniliprole (Table 4) were as susceptible as the laboratory 

population, but when they were treated with the LC90 (Table 3), one of them 

(PuigvertC) showed an RR of 1.5. Previous studies found an increase in RR at higher 

concentrations for some populations of C. pomonella and in other Lepidoptera, which 

can lead a population to be susceptible or tolerant, or tolerant or resistant, according to 

the discriminant concentration applied.16,24,39 Sial et al.40 also found some 

chlorantraniliprole-tolerant field populations of C. rosaceana in Washington (USA), 

and high levels of resistance were reported in some field populations of Plutella 

xylostella (L.) (Lepidoptera: Plutellidae) in China after only 2 years of intensive use or 

misuse of the product41, showing the importance of a management resistance strategy in 

pests with a strong ability to develop resistance.  

Neither of the insecticides from the spinosyn group, spinetoram (not yet registered in 

Spain) or spinosad (registered in Spain in 2013), had ever been used against the tested 

field populations. Two of them were significantly less susceptible to spinetoram than S-

Spain, with RR of 1.3 and 2.2, but spinosad was very effective with all the field 

populations and, in some cases, even more than with S-Spain. Mota-Sanchez et al.24 

also found no resistance to spinosad in some field populations from Michigan (USA) 

that were resistant to the organophosphates azinphos-methyl and phosmet, the 

pyrethroid lambda-cyhalothrin and the diacylhydrazine methoxyfenozide. In 

Washington (USA), codling moth field populations that had high tolerance to azinphos-

methyl and acetamiprid showed low susceptibility to spinosad and methoxyfenozide 

when they were not widely use.21 Sial et al.40 found a high correlation between 

spinetoram and spinosad resistance at the level of LC50 in C. rosaceana and also 

suggested the possibility of cross-resistance. In our case, the most tolerant field 

population to spinetoram (PuigverdC), in which the efficacy of the product was 40% 
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mortality, was resistant to lambda-cyhalothrin (872.0-fold), methoxyfenozide (14.6-

fold) and thiacloprid (11.2-fold), but a second population (Mir7/84), also with high 

resistance levels to lambda-cyhalothrin (148.1-fold) and methoxyfenozide (15.9-fold), 

was susceptible to spinetoram, which rules out cross-resistance with these products. In 

addition, all the populations were susceptible to spinosad, even more than S-Spain. 

Emamectin (not yet registered in Spain), together with spinosad, was the most effective 

product, being as effective as in S-Spain in 94% of the field populations treated. In the 

only tolerant population, SAS, the mortality produced by emamectin was over 70.0%. 

These results were similar to the ones obtained by Reyes et al.12 with different field 

populations from European countries, mainly France.  

4.2. Synergist bioassays 

To evaluate the involvement of the enzymatic systems in insecticide resistance, the 

maximum concentration of the synergists that produces a minimum larval mortality 

should be used. We used the concentration of the synergist that produced a maximum 

mortality of 10% in S-Spain. These values were not perhaps the optimum ones for the 

field populations suspected, in general, of being less susceptible than S-Spain. Reyes et 

al.32 found high differences in the concentrations of synergists to apply in laboratory 

resistant populations compared with a susceptible population (2.7-fold with PBO and 

DEF, and 80-fold with DEM in the field population) when they were seeking the 

maximum concentration to apply that did not produce larval mortality. However, 

obtaining enough progeny to do all the tests is usually a limiting factor for the field 

populations.  

The sensitivity of the S-Spain strain to all the tested insecticides was not significantly 

modified by the synergists, as happened in other susceptible populations previously 

tested.32 The same response was obtained with the ecological field population Coll 
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when it was treated with any of the synergists tested plus chlorpyrifos-ethyl and 

lambda-cyhalothrin.  

Generalized enhanced levels of the metabolic detoxifying system PSMO were found in 

several studies of codling moth resistance in field populations from the same Spanish 

area in adults, post-diapausing larvae and neonate larvae.19,20 Therefore, a general 

increase in the mortality produced by the LC50 of some insecticides was to be expected 

when PBO was applied, particularly in the pyrethroid and organophosphate treatments, 

which are proven to be detoxified with PSMO.20,22,27 Lambda-cyhalothrin obtained the 

lowest mortalities in both bioassays (LC90 and LC50 treatments). However, with the 

application of the synergist, the mortality produced by lambda-cyhalothrin increased 

numerically in Noves and Torregrossa but significantly only in Tossal (SR = 17.1), 

where the resistance to the product was heavily overcome with the previous application 

of PBO, reaching 51.4% mortality with the LC50, so PSMO seems to be the main 

mechanism involved in this case of resistance. PuigvertC and PuigverdB, which were 

very resistant to lambda-cyhalothrin, with RRs of 872.0 and 15.4, respectively, did not 

increase their mortality with the previous application of PBO. This may be because the 

insects did not receive a sufficient amount of synergist to block their PSMO enzymatic 

system activity, and they were able to detoxify the insecticide. Increasing concentrations 

of PBO applied before the application of a diagnostic dose of temephos in the mosquito 

Aedes aegipty (L.) (Diptera: Culicidae) produced a significant mortality increase in a 

naturally resistant strain42, but the lower concentration did not increase the mortality, 

the same happened with Rhizopertha dominica (F.) (Coleoptera: Bostrychidae) and 

deltamethrin43. Two major enzymatic systems are involved in the metabolism of 

pyrethroid insecticides: PSMO and EST.44 Only one lambda-cyhalothrin-tolerant field 

population was tested with the product after being previously treated with DEF, 
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Torregrossa, and a significant mortality increase was obtained. Previous results also 

reported a possible involvement of EST in the pyrethroid resistance of codling moth 

larvae.22,45   

The only chlorpyrifos-ethyl–tolerant field population, PuigverdC, showed no significant 

increase with the application of the synergists. DEM and DEF significantly increased 

the mortality obtained in the field populations Torregrossa (SR = 1.7 and 1.8, 

respectively) and Noves (SR = 1.1 for both synergists), although in Noves the increases 

were very low, and DEF also produced mortality increases with SRs of between 1.4 and 

1.5 in PuigverdC and PuigverdB. PBO produced a significant increase only in 

Torregrossa, but the results in the rest of the field populations were very variable, as 

happened with the application of DEM. Reyes and Sauphanor38 found a positive 

correlation between PSMO activity and chlorpyrifos-ethyl tolerance in neonate larvae 

from resistant laboratory populations, but no correlation with EST and GST in these life 

stages. These two mechanisms were not involved as a generalized insecticide-resistant 

mechanism in neonate larvae from some field populations collected in 2006 and 2007 in 

the production area of Lleida,20 though both were detected, but were generalized in the 

post-diapausing larvae.19,46 By contrast, a significant correlative association between 

lower EST activity in adults and fifth-instar larvae and resistance to organophosphates 

was found in European codling moth field populations.12,19,22,47 These variable results 

were attributed in some cases to the different affinity for the substrates used in the 

studies but confirm the results of Reyes et al. ,38 who found no correlation for EST 

activity between the developmental stages neonate larvae, diapausing larvae and adults, 

and no correlation for GST with the larval stages. 

None of the Spanish field populations tested with the synergists were resistant to the 

new active ingredient emamectin, which was the expected result. By contrast, three of 
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the five field populations treated with the LC50 were significantly more susceptible than 

S-Spain (Table 4). The use of DEM and DEF caused a significantly increased mortality 

in PuigvertB and Tamarite, which were as susceptible to the product as S-Lleida, so, 

GST and EST seem to influence the efficacy of the product in these field populations. If 

the susceptible field populations are exposed to a mixture of synergist+insecticide, the 

specific detoxification pathway will be blocked and the small proportion of resistant 

insects to the insecticide will die as if they were susceptible. For this reason, when 

treating our laboratory susceptible population, we obtained SR lower than 1 in all cases. 

Nevertheless, DEM had no significant influence in PuigverdC, which was very 

susceptible to the product (85.2%), even more than the reference susceptible population 

(55.6%). Reyes et al.12 linked the efficacy reduction of emamectin in some European 

field populations to EST, despite the fact that it was the most effective product, with a 

mortality over 83% in all cases. Unfortunately, we had insufficient larvae to test these 

synergists with the other field populations. PSMO had no effect on the response to the 

insecticide in four of the five field populations tested, except in PuigvertB, which had a 

low SR (1.3). Civolani et al.48 suggested that monooxygenases were not responsible for 

emamectin benzoate detoxification in Lobesia botrana (Denis & Schiffermüller) 

(Lepidoptera: Tortricidae), but opposite results were found with other Lepidoptera.49,50 

The LC50 concentration of chlorantraniliprole, the other new insecticide for the Spanish 

field populations, was very effective against the three field populations tested, even in 

PuigverdC, which was tolerant to the LC90 concentration. However, the application of 

PBO and DEM led to a surprising significant decrease in mortality in three and two 

field populations treated, respectively. In a selected chlorantraniliprole-resistant 

laboratory population of C. rosaceana, EST was responsible for detoxifying the 
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product51,52 and the application of DEF increased the mortality even in the susceptible 

laboratory population, although not significantly.  

CONCLUSIONS AND FURTHER DIRECTIONS 

Control of C. pomonella in Spain is possible with the use of mating disruption 

combined with reduced-risk insecticides already registered such as tebufenozide, 

spinosad, indoxacarb and chlorantraniliprole, which have been shown to be effective in 

controlling resistant populations in the area. As the not yet registered insecticides 

emamectin and spinetoram are also effective, their registration would be valuable. If a 

rational strategy of resistance management is to be achieved in IPM production, growers 

need to have several insecticides at their disposal, and the excessively strict residue 

requirements of commercial market, far higher than the legal ones, need to be reduced.  

The methodology to be applied when trying to determine the enzymatic systems 

involved in insecticide resistance with synergists need further refinement. One difficulty 

is the need to adjust the concentrations to be applied for each population and synergist 

in order to obtain credible information, and another is the interpretation of the results, 

particularly in field populations, in which co-occurrence of different resistance 

mechanisms may be present and interactions between them may occur. 
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Table 1. C. pomonella field population name and origin, year of collection, orchard 

management system and assay performed with them. The neonate larva generation 

treated is also indicated. 

Name Country / Region Collecti

on year 

Generati

on 

treated 

Assay 
Managemen

t 

Puigverd

B Spain / Catalunya 2011 F1 

Synergists / 

bioassays IPM 

Puigverd

C Spain / Catalunya 2011 F1 

Synergists / 

bioassays IPM 

Tossal Spain / Catalunya 2010 F2 Synergists  IPM 

Tossal Spain / Catalunya 2012 F2 Bioassays IPM 

Torregro

ssa Spain / Catalunya 2010 F1 Synergists  IPM 

Coll Spain / Catalunya 2010 F1 Synergists  Ecological 

Linyola Spain / Catalunya 2010 F2 Bioassays IPM 

Paradet Spain / Catalunya 2010 F2 Bioassays IPM 

SAS Spain / Catalunya 2011 F2 Bioassays IPM 

Mir7/84 Spain / Catalunya 2011 F1 Bioassays IPM 

Poalbud Spain / Catalunya 2011 F2 Bioassays IPM 

La 

Almunia 

Spain /  

Aragón 2010 F2 Bioassays IPM 

Tamarite 
Spain /  

Aragón 2010 F1 / F2 

Synergists / 

bioassays IPM 

ADC 
Spain /  

Aragón 2011 F1 Bioassays IPM 

AstAb 
Spain /  

Asturias 2012 F1  Bioassays 

Cider 

production 

AstN 
Spain /  

Asturias 2012 F1 /F2 Bioassays 

Cider 

production 

AstC 
Spain /  

Asturias 2012 F1 /F2 Bioassays 

Cider 

production 

Le Thor 
France / Provence-

A.-C.A. 2012 F2 Bioassays IPM 

Pomiers 
France / Provence-

A.-C.A. 2012 F2 Bioassays IPM 

Noves 
France / Provence-

A.-C.A. 2010 F1 Synergists  IPM 
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Table 2. Active ingredients and commercial products. The concentration (mg a.i./L) applied corresponds approximately to the LC90 and LC50 of 

the C. pomonella susceptible laboratory population for the insecticide efficacy and the synergist tests, respectively. 

Active ingredient Commercial product - Supplier Assay 

Concentratio

n 

 (mg a.i./L) 

Chlorpyrifos-ethyl Cuspide - 25 % - Comercial Química Massó, Spain 
Insecticide bioassay Synergists 

bioassay 

90.0 

31.3 

    

Lambda-

cyhalothrin 
Karate Zeon CS - 10 % - Singenta España S.A., Spain 

Insecticide bioassay Synergists 

bioassay 

0.5 

0.1 

    

Chlorantraniliprol

e 
Coragen 20 SC - DuPont Ibérica S.L. , Spain 

Insecticide bioassay Synergists 

bioassay 

5.0 

4.0 

    

Emamectin Affirm - 0,855 % - SG- Syngenta, Italy 
Insecticide bioassay Synergists 

bioassay 

0.6 

0.3 

    

Methoxyfenozide Runner CS - 24 % - Dow AgroSciences Ibérica S.A., Spain Insecticide bioassay 4.0 

Tebufenozide 
Mimic 2F CS - 24 % - Nisso Chemical Europe GMBH, 

Germany 
Insecticide bioassay 20.0 

Thiacloprid Calypso SC - 48 % - Bayer CropScience S.L., Spain Insecticide bioassay 15.0 

Indoxacarb Steward - 30 % - WP - DuPont Ibérica, S.L., Spain Insecticide bioassay 40.0 

Spinosad Spintor 480 SC - 48 % - Dow AgroScience, Spain Insecticide bioassay 16.0 

Spinetoram Delegate - 25 % - Dow AgroSciences, France Insecticide bioassay 1.0 
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Table 3. Corrected mortality (%) of insecticides at the diagnostic concentration, LC90 (mg a.i./L), on C. pomonella neonate larvae of the susceptible 

strain and of field populations. Numbers in parentheses show the number of insects treated. RR = corrected mortality of S-Spain / corrected 

mortality of the field population. The mortality obtained was compared using χ2 (df = 1; *p = 0.05; **p = 0.01; ***p = 0.001). 

Popul-

ation 

Active ingredient (mg a.i./L) 

Chlorpyrif

os-ethyl 

(90.0) 

Lambda- 

cyhalothrin 

(0.5) 

Methoxyfe

nozide 

(5.0) 

 
Tebufenoz

ide (20.0) 

Thiaclopri

d       (15.0) 

Indoxacar

b      (40.0) 

Spinosad          

(16.0) 

Spinetora

m      (1.0) 

Chlorantran

iliprole        

(5.0) 

Emamecti

n       (0.6) 

C. 

Mort. 

(%) 

R

R 

C. 

Mort. 

(%) 

R

R 

C. 

Mort. 

(%) 

R

R 
  

C. 

Mort. 

(%) 

R

R 

C. 

Mort. 

(%) 

R

R 

C. 

Mort. 

(%) 

R

R 

C. 

Mort. 

(%) 

R

R 

C. 

Mort. 

(%) 

R

R 

C. 

Mort. 

(%) 

RR 

C. 

Mort. 

(%) 

R

R 

S-

Spain-

12 

93.8 

(33) a 
 

87.2 

(71) 

a 

 

97.1 

(36) 

a 

  

86.4 

(37) 

a 

 
91 (35) 

a 
 

97.1 

(36) a 
 

81.9 

(44) 

a 

 
88.1 

(35) a 
 

88.5 

(71) a 
 

95.7 

(71) a 
 

S-

Spain-

13 

95.5 

(90) a 
 

93.7 

(48) 

a 

 

84.2 

(96) 

b 

  

97.9 

(47) 

a 

 
93.7 

(48) a 
 

95.8 

(48) a 
 

86.1 

(95)  

a 

 
88.2 

(50) a 
 

89.2 

(48) a 
 

86.6 

(99) a 
 

S-

Spain-

14 

91.5 

(87) a 
 

93.3 

(45) 

a 

 

92.4 

(46) 

a 

  

89.2 

(81) 

a 

   
97.8 

(47) a 
 

86.6 

(47) 

a 

 
95.1 

(45) a 
   

88.9 

(48) a 
 

                                            

SAS 
100.0 

(35) ns 

0.

9 

30.4 

(26) 

*** 

2.9 

22.2 

(36) 

*** 

4.

4 
 

75.0 

(36) ns 

1.

2 

59.7 

(34) ** 

1.

5 

87.8 

(34) ns 

1.

1 

94.4 

(36) ns 

0.

9 

91.7 

(36) ns 

1.

0 

40.6 

(32) 

*** 

2.2 

70.6 

(35) 

*** 

1.

4 

Puigve

rdB 

85.7 

(36) ns 

1.

1 

5.7 (37) 

*** 

15.

4 

64.5 

(70) 

*** 

1.

5 
 

97.1 

(36) ns 

0.

9 

68.6 

(72) ** 

1.

3 

94.3 

(71) ns 

1.

0 

97.1 

(36)  * 

0.

8 

69.8 

(74) * 

1.

3 

82.9 

(36) ns 
1.1 

94.3 

(36) ns 

1.

0 

Poalbu

d 

85.6 

(35) ns 

1.

1 

71.5 

(32) ns 
1.2 

65.9 

(35) 

*** 

1.

5 
 

97.2 

(36) ns 

0.

9 

94.4 

(36) ns 

1.

0 
  

100.0 

(29) * 

0.

8 

100.0 

(36) * 

0.

9 

85.1 

(34) ns 
1.0 

97.2 

(36) ns 

1.

0 
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Puigve

rdC 

42.4 

(36) 

*** 

2.

2 

0.0 (35) 

*** 

87

2.0 

6.6 (35) 

*** 

14

.6 
 

68.0 

(27) ns 

1.

3 

8.1 (33) 

*** 

11

.2 

75.8 

(37) ** 

1.

3 

86.1 

(32) ns 

1,

0 

40.4 

(30) 

*** 

2.

2 

60.1 

(32) 

*** 

1.5 
93.9 

(33) ns 

1.

0 

Mir7/8

4 

72.0 

(34)  

* 

1.

3 

0.6 (35) 

*** 

14

8.1 

6.1 (36) 

*** 

15

.9 
 

93.9 

(34) ns 

0.

9 

36.4 

(36) 

*** 

2.

5 

79.2 

(32) * 

1.

2 

68.1 

(37) ns 

1.

2 

96.0 

(26) ns 

0.

9 

93.9 

(35) ns 
0.9 

93.9 

(36) ns 

1.

0 

Linyol

a 

100.0 

(48) ns 

0.

9 

82.7 

(35) ns 
1.1      

77.2 

(32) ns 

1.

2 
      

91.3 

(36) ns 
1.0 

91.3 

(39) ns 

1.

0 

Tossal   

18.8 

(48) 

*** 

5.0 

17.6 

(43) 

*** 

5.

3 
           

97.9 

(48) 

n.s. 

1.0 
77.1 

(48) ns 

1.

2 

Parade

t 

100.0 

(36) ns 

0.

9 

69.2 

(35) * 
1.3                

100.0 

(16) ns 

1.

0 

                                            

ADC 
100.0 

(35) ns 

0.

9 

11.4 

(35) 

*** 

7.7 

30.6 

(36) 

*** 

3.

2 
 

97.2 

(36) ns 

0.

9 

29.6 

(34) 

*** 

3.

1 

66.7 

(36) 

*** 

1.

5 

97.2 

(36)  * 

0.

8 

86.1 

(36) ns 

1.

0 

62.1 

(34) ** 
1.4 

85.4 

(34) ns 

1.

1 

Tamar

ite 

88.6 

(36) ns 

1.

1 

96.9 

(33) ns 
0.9      

100.0 

(16)  ns 

0.

9 
      

88.6 

(36) ns 
1.0 

91.4 

(36) ns 

1.

0 

La 

Almun

ia 

88.6 

(31) ns 

1.

1 
       

87.0 

(37) ns 

1.

0 
        

94.2 

(38) ns 

1.

0 

                                            

AstAb 
92.6 

(72) ns 

1.

0 

100.0 

(69) * 
0.9      

100.0 

(36) ns 

0.

9 
      

100.0 

(97) ** 
0.9 

87.5 

(39) ns 

1.

0 

AstN 
84.7 

(48)   * 

1.

1 

98.0 

(48) ns 
1.0 

63.7 

(46) ** 

1.

3 
     

97.8 

(41) ns 

1.

0 
  

80.3 

(46) ns 

1.

1 

85.5 

(48) ns 
1.0 

82.5 

(48) ns 

1.

0 

AstC 
95.0 

(91) ns 

1.

0 

100.0 

(49) ns 
0.9 

79.8 

(89)   * 

1.

2 
 

95.3 

(47) ns 

0.

9 

91.6 

(25) ns 

1.

0 

99.0 

(96) ns 

1.

0 

93.5 

(45) ns 

0.

9 

92.2 

(140) 

ns 

1.

0 

93.1 

(45) ns 
1,0 

96.8 

(96) ns 

0.

9 
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Pompi

ers 
  

35.9 

(47) 

*** 

2.6 

28.1 

(38) 

*** 

3.

0 
   

53.5 

(45) 

*** 

1.

8 

85.6 

(49) ns 

1.

1 
  

85.7 

(86) ns 

1.

0 
 1.6 

95.6 

(47) ns 

0.

9 

Le 

Thor 
  

53.7 

(48) 

*** 

1.7 

56.4 

(45) 

*** 

1.

5 
 

69.2 

(39) 

*** 

1.

4 

70.1 

(46) ** 

1.

3 

98.2 

(50) ns 

1.

0 

82.2 

(44) ns 

1.

0 

76.0 

(92) ns 

1.

2 
 1.4 

96.0 

(48) ns 

0.

9 
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Table 4. Corrected mortality (%) of insecticides at the diagnostic concentration, LC50 (mg a.i./L), on C. pomonella neonate larvae of the susceptible 

strain and of field populations. Numbers in parentheses show the number of insects treated. RR = corrected mortality of S-Spain / corrected 

mortality of the field population. The mortality obtained was compared using χ2 (df = 1; *p = 0.05; **p = 0.01; ***p = 0.001). 

Population 

 Insecticide (mg a.i./L) 

Control 
Chlorpyriphos- ethyl Lambda-cyhalothrin Emamectin Chlorantraniliprole 

(31.3) (0.1) (0.3) (4.0) 

Mort. (%) C. Mort. (%) RR C. Mort. (%) RR C. Mort. (%) RR C. Mort. (%) RR 

S-Spain-11 3.79 (107) 56.56 (70)  69.07 (72)  55.57 (72)  69.69 (72)  

          

PuigverdB 2.78 (35) 54.29 (36) n.s. 1.0 0.00 (33) *** 62.8 66.75 (34) n.s. 0.8 80.04 (65) n.s. 0.9 

PuigvertC 6.25 (48) 33.74 (34) * 1.7 23.72 (37) *** 2.9 85.19 (35) ** 0.7 80.00 (46) n.s. 0.9 

Torregrossa 11.11 (36) 43.75 (36) n.s. 1.2 46.88 (36) * 1.5 90.63 (36) *** 0.6   

Coll 5.56 (36) 67.65 (36) n.s. 0.8 85.29 (36) n.s. 0.8     

Tossal 0.00 (36) 75.00 (36) n.s. 0.7 3.03 (35) *** 22.8 97.22 (33) *** 0.6   

          

Noves 5.56 (36) 88.24 (36) *** 0.6 53.21 (36) n.s. 1.3     

          

Tamarite 2.78 (36) 54.29 (36) n.s. 1.0 58.10 (36) n.s. 1.2 62.86 (36) n.s. 0.9 62.86 (80) n.s. 1.1 
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Table 5. Effect of metabolic synergists on C. pomonella neonate larvae expressed as corrected mortality (%) of 4 insecticides at the diagnostic 

concentration, LC50 (mg a.i./L) of the susceptible strain. Numbers in parentheses show the number of insects treated. SR = synergistic ratio = 

corrected mortality with synergist / corrected mortality without synergist. The mortality obtained was compared using χ2 (df = 1; *p = 0.05; **p = 

0.01; ***p = 0.001). 

 

Population 
 PBO synergist DEM synergist DEF synergist 

Chl-e Chl-e + PBO SR Chl-e + DEM SR Chl-e + DEF SR 

S-Spain 56.6 (70) 45.5 (36) n.s. 0.8 48.3 (36) n.s. 0.9 46.1 (36) n.s. 0.8 

        

PuigverdB 54.3 (36) 60.8 (35) n.s. 1.1 43.5 (58) n.s. 0.8 75.0 (37) n.s. 1.4 

PuigvertC 33.7 (34) 27.0 (29) n.s. 0.8 26.3 (31) n.s. 0.8 52.1 (34) n.s. 1.5 

Torregrossa 43.8 (36) 87.1 (36) *** 2.0 76.5 (36) ** 1.7 79.4 (36) ** 1.8 

Coll 67.7 (36) 78.0 (36) n.s. 1.2 56.3 (36) n.s. 0.8 77.8 (36) n.s. 1.1 

Tossal 75.0 (36) 60.0 (36) * 0.8     

        

Tamarite 54.3 (36) 62.9 (36) n.s. 1.2 69.7 (36) n.s. 1.3 56.3 (36) n.s. 1.0 

        

Noves 88.2 (36) 97.2 (36) n.s. 1.1 100.0 (35) * 1.1 100.0 (34) * 1.1 

 λ-cyhal λ-cyhal + PBO SR λ-cyhal + DEM SR λ-cyhal + DEF SR 

S-Spain 69.1 (72) 62.5 (36) n.s. 0.9 65.5 (36) n.s. 0.9 62.9 (36) n.s. 0.9 

        

PuigverdB 0.00 (33) 0.0 (34) n.s. 1.0 6.2 (35) n.s.    

PuigvertC 23.7 (37) 27.0 (29) n.s. 1.1     

Torregrossa 46.9 (36) 64.5 (36) n.s. 1.4 67.7 (36) n.s. 1.4 73.5 (36) * 1.6 
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Coll 85.3 (36) 74.9 (36) n.s. 0.9 93.8 (36) n.s. 1.1   

Tossal 3.0 (35) 51.4 (36) *** 17.1     

        

Tamarite 57.1 (34) 51.4 (34) n.s. 0.9 48.5 (36) n.s. 0.8 53.1 (36) n.s. 0.9 

        

Noves 53.2 (34) 74.2 (34) n.s. 1.4 63.1 (34) n.s. 1.2   

 Emam Emam + PBO SR Emam + DEM SR Emam + DEF SR 

S-Spain 55.6 (72) 48.9 (36) n.s. 0.9 48.3 (36) n.s. 0.9 49.4 (36) n.s. 0.9 

        

PuigverdB 66.8 (34) 87.5 (33) * 1.3 97.1 (36) ** 1.5 91.4 (36) * 1.4 

PuigvertC 85.2 (35) 100.0 (12) n.s. 1.2 90.0 (34) n.s. 1.1   

Torregrossa 90.6 (36) 83.9 (36) n.s. 0.9     

Tossal 97.2 (33) 97.1 (36) n.s. 1.0     

        

Tamarite 62.9 (36) 65.7 (36)n.s. 1.0 100.0 (36) *** 1.6 100.0 (36) *** 1.6 

 Ryn Ryn + PBO SR Ryn + DEM SR Ryn + DEF SR 

S-Spain 69.7 (72) 59.1 (36) n.s. 0.8 62.1 (36) n.s. 0.9 59.6 (36) n.s. 0.9 

        

PuigverdB 80.0 (65) 59.0 (56) * 0.7 50.1 (58) *** 0.6 83.8 (63) n.s. 1.0 

PuigvertC 80.0 (46) 53.7 (51) ** 0.7 71.4 (34) n.s. 0.9 71.5 (34) n.s. 0.9 

        

Tamarite 62.9 (80) 42.9 (36) * 0.7 39.4 (36) * 0.6 53.1 (36) n.s. 0.8 
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