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Abstract 

 

BACKGROUND AND OBJECTIVES: Cutaneous malignant melanoma arises from transformed 

melanocytes de novo or from congenital or acquired melanocytic nevi. We have recently 

reported that T-type Ca
2+

 channels (TTCs) are upregulated in human melanoma and play an 

important role on cell proliferation. The aim of this study was to describe for the first time in 

formalin-fixed-paraffin-embedded tissue the immunoexpression of TT-Cs in biopsies of normal 

skin, acquired melanocytic nevi and melanoma, in order to evaluate their role in 

melanomagenesis and/or tumor progression, their utility as prognostic markers and their 

possible use in targeted therapies.  

METHODS: Tissue samples from normal skin, melanocytic nevi and melanoma were subjected 

to immunohistochemistry for two TT-Cs (Cav3.1, Cav3.2), markers of proliferation (Ki67), cell 

cycle (Cyclin D1), hypoxia (Glut1), vascularization (CD31) and autophagy (LC3), V600E/BRAF 

mutation (VE-1) and PTEN. Immunostaining was evaluated by histoscore. In silico analysis was 

used to assess the prognostic value of TT-Cs over-expression. 

RESULTS: TT-Cs immunoexpression increased gradually from normal skin to common nevi, 

dysplastic nevi and melanoma samples, but with differences in distribution of both isoforms. 

Particularly, Cav3.2 expression was significantly higher in metastatic melanoma than in primary 

melanoma. Statistical correlation showed a lineal interaction between PTEN-loss/ V600E-BRAF/ 

Cav3.1/ LC3/ Ki67/ Cyclin D1/ Cav3.2 /Glut1. Disease-free survival (DFS) and global survival 

(OS) correlated inversely with over-expression of Cav3.2. DFS also correlated inversely with 

over-expresion of Cav3.1.  

DISCUSSION: TT-Cs immunoexpression on melanocytic neoplasms 1) is consistent with our 

previous in vitro studies, 2) appears related to tumor progression, and 3) TT-Cs upregulation 

can be considered as a prognostic marker using TCGA database. The high expression of 

Cav3.2 in metastatic melanoma encourages the investigation of the use of TT-Cs blockers in 

targeted therapies. 
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Original Article: Translational Research 

 

What's already known about this topic? 

An increased expression of voltage gated calcium channels (VGCCs) is a common finding in 

several neoplasms. We have recently reported that T-type Ca
2+

 channels (TT-Cs) are 

upregulated in human melanoma cells and play an important role in cell proliferation, calcium 

homeostasis and autophagic flux. 

 

What does this study add? 

We describe for the first time in formalin-fixed-paraffin-embedded tissue the immunoexpression 

of TT-Cs in biopsies of normal skin, acquired melanocytic nevi and melanoma. We have found 

that TT-Cs immunoexpression increases gradually from normal skin to common nevi, dysplastic 

nevi and melanoma samples, and that the expression of the Cav3.2 isoform is augmented in 

metastatic vs. primary melanoma. We also demonstrate a significant correlation between 

Breslow thickness and TT-Cs expression. In addition, we show a positive correlation between 

the immunoexpression of Cav3.2 and proliferative/hypoxia markers. Furthermore, we show a 

positive association between the expression of the Cav3.1 isoform, the autophagy markers and 

the presence of the BRAF/V600E mutation. These findings open a new venue of research 

regarding the use of T-type blockers in targeted therapies. 
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Introduction 

 

Melanoma is the most dangerous form of skin cancer, and its incidence is steadily increasing 

worldwide 
1,2

. In spite of being the subject of intense laboratory investigations, numerous clinical 

trials, and the emergence of new and much more effective drugs, the prognosis of metastatic 

melanoma is still poor 
3
.  

 

Ca
2+

-signaling is suspected to play an important role in the development as well as in the 

viability, survival and motility of cancer cells 
4,5

. It is known that external Ca
2+

 is needed to 

induce cell proliferation and cell cycle progression in mammalian cells. Several types of Ca
2+

 

channels have been described. Among them, voltage-gated calcium channels (VGCCs) are the 

most highly selective for Ca
2+

 ions 
6,7

.  

 

VGCCs have been classified by their electrophysiological and pharmacological properties and, 

more recently, by their amino acid sequence identity. Based on their activation threshold, 

VGCCs have been classified in two main groups. High Voltage-Activated (HVA) VGCCs are 

characteristic of excitable cells, such as muscle cells or neurons. HVA VGCCs comprise two 

subfamilies, Cav1 (L-type VGCCs) and Cav2 (P/Q, N and R-VGCCs types). Low Voltage-

Activated (LVA) VGCCs are represented by the 3 isoforms of the Cav3 subfamily (Cav3.1, 

Cav3.2 and Cav3.3), also called T-type channels (TT-Cs) 
8
.  

 

TT-Cs display unique low voltage dependent activation/inactivation and slow deactivation 

kinetics, and carry depolarizing currents at near resting membrane potentials 
9
. Therefore, these 

channels may play a direct role in regulating Ca
2+

 levels especially in non-excitable tissues 
10

. 

Numerous studies have demonstrated that the Ca
2+

 influx through VGCCs results in signaling 

that affects the expression of genes involved in cell proliferation, programmed cell death and 

apoptosis 
11,12

. It has been described that the expression of Cav3.1 and Cav3.2 isoforms 

increases in many cancerous cell types 
13–22

.   

 

Our group has recently reported that TT-Cs are also upregulated in human melanoma and play 

an important role on melanoma cell proliferation and homeostasis. On the contrary, TT-Cs are 

absent or expressed at low levels in culture human epidermal melanocytes. Moreover, we have 

demonstrated that pharmacological blockade or gene silencing of TT-Cs induce apoptosis in 

melanoma cells, which is preceded by endoplasmic reticulum (ER) stress and inhibition of 

macroautophagy, that is basally activated in this type of tumor cells 
23,24

. Deregulation of 

autophagy is a common feature in malignancy. Evidence for basal increase of autophagy in 

melanoma is supported by the immunohistochemical detection of LC3-II 
25–29

 and by electron 

microscopy studies 
30

. In particular, recent studies have demonstrated that melanomas 

harboring mutant BRAFV600E display an increased basal autophagic rate 
31

.  

 

Most of our previous work was done employing melanoma cell lines, cultured human epidermal 

melanocytes, and a few human melanoma biopsies in which the expression of TT-Cs was 

studied by RT-PCR. In the present study, we have analyzed the expression of TT-Cs at the 

protein level in a range series of of formalin-fixed paraffin-embedded (FFPE) biopsies of normal 

skin, acquired common and dysplastic melanocytic nevi, and primary and metastatic melanoma 

tumors, in order to evaluate their role in melanomagenesis and/or tumor progression, and their 

utility as prognostic markers. In addition, we have correlated the expression of the distinct TT-C 

isoforms with proliferative, cell cycle, autophagy, and hypoxia tissue markers, as well as 

common mutations V600E/BRAF and PTEN. 
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Material and Methods 

1. Case selection 

The series included the following FFPE tissue samples: 1) 21 biopsies of normal skin and 62 of 

melanoma tumors (40 primary and 22 metastatic) which were included in three TMA 

(supplementary table 1); 2) 80 melanocytic nevi [60 common acquired melanocytic nevi (20 

junctional, 20 compound and 20 intradermal) and 20 dysplastic nevi] which were studied in full 

sections in order not to miss de junctional component. Breslow thickness of the different primary 

melanoma subtypes is recorded in supplementary table 2. 

 

All tumor samples were obtained from Hospital Arnau de Vilanova, Lleida. The tumors were 

classified following the most recent WHO criteria. The study was approved by the local ethical 

committee, and a specific informed consent was used. A tissue arrayer device (Beecher 

Instrument, Silver Sping, MD) was used to construct the TMA. Two selected cylinders (1 mm in 

diameter) from 2 different areas were included in each case. 

 

2. Immunohistochemical study 

 

FFPE samples were subjected to immunohistochemistry (IHC) with specific antibodies in front of 

two TT-Cs isoforms (Cav3.1, Cav3.2), Ki-67, Cyclin D1, Glut1, CD31, LC3, V600E/BRAF and 

PTEN. Optimal IHC conditions and procedures for each antibody are listed in table 1. Since 

reliable antibodies were not commercially available, specific novel Cav3.1 and Cav3.2 

antibodies were designed by AntibodyBCN (Barcelona, Spain) against the following peptides: 

QRRPTSWLDEQRRHSI for Cav3.1 and FTQDVRHGDRWDPTRP for Cav3.2. Rabbits were 

immunized with the mentioned peptides and raised antibodies were affinity-purified. Specificity 

of antibodies was tested with appropriate positive and negative controls.   

 

IHC staining was graded semiquantitatively by considering the percentage and intensity of the 

staining. A histological score (Hs) was obtained from each sample and values ranged from 0 

(no immunoreaction) to 300 (maximum immunoreactivity). The score was obtained by applying 

the following formula, Hs = 1 × (% light staining) + 2 × (% moderate staining) + 3 × (% strong 

staining). CD31 and GLUT1 were scored as previously described for membrane markers 

employing a scale 0 (nul expression) to 3 (strong complete membranous staining) 
32

. 

 

3. Statistical analysis 

 

For the statistical analysis, means and SD from Hs were calculated to report relative differences 

in immunoexpression levels between all groups included in Table 1. Levels of 

immunoexpression of the different group of samples were compared by Kruskal-Wallis test with 

Dunn's Multiple Comparison Test. A trend test, using a linear model, was employed to evaluate 

the progression in the immunoexpression levels in normal skin, acquired common nevi, 

dysplastic nevi, primary melanoma and metastatic melanoma tissue, using this order. Second, 

Mann-Whitney test was performed to assess whether immunoexpression was similar according 

to Breslow thickness (≤1mm vs >1mm). Third, Kruskal-Wallis test with Dunn's Multiple 

Comparison Test was performed to study differences in the expression of TT-C isoforms 

between the different clinicopathological primary melanoma subtypes. Fourth, Pearson 

correlation tests were performed to find significant relationships among the biomarkers. Fifth, 

optimal threshold in each biomarker was generated by hazar-ratios, and Kaplan-Meier 

estimates were computed to evaluate both disease free-survival (DFS) and overall survival (OS) 

by log-rank test to assess significance between survivals curves.  

We have carried out a bioinformatics analysis in order to investigate whether TT-Cs are 

associated with survival in melanoma patients using The Cancer Genome Atlas (TCGA) 

database (http://www.cbioportal.org/; Skin Cutaneous Melanoma) (n = 471 patients)
33,34

. Over-

expression of Cav3.1 and Cav3.2 were categorized using RNA Z score cutoff ≥ 2.0. DFS and 
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OS were obtained as mentioned previously. All analyses were obtained using R statistical 

software version 3.01 (R Foundation, Vienna, Austria), and statistical significance was set at 

.05. 

 

Results 

 

1.  Immunohistochemical expression of TT-C isoforms in normal skin, nevi and primary and 

metastatic melanoma. 

 
IHC analysis of TT-C isoform Cav3.1 and Cav3.2 were positive in all FFPE samples and 

displayed relevant differences regarding the distribution of both isoforms (p<0.0001 and 

<0.0001, respectively). Mean, SD and range of Hs were calculated (supplementary table 3) and 

all possible comparisons were evaluated in order to obtain significant differences 

(supplementary table 4) by Kruskal-Wallis test with Post Hoc Dunn's Multiple Comparison Test.  

 

On the one hand, Cav3.1 was higher expressed in all malignant melanoma (metastatic and 

primary) and dysplastic nevi samples (Hs mean: 44.44, 41.86 and 38.5, respectively). 

Significant differences were found in the following pairs: metastatic melanoma vs normal skin; 

metastatic melanoma vs acquired common nevi; primary melanoma vs acquired common nevi; 

dysplastic nevi vs acquired common nevi (Figure1A).  

 

On the other hand, metastatic melanoma displayed the highest Cav3.2 immunoexpression 

levels (Hs mean: 220), being significantly different from all other groups (primary melanoma, 

dysplastic nevi, acquired common nevi and normal skin). Primary melanomas displayed the 

second highest expression levels of Cav3.2 (Hs mean: 125.16), a value that was significantly 

higher when compared to that from normal skin. Despite no significant differences were 

observed in Cav3.2 distribution among both nevi subtypes, a significant higher expression of 

Cav3.2 in the whole group of nevi vs normal skin was detected (Figure 1B).  

 

A trend of progressively increased expression of TT-Cs from normal skin to metastatic 

melanoma was significant for both TT-Cs (p<0.0001), (Table 5).  

 

2. Correlation between Breslow thickness and TT-Cs expression in primary melanoma 

 

As Breslow thickness is the most important clinicopathological prognostic factor of primary 

melanoma, we tried to correlate this parameter with TT-Cs expression. As shown in 

supplementary table 5 and Figure 2 our data demonstrated a significant correlation between 

Breslow thickness and Cav3.1 and Cav3.2 expression (p<0.00001 for both TT-C isoforms). 

Mean Cav3.1 and Cav3.2 expression (Hs mean: 48.33 and 160.0, respectively) were higher in 

the group of primary melanoma tumors with Breslow thickness >1 mm than in the group of 

tumors with Breslow thickness ≤1 mm (Hs mean: 33.68 and 83.42, respectively). 

 

3. Expression of  TT-C  isoforms between the different clinicopathological primary 

melanoma subtypes  

 

The presence of Cav3.1 and Cav3.2 isoforms in the main four clinicopathological primary 

melanoma subtypes [SSMM (superficial spreading malignant melanoma), NM (nodular 

melanoma), ALM (acral lentiginous melanoma) and LMM (lentigo maligna melanoma)] was also 

studied (supplementary table 6). Mean Cav3.1 immunoexpression was low-moderate in all 

subtypes and the histoscore did not show global significant differences between them (p=0.07) 

(Figure 3A). However, mean Cav3.2 immunoexpression was differentially distributed among 

primary melanoma subtypes (p<0.00001) (supplementary table 7). Cav3.2 immunostaining was 

strong in NM and ALM (Hs means: 212.22 and 198.33 respectively), apparently according to 
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their high Breslow thickness, and low-moderate in SSMM according to their variable Breslow 

thickness (Hs mean: 67.17), with higher expression in very thick SSMM (Figure 3B). However, 

even the thickest SSMM group (Breslow >4 mm, Hs mean: 105.6) did not reach the high Cav3.2 

Hs values of the remainder subtypes. Of note, LMM showed strong Cav3.2 immunoexpression 

in spite of the very low Breslow thickness of all specimens (supplementary table 2).  

 

 

4. Correlation between the immunoexpression of TT-Cs and the other biomarkers in 

melanoma samples 

 

Levels of immunoexpression of both TT-Cs and of all antigens listed in Table 1 were subjected 

to a statistical correlation analysis in all melanoma samples (primary and metastatic). Significant 

correlations by Pearson test were obtained between some of them, showing a cluster of linear 

interactions between partial or complete PTEN loss/ V600E-BRAF/ Cav3.1/ LC3/ Cyclin D1/ 

Ki67/ Cav3.2/ Glut1. We observed a positive correlation between partial or complete PTEN loss 

and the presence of the V600E/BRAF mutant protein (p=0.00041). Importantly, this common 

mutation in melanoma (50-60% of cases) correlated with the expression of Cav3.1 (p=0.0009). 

Likewise, the expression of this channel isoform was linked to the expression of LC3, an 

important protein during the autophagic process. In our samples, the levels of LC3 also 

correlated with the levels of nuclear Cyclin D1 (p=0.01). In turn, nuclear Cyclin D1 showed a 

positive correlation with Ki67, a marker of proliferation. Finally, Cav3.2 positively correlated with 

Ki67 (p=0.03) and Glut1 (p=0.003), indicating that the expression of this channel isoform is 

enhanced in hypoxic and proliferative environments. (Figure 4).  

 

5. Survival studies: Lack of prognostic statistical significance of TT-Cs immunoexpression 

on disease free survival (DFS) and overall survival (OS) in our series. 

 

Among the 39 patients with a primary tumor, 17 experienced a relapse (39.53%) and 13 died 

(30.23%). Median DFS and OS were 26.33 months and 51.6 months, respectively. Median 

follow up was 29.10 months.  

 

Statistical univariate analysis looking for clinicopathological parameters and 

immunohistochemical biomarkers of primary tumors influencing DFS and OS was done. 

Clinicopathological variables analyzed were Breslow thickness and 2010 American Joint 

Committee on Cancer (AJCC) stages. All biomarkers employed in the present study (Cav3.1 

Cav3.2, Ki67, Cyclin D1, Glut1, CD31, LC3, V600E/BRAF and PTEN) were included as 

variables. Log-rank test analysis demonstrated that DFS and OS correlated inversely in a 

statistically significant way with high AJCC staging (DFS p=0.00006; OS p=0.002), high Breslow 

thickness (best cutoff 4 mm) (DFS p=0.00003; OS p=0.0001), partial or complete PTEN loss 

(DFS p<0,00001; OS p=0.0004) and high Ki67 expression (DFS p=0.01; OS p=0.02). Low 

Cyclin D1 levels correlated with poor OS (DFS p=0.24; OS p=0.02).  Cav3.1 or Cav3.2 isoform 

Hs did not show a statistical impact on survival (Figure 5). 

 

 

6. Survival studies: in silico analysis of the impact of TT-Cs expression at the RNA level on 

melanoma prognosis 

 

Due to the lack of prognostic statistical significance of TT-Cs immunoexpression  in our series, 

we studied the impact of TT-Cs upregulation at the RNA level on DFS and OS in the mentioned 

database (http://www.cbioportal.org/). Samples were followed up to 360 months. Although 

shorter times of follow-up were considered (supplementary Figure 1), highest statistical 
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significance was observed in 360 months for both TT-Cs.  From a total of 398 cases, only 4 

cases presented upregulation of Cav3.1 (Figure 5F). Nonetheless, a significant reduction was 

observed for DFS (p=0.026), but OS reduction was no significant (p=0.16). In contrast, the 

Cav3.2 RNA levels were upregulated in 17 and 21 cases from a total of 386 and 439 cases for 

DFS and OS, respectively. The upregulation of Cav3.2 is strongly associated to a poor outcome 

represented by significant decreases in DFS and OS (Figure 5G) (p=0.012 and 0.007, 

respectively).  
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Discussion 

 

Malignant melanoma is one of the most life-threatening cutaneous neoplasms. Therefore, 

investigation about molecules involved in melanoma pathogenesis and progression, which 

could be used as prognostic markers and/or targets of new therapeutic strategies, is required.  It 

is currently known that cutaneous melanoma may arise on normal skin or on a previous 

congenital or acquired melanocytic nevus 
35,36

. However, the Clark model for melanoma 

progression, in which melanoma develops from benign melanocytic nevus via dysplastic nevus 
37,38

, is a useful model to analyse on human specimens the role of potentially relevant molecular 

targets.  

 

Our group has recently reported that TT-Cs are expressed in melanoma cell lines and 

metastatic melanoma frozen samples. These channels mediate constitutive Ca
2+

 influx in 

melanoma cells and can be efficiently blocked by pharmacological drugs or silenced at the gene 

level. Both strategies lead to the apoptotic death of the cultured melanoma cells through ER 

stress and autophagy inhibition 
23,24

.  

 

Taking into account our previous findings, we decided to evaluate the immunoexpression of 

Cav3.1 and Cav3.2 on a series of human samples which contained the spectrum of 

melanocytes on normal skin, common acquired melanocytic nevi, dysplastic nevi, primary 

melanoma tumours with diverse Breslow thickness and metastatic melanoma, using made-to-

order antibodies. Consistently with our previous work, Cav3.1 and Cav3.2 proteins were 

expressed at higher levels in melanoma cells compared to epidermal melanocytes, especially 

the expression of Cav3.2 in metastatic tumors. Moreover, TT-C immunoexpression increased 

gradually from melanocytes of normal skin to common nevi, dysplastic nevi, primary melanoma 

and metastatic melanoma specimens. This progressive increase sustained our hypothesis 

about the upregulation of TT-Cs during melanoma progression. This was further supported by 

the observation that the expression of both isoforms was higher in thick (Breslow >1 mm) 

compared to thin (Breslow ≤ 1 mm) primary tumours.  

 

Regarding the immunostaining of TT-Cs isoforms among the different clinicopathological 

primary melanoma subtypes, we did not observe differences in relationship to Cav3.1. In 

contrast, the expression of Cav3.2 showed statistical differences depending on the melanoma 

subtypes. Overall, Cav3.2 immunostaining was stronger in melanomas with high mean Breslow 

thickness (NM, ALM) and moderate in tumors with variable Breslow thickness (SSMM). 

Neverthesless, although very thick SSMM (Breslow >4 mm) showed higher Cav3.2 

immunexpressión than less thick SSMM tumors (Breslow ≤4mm), differences were not 

significant. Also, the group of LMM, which included four in situ (Breslow =0) and two thin tumors 

with a mean Breslow of 0.25 mm, displayed a strong Cav3.2 immunostaining. As a matter of 

fact, the pathogenesis for LMM is quite distinctive and differs from pathogenesis of SSMM, 

developing on chronically exposed skin of elderly people, usually with a long-lasting radial 

growth phase and particular histopathological, molecular and genetic features 
39

. Since our 

series included a relatively small number of this LMM subtype (6 cases), in comparison with a 

majority of SSMM tumors (21 cases), but only 4 SSMM with Breslow >4 mm, broader studies 

will be necessary to confirm this finding.  

 

Our previous in vitro findings indicated that the expression of TT-Cs in melanoma cells is 

modulated under hypoxic conditions, play a role in melanoma viability and proliferation 
24

 and 

that their inhibition results in a blockade of basal macroautophagy (constitutively activated in 

melanoma cells) 
23

. Thus, we decided to check the correlation between the immunoexpression 

of both TT-C isoforms and proliferation (Ki67), cell cycle (Cyclin D1), hypoxia (Glut1), 

vascularization (CD31) and autophagy (LC3) biomarkers. In addition, since autophagy has been 

described to be high in BRAF mutant melanoma 
40

, we also tested melanoma samples 
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employing the currently commercially available VE1 antibody for the immunoexpression of 

V600E/BRAF mutated protein 
41

 and the frequently concomitant downregulation of the tumor 

suppressor protein PTEN 
42

.  In the current work, Cav3.1 immunoexpression nicely correlated 

with the LC3 autophagy biomarker and with the presence of the V600E/BRAF mutation which, 

in turn, was associated with PTEN downregulation as described in the previously mentioned 

melanoma molecular studies 
42

. On the other hand, Cav3.2 expression was closely related to 

the hypoxia marker Glut1 and the proliferation marker Ki67. Transcriptional upregulation of 

specific TT-C isoforms by hypoxia has been previously reported in proliferating cells, and found 

to be mediated by hypoxia inducible factors 
43–45

. Furthermore, the level of Ki67 immunostaining 

was associated with Cyclin D1 expression which, in turn, correlated with LC3, completing the 

cluster of linear interactions. In summary, our data supports the idea that increased autophagic 

flux and TT-Cs expression can be regarded as two mechanisms of cell survival inside a tumor 

with a high proliferation index in a hypoxic environment.  

 

Finally, since we have shown that TT-C expression was related to tumour progression and to 

adverse prognostic markers of primary tumours such as high Breslow thickness and cell 

proliferation biomarkers, we checked if it could be also employed as a prognostic factor. In fact, 

Pera and co-workers have recently shown that high levels of Cav3.2 (measured by RT-qPCR) 

were associated with poor outcome in patients with estrogen receptor positive breast cancers, 

whereas, in patients with HER2-positive breast cancers, high Cav3.2 levels were associated to 

a better OS after chemotherapy 
46

. Although Cav3.1 or Cav3.2 histoscores on primary tumors 

did not show an impact on the prognosis (OS and DFS) of our patients (n=39) (data not shown), 

we decided to perform a bioinformatics analysis from a larger number of patients. To this end 

we searched TCGA database through cBioPortal
33,34

 an obtained significant, negative 

associations between the overexpression of Cav3.1 and OS, and between the over-expression 

of Cav3.2 and OS/DFS. Thus, high levels of TT-Cs are related to bad prognosis, especially for 

Cav3.2, consistently with a role for these channels in tumor progression/metastasis. Otherwise, 

classical clinicopathological and immunohistochemical prognostic variables such as high 

Breslow thickness, advanced AJCC staging and high Ki67 expression were associated with 

short DFS and poor OS in our sample series, as expected. PTEN downregulation was also 

identified as a negative predictor for DFS and OS as previously shown 
47

. Intriguingly, high 

Cyclin D1 values were associated with better OS, differing from some other studies on 

melanoma 
48,49

 and other neoplasms 
50

. Yet, others claimed that Cyclin D1 immunoexpression 

levels lacked prognostic value in melanoma 
51

 or even correlated with longer OS in breast 

cancer patients 
52

. Although nuclear expression of cycling D1 is useful to evaluate cell 

proliferation 
53,54

, these discrepancies could be explained by recent reports of new functions of 

Cyclin D1 that go beyond its classical role in cell cycle and tumorigenesis 
55

. 

 

In summary, here we describe for the first time the immunoexpression of TT-C isoforms in a 

series of formalin-fixed / paraffin embedded tissue samples of human acquired melanocytic nevi 

and melanoma. We have found that the expression of Cav3.1 and Cav3.2 in normal skin and 

benign and malignant melanocytic neoplasms is in line with our previous in vitro studies in 

which TT-C transcript levels were studied 
56,57

, and appears related to tumour progression. 

Furthermore, the high expression of Cav3.2 in metastatic vs primary melanoma and its 

association to proliferative and hypoxia markers, on one hand, and the positive correlation 

between Cav3.1, autophagy markers and BRAF/V600E mutation on the other, opens a new 

venue of research regarding the use of T-type blockers in targeted therapies. 
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Legend for Figures 

Figure 1. TT-Cs immunostaining in several type of samples. 1. Cav3.1 (A) and Cav3.2 (B) 
mean ± SD expression Hs in normal skin (only epidermal melanocytes)*, acquired common 
nevi, dysplastic nevi, primary melanoma and metastatic melanoma. 2. Representative images 
for Cav3.1 expression in normal skin (C), acquired common nevi (D), dysplastic nevi (E) primary 
melanoma (F) and metastatic melanoma (G). Representative images for Cav3.2 expression in 
normal skin (H), acquired common nevi (I), dysplastic nevi (J) primary melanoma (K) and 
metastatic melanoma (L). Arrows show low/negative staining in epidermal melanocytes of 
normal skin. Hs mean were analyzed by Kruskal-Wallis test with Dunn's Multiple Comparison 
Test. *p<0,05; ** p<0,01; *** p<0,001. 
 
Figure 2. Differential immunoexpression of Cav3.1 (A) and Cav3.2 (B) according to 
Breslow thickness (≤ 1mm vs > 1mm) in primary melanoma tumors. Hs mean ± SD were 
analyzed by Mann-Whitney test. *p<0,05; ** p<0,01; *** p<0,001.  
 
Figure 3. Differential expression of Cav3.1 (A) and Cav3.2 (B) according primary 
melanoma subtype. SSMM (superficial spreading malignant melanoma); NM (nodular 
melanoma); ALM (acral lentiginous melanoma); LMM (lentigo.maligna melanoma). SSMM have 
been also divided according Breslow thickness. Hs mean ± SD was analyzed by Kruskal-Wallis 
test with Dunn's Multiple Comparison post hoc Test. *p<0,05; ** p<0,01; *** p<0,001. 
 
Figure 4. Statistically significant linear correlations between expression of 
immunohistochemical biomarkers. Pearson correlation tests of Hs were performed to find 
significant relationships among all the biomarkers employed in this study. A. Diagram of 
statistically significant correlations: low PTEN Hs - high BRAF/V600E Hs (p=0.00041), high 
BRAF/V600E Hs - high Cav3.1 Hs (p=0.0009), high Cav3.1 Hs - high LC3 Hs (p=0.01), high 
LC3 Hs - high CyclinD1 Hs (p=0.01), high Cyclin D1 Hs - high Ki67 Hs (p=0.003), high Ki67 Hs- 
high Cav3.2 Hs (p=0.03) and high Cav3.2 Hs - high Glut1 Hs (p=0.003). B. Immunostaining of 
biomarkers showing a statistically significant correlation in the same melanoma specimen 
(PTEN-BRAF/V600E (B,C), BRAF/V600E-Cav3.1 (D,E), Cav3.1-LC3 (F,G), LC3-Cyclin D1 (H,I), 
Cyclin D1-Ki67 (J,K), Ki67-Cav3.2 (L,M), Cav3.2-Glut1 (N,O).  
 
 
Figure 5.  Disease free survival (DFS) and Overall survival (OS) curves according 
statistically significant prognostic clinico-pathologic variables and biomarkers. AJCC 
stages* (A), Breslow thickness (B), PTEN (C), Ki67 (D), Cyclin D1 (E) immunoexpression. 
Cav3.1(F) and Cav3.2(G) curves generated using TCGA database (http://www.cbioportal.org/; 
Skin Cutaneous Melanoma). Altered=overexpression, . Z-score ≥2.    *Risk groups are based on 
2010  AJCC staging and grouped as: In situ (0), low risk (IA/IB), moderate risk (IIA), high risk 

(IIB/IIC-III), distant metastasis (IV). Hs cut-off values are included in brackets [ ]  
  
 
Supplementary figure 1. In silico analysis of the impact of Cav3.2 expression at the RNA 
level on melanoma prognosis at several times. A) 60 B) 120 and C) 240 months follow up. Z-
score ≥2.  
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TABLE 1. Information about the procedures and optimized analytical variables in each 
antibody employed in the study 
 

Antigen Staining 
Pattern 

Staining 
evaluation 

Clone Pretreatment / 
Detection 
platform * 

Dilution Source 

Cav 3.1 Membranous 
and cytoplasmic 

Membranous 
and cytoplasmic 

Polyclonal PT Link Low 95ºC 
20 min / 
EnvisionFlex 

1/150 Antibody BCN 
(Barcelona, 
Spain) 

Cav 3.2 Membranous, 
cytoplasmic and 
nuclear 
occasionally 

Membranous 
and cytoplasmic 

Polyclonal PT  Link High 
95ºC 20 min /  
EnvisionFlex  

1/200 Antibody BCN 
(Barcelona, 
Spain) 

Ki67** Nuclear Nuclear MIB-1 PT Link Low 95ºC 
20 min / 
EnvisionFlex 

RTU*** Dako 
(Glostrup, 
Denmark) 

Cyclin D1** Nuclear and 
cytoplasmic 

Nuclear EP12 PT  Link High 
95ºC 20 min /  
EnvisionFlex 

RTU Dako 
(Glostrup, 
Denmark) 

Glut1 Membranous Membranous SPM498 PT Link Low 95ºC 
20 min / 
EnvisionFlex 

1/100 Thermo Fisher 
Scientific  
(Waltham, 
USA) 

CD31 Membranous Membranous JC70A PT  Link High 
95ºC 20 min /  
EnvisionFlex 

RTU Dako 
(Glostrup, 
Denmark) 

LC3 Cytoplasmic Cytoplasmic  Polyclonal PT Link Low 95ºC 
20 min / 
EnvisionFlex 

1/200 Novus 
(Littleton, 
USA) 

BRAF/V600E Cytoplasmic Cytoplasmic VE1 Ventana 
conditions 

RTU Ventana 
(Tucson, USA) 

PTEN Nuclear and 
cytoplasmic 

Cytoplasmic 6H2.1 PT  Link High 
95ºC 20 min /  
EnvisionFlex 

1/100 Dako 
(Glostrup, 
Denmark) 

 
Antigen detected, staining pattern, staining evaluation, clone, optimized protocol (pretreatment 
conditions, platform employed for detection, dilution) and source of the antibodies.  
 
* Pretreatment / Detection platform  
- Epitope retrieval in the PreTreatment Module, PT-LINK (Dako, Glostrup, Denmark) 
- EnVision FLEX Detection Kit (Dako, Glostrup, Denmark) using diaminobenzidine chromogen 
as a substrate.  
- BRAF/V600E detection was performed using Ventana platform (Tucson, Arizona, USA). 

**Proliferation and cell cycle markers (Ki67 & Cyclin D1) were not evaluated in in situ melanoma 

(Breslow 0) due to the difficulty of discerning between proliferating in situ melanoma cells and 

proliferating keratinocytes of the epidermal basal layer, especially when lentiginous epidermal 

hyperplasia was present. 

 ***RTU: Ready to use 
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 SUPPLEMENTARY TABLE 1. Clinicopathological data of primary and metastatic 

melanoma cases.  

N Type of sample Age Gender Localization Subtype Breslow (mm) AJCC stage 

1 Primary  Tumor 66 F Lower Limb SSMM 0.90 IA 

2 81 F Trunk SSMM 13.54 IIC 

3 20 F Lower Limb SSMM 0.48 IB 

4 80 F Lower Limb SSMM 1.17 IB 

5 87 F Foot SSMM 7.30 IIC 

6 85 F Trunk SSMM 2.77 IIA 

7 79 M Trunk SSMM 3.65 IIA 

8 48 F Upper Limb SSMM 0.00 0 

9 80 F Upper Limb SSMM 0.26 IA 

10 46 F Head and Neck SSMM 0.62 IA 

11 64 F Lower Limb SSMM 0.52 IA 

12 71 M Lower Limb SSMM 5.20 IIIC 

13 69 M Head and Neck SSMM 0.00 0 

14 62 M Trunk SSMM 0.82 IA 

15 65 M Trunk SSMM 0.57 IA 

16 37 M Trunk SSMM 0.00 0 

17 52 F Upper Limb SSMM 6.50 IIB 

18 65 M Trunk SSMM 0.50 IA 

19 42 M Trunk SSMM 0.52 IA 

20 47 F Lower Limb SSMM 0.40 IA 

21 45 F Trunk SSMM 0.00 0 

22 55 F Upper Limb NM 0.95 IB 

23 64 M Upper Limb NM 3.88 IIB 

24 69 M Trunk NM 5.01 IV 

25 59 M Trunk NM 2.50 IIA 

26 62 F Upper Limb NM 0.93 IB 

27 61 M Head and Neck NM 11.00 IIC 

28 75 M Head and Neck LMM 0.00 0 

29 85 M Head and Neck LMM  0.00 0 

30 84 M Head and Neck LMM 0.00 0 

31 72 M Head and Neck LMM  0.00 0 

32 86 F Lower Limb LMM  0.61 IA 

33 61 M Head and Neck LMM  0.86 IA 

34 84 M Foot ALM 2.70 IIA 

35 64 F Upper Limb ALM 5.50 IIC 

36 91 M Foot ALM 10.00 IIB 

37 60 F Foot ALM 0.00 0 

38 67 M Foot ALM 4.29 IIC 

39 89 F Upper Limb ALM 2.70 IIA 

40 49 F Lower Limb Unclassifiable Unknown Unknown 

1 Metastasis  87 F Cutaneous/ SC  

2 63 M Peritoneum 

3 85 F Cutaneous/ SC  

4 77 M Lymph node 

5 77 M Lymph node 

6  78 F Cutaneous/ SC  

7  62 M Lung 

8  75 M Adrenal 

9  70 M Lymph node 

10  52 F Lung 

11  82 F Cutaneous/ SC  

12  62 M Lymph node 

13  62 M Cutaneous/ SC  

14  53 F Lymph node 

15  69 M Lymph node 

16  79 F Parotid  

17  54 M Soft tissues 

18  54 M Lymph node 

19  83 F Cutaneous/ SC 

20  51 F Lymph Node 

21  45 F Cutaneous/ SC 

22  46 F Lymph Node 
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SSMM: Superficial Spreading Malignant Melanoma, NM: Nodular Melanoma, LMM: Lentigo 
Maligna Melanoma, ALM: Acral Lentiginous Melanoma. SC: subcutaneous. 2010 AJCC 
classification.  
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SUPPLEMENTARY TABLE 2. Breslow thickness of primary melanoma subtypes.  
 

pMM subtype 

Breslow thickness  (mm) 

Mean Median SD range 

SSMM 2.17 0.57 3.4 0-13.54 

SSMM ≤4 mm 0.78 0.52 0.98 0-3.65 

SSMM >4mm 8.13 6.9 3.71 5.2-13.54 

NM 4.05 3.19 3.77 0.95-11 

ALM 4.2 3.5 3.39 0-10 

LMM 0.25 0 0.39 0-0.86 

 
pMM (primary melanoma), SSMM (superficial spreading malignant melanoma); NM (nodular 
melanoma); ALM (acral lentiginous melanoma); LMM (lentigo.malignant melanoma). SD: 
Standard deviation 
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SUPPLEMENTARY TABLE 3. Cav3.1 and Cav 3.2 immunostaining measured by 

histoscore on normal skin, melanocytic nevi and melanoma samples 

 

 NS ACMN DN pMM mMM 

TT-C isoform Mean (SD, HsRange) Mean (SD, HsRange) Mean (SD, HsRange) Mean (SD, HsRange) Mean (SD, HsRange) 

Cav3.1 (Hs) 19.29 (28.82, 0-120) 10.83 (19.51, 0-100) 38.5 (30.66, 0-100) 41.86 (48.46, 0-120) 44.44 (39.22, 0-140) 

Cav 3.2 (Hs) 1.9 (6.02, 0-20) 108.67 (46.59, 20-210) 108 (48.73, 30-200) 126.16 (83.73, 0-250) 220 (47.19, 60-270) 

 
TT-C (T-type channel); NS (epidermal melanocytes on normal skin); ACMN (acquired common 
melanocytic nevi); DN (dysplastic nevi); pMM (primary melanoma); mMM (metastatic 
melanoma). SD: Standard deviation, HsRange: Histological Score Range 
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SUPPLEMENTARY TABLE 4. Statistical comparison of mean Cav3.1 and Cav 3.2 
immunostaining measured by histoscore on normal skin, common and dysplastic nevi 
and melanoma samples  
 

 

TT-C isoform Cav3.1 (p-value) Cav3.2 (p-value) 

Global differences 5-groups <0.0001 <0.0001 

NS vs ACMN ns <0.0001 

NS vs DN ns <0.0001 

NS vs pMM ns <0.0001 

NS vs mMM <0.01 <0.0001 

ACMN vs DN <0.05 ns 

ACMN vs pMM <0.01 ns 

ACMN vs mMM <0.0001 <0.0001 

DN vs pMM ns ns 

DN vs mMM ns <0.0001 

pMM vs mMM ns <0.0001 

Trend-test <0.0001 <0.0001 

 
TT-C (T-type channel); NS (epidermal melanocytes on normal skin); CAMN (common acquired 
melanocytic nevi); DN (dysplastic nevi); MM (melanoma) pMM (primary melanoma); mMM 
(metastatic melanoma). Kruskal-Wallis test with Post Hoc Dunn's Multiple Comparison Test was 
performed to study differences in the expression of TT-C isoforms in all skin groups. A trend 
test, using a linear model, was used to evaluate the progression in the Hs levels.  
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SUPPLEMENTARY TABLE 5. Statistical comparison of mean Cav3.1 and Cav 3.2 
immunostaining measured by histoscore on thin (Breslow ≤1mm) vs thick (Breslow >1 
mm) primary melanoma tumors 
 

 
 Breslow Test 

All pMM ≤ 1mm >1mm non-parametric 

TT-C isoform Mean (SD) Mean (SD) Mean (SD) p-value 

Cav3.1 (Hs) 34.45 (44.09) 33.68 (39.12) 48.33 (54.71) <0.00001* 

Cav 3.2 (Hs) 85.39 (90.24) 83.42 (78.25) 160.00 (72.85) <0.00001* 

 
TT-C (T-type channel); pMM (primary melanoma). Histoscore mean were analyzed by Mann-
Whitney test. SD: Standard deviation 
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SUPPLEMENTARY TABLE 6. Differential immunoexpression of Cav 3.1 and Cav 3.2 
measured by histoscore according to primary melanoma subtype 

  pMM subypes 

 All pMM SSMM 
SSMM ≤4 

mm 
SSMM >4mm NM ALM LMM 

TT-C isoform Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Cav3.1 (Hs) 34.45 (44.09) 41.74 (55.51) 31.00 (42.94) 61.88 (71.48) 48.33 (50.31) 32.50 (41.44) 72.00 (32.59) 

Cav 3.2 (Hs) 85.39 (90.24) 67.17 (59.43) 46.67 (51.48) 105.6 (54.77) 212.22 (28.95) 198.33 (51.93) 201.0 (30.71) 

 
TT-C (T-type channel); pMM (primary melanoma), SSMM (superficial spreading malignant 
melanoma); NM (nodular melanoma); ALM (acral lentiginous melanoma); LMM 
(lentigo.malignant melanoma). SSMM have been also divided according Breslow thickness. SD: 
Standard deviation
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SUPPLEMENTARY TABLE 7. Statistical comparison of mean Cav3.1 and Cav 3.2 
immunostaining measured by histoscore according to primary melanoma subtype 
 
 

TT-C isoform Cav3.1 (p-value) Cav3.2 (p-value) 

Global differences 5-groups 0.07 <0.0001 

SSMM≤≤≤≤ 4 vs SSMM > 4 ns ns 

SSMM≤≤≤≤ 4 vs NM ns <0.0001 

SSMM≤≤≤≤ 4 vs ALM ns <0.0001 

SSMM≤≤≤≤ 4 vs LMM ns <0.0001 

SSMM> 4 vs NM ns <0.0001 

SSMM> 4 vs ALM ns <0.05 

SSMM> 4 vs LMM ns <0.05 

NM vs ALM ns ns 

NM vs LMM ns ns 

ALM vs LMM ns ns 

 
TT-Cs (T-type channel); pMM (primary melanoma), SSMM (superficial spreading malignant 
melanoma); NM (nodular melanoma); ALM (acral lentiginous melanoma); LMM 
(lentigo.malignant melanoma). SSMM have been also divided according to Breslow thickness. 
Kruskal-Wallis test with post Hoc Dunn's Multiple Comparison Test was performed to study 
differences in the expression of TT-Cs isoforms between pMM subtypes.  
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