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Abstract. A major challenge for the use of phase change materials (PCMs) in thermal energy 

storage (TES) is overcoming the low thermal conductivity of PCM’s. The low conductivity gives 

rise to limited power during charging and discharging TES. Impregnating metal foam with PCM, 

however, has been found to enhance the heat transfer. On the other hand, the effect of foam 

parameters such as porosity, pore size and material type has remained unclear. In this paper, the 

effect of these foam parameters on the solidification time is investigated. Different samples of 

PCM-impregnated metal foam were experimentally tested and compared to one without metal 

foam. The samples varied with respect to choice of material, porosity and pore size. They were 

placed in a rectangular cavity and cooled from one side using a coolant flowing through a cold 

plate. The other sides of the rectangular cavity were Polymethyl Methacrylate (PM) walls 

exposed to ambient. The temperature on the exterior walls of the cavity was monitored as well 

as the coolant flow rate and its temperature. The metal foam inserts reduced the solidification 

times by at least 25 %. However, the difference between the best performing and worst 

performing metal foam is about 28 %. This shows a large potential for future research. 

1.  Introduction 

Temperature-sensitive goods should be kept in a temperature range starting with production until end 

use. A cold chain must thus be established during transport and storage. For some pharmaceutical cold 

chain applications, transported goods have to be kept at temperatures between 0 C̊ and 8 ̊C to make sure 

they are not damaged [1]. Other examples of cold chains can be found in food industry [2, 3]. Three 

major types of solutions exist: active containers [4], passive containers [5] or a mixture of both [6-8]. 

Active containers include a chiller in addition to the transport container. Passive containers have added 

thermal mass in the container which is charged prior to usage. Because of the incorporated chillers, 

active containers are more complicated than passive coolers. Furthermore, frequently switching the 

chiller on and off can cause compressor failure [4]. Therefore, several authors have added extra thermal 

mass to active containers to decrease switching of the active cooling [6-8]. Mixed systems are also used 

to reduce and displace peak power use of the chillers incorporated in the containers [9]. 

Passive containers require added thermal mass to the passive container. This can be achieved by both 

sensible and latent heat. However, sensible heat systems have a considerably lower energy density 

compared to systems operating on latent heat [10]. This is especially the case in cold chain applications 

in which only low temperature fluctuations are allowed. Therefore, passive cooling is achieved using 

phase change materials (PCM’s) due to the exploitation of their latent heat absorption property. PCM-
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based systems primarily use the latent heat of a liquid-solid phase change and they can achieve three to 

four times the energy density of systems using only sensible heat [10]. By an adequate choice of the 

PCM melting temperature, temperature can be maintained within the required range during the phase 

change [11]. 

Passive containers requires the PCM packages to be chilled and solidified prior to transportation. 

PCM’s however have a low thermal conductivity [12]. This limits the charging speed of the cold storage. 

To increase the charging speed of PCM systems, enhancement methods can be applied [13, 14]. 

Examples are using fins, honeycombs, metal foam, rings and graphite inserts [15]. One of the structures 

showing remarkable potential are open cell metal foams. Du and Ding [16] performed an analytical 

study based on a one-equation model and the volume averaging technique. They concluded metal foam 

had a large potential to decrease the charging/discharging time. Zhao and Wu [17] performed an 

experimental study and came to the same conclusion. 

Open cell metal foams are usually characterized by their porosity, pore size and material [18]. The 

effect of metal foam properties on melting and solidification processes is not entirely understood. Lafdi 

et al. [19] performed an analytical study on melting of phase change materials. They concluded that the 

effect of foam porosity and pore density were correlated and needed to be optimized. The effect of foam 

parameters on the phase change processes is however still unclear [20]. Xiao et al. [21] performed a 

study on the effective thermal conductivity of open cell copper and nickel foams impregnated with 

paraffin. They concluded the effective thermal conductivity increased with decreasing porosity. There 

are conflicting results on the effect of the pore density. Feng et al. [22] experimentally tested 

unidirectional freezing and concluded the pore density had a negligible effect on the freezing rate. Oya 

et al. [23] found that pore density had a positive influence on the effective thermal conductivity. Hong 

and Herling [24] found pore density to have a negative effect on effective thermal conductivity for a 

paraffin/aluminum foam composite. These conflicting results for different PCM and metal foam 

parameter combinations hint at strongly correlated effects on different thermal properties of different 

composites. 

This paper discusses an experimental investigation of solidification behavior in PCM-metal composite 

use. Samples with different metal foam parameters are compared.  

2.  Experimental set-up  

2.1.  Test set-up 

Figure 1 shows the test set up schematic. The heat transfer fluid (HTF) is chilled by the Julabo FL601 

chiller. The chiller can deliver a cooling power of 0.33 kW at -10 ̊C. The HTF can either be routed over 

a bypass, to charge the chiller, or through a cold plate. Three CP10G16 cold plates from Lytron are 

placed side by side and connected as shown in Figure 1 a. 

The cold plates are submerged in the middle of a rectangular enclosure shown in Figure 1 b. The 

enclosure consists of glued PM walls. The PM walls on the side perpendicular to the cold plate are 0.25 

cm thick. The other Polymethyl Methacrylate  (PM) walls have a thickness of 0.5 cm.. On each side of 

the cold plate, the rectangular enclosure has a size of 2x19x26 cm. The enclosures are filled with metal 

foam with a height of 16 cm. The metal foam properties are given in Table 1. There are two tests with 

an aluminum foam of 10 PPI and a porosity of  95.5 %. One sample is pressed against the cold plate, 

while the other is not. The two samples allow to test the effect of the thermal contact resistance between 

foam and cold plate. A total of 7 samples are tested. Additionally a case without foam is tested. The 

enclosure is filled with PCM up to just above the top of the metal foam. Puretemp 1 is used as phase 

change material. Its properties are shown in Table 1. 
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Table 1. Properties of the metal foam samples. 

Material Aluminum Copper 

Thermal conductivity 229 W/m C̊ 401 W/m ̊C 

Pore density / Porosity 5 PPI / 0.955 

10 PPI / 0.955 

10 PPI / 0.967 

10 PPI / 0.933 

20 PPI / 0.933 

40 PPI / 0.933 
 

Table 2. PureTemp 1 properties 

 PureTemp 1 

Melting temperature 1 C̊ 

Melting enthalpy 301 J/g 

Thermal conductivity 0.15 W/m ̊C (liquid) 

0.25 W/m ̊C (solid) 

Specific heat capacity 2.43 J/g ̊C (liquid) 

2.32 J/g ̊C (solid) 

Density 1.00 kg/l (liquid) 

1.10 kg/l (solid) 

The set-up is equipped with four thermocouples and one flowmeter. Firstly the flow rate of the HTF 

is measured using a Bürkert frequency flow rate sensor. Secondly the temperature of the HTF at the inlet 

and outlet of the cold plates is measured by two calibrated K-type thermocouples. The cooling power 

can thus be determined from the product of the HTF flow rate, density, specific heat capacity and 

temperature difference across the cold plates. Two additional K-type thermocouples measure the 

temperature outside of the cold plate as well as the PM inside wall temperature. The ambient temperature 

is measured using a PT100. Finally the melting front is visualized using a camera on the side of the set-

up. 

 
Figure 1. (a) Test set up schematic; (b) 3D model view of the test set up. 
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2.2.  Measurement procedure 

First the HTF reservoir is cooled by the chiller to -16 ̊C.  The HTF is then circulated through the cold 

plate. Every 5 seconds, the temperature and flow measurement readings are recorded using a Keithley 

data acquisition system and a desktop computer. The measurement is stopped once the PM wall 

temperature reaches -5 ̊C. The stopping criteria is chosen to ensure the enclosure is fully solidified. The 

procedure is repeated for the other six metal foam enhanced PCM samples and the PCM alone. 

3.  Measurement results 

3.1.  Cooling power 

The first measurement result is the cooling power of the Julabo chiller. This power is integrated and 

divided by the PCM-foam volume to obtain the cooling energy per unit of volume as a function of time. 

The resulting error on the cooling energy is 17 %. The results for the no-foam and the best performing 

case with foam are shown in Figure 2. The cooling energy is referenced to the enclosure volume. The 

metal-foam case outperforms that without foam as the experiment is terminated sooner and the slope of 

the energy-vs-time curve is steeper. Both curves reach different maximum energy densities. In a case 

with no heat gains from the ambient, both curves should reach the same required cooling power after 

correction for the porosity.  

Cooling down the PCM volume from +20 ̊C to -5 ̊C requires about 100 kWh/m³ cooling energy in the 

no foam case. The required cooling energy is however below this value. The experiment is thus 

terminated before the sample has fully solidified. Cooling down the foam sample over the same 

temperature interval requires about 93 kWh/m³. The required cooling energy is however ~ 20 % higher. 

The PM single pane walls do not suffice to reduce the losses to an acceptable level. 

 
Figure 2. Cooling energy per volume as a function of time. 

It is not possible to accurately calculate the gains from the measurement data. After all, the heat gains 

from the ambient can both lead to lower and higher required cooling energy. The total heat losses are 

thus not equal to the difference in measured cooling power and required cooling power for full 

solidification. The losses could be determined from the PM wall temperature measurements, the ambient 

temperature and an estimate of the thermal resistance between both. The experiment is however not 1D, 

therefore a single PM wall temperature measurement does not facilitate the extraction of PM wall 

temperature profile. 

Because of the high heat gains from the ambient, the measurement of the cooling power is only useful 

for qualitative interpretation. Visual verification for numerical models is a common method in literature 

[19, 25]. The insulation is therefore often limited to single pane walls. To obtain quantitative results in 

future studies, heat gains should be reduced. To this aim, insulation can be added to the test set up or 
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the temperature difference between ambient and phase change temperature should be smaller. In the 

following subsection the temperature of the PM wall are analyzed and compared. 

3.2.  Polymethyl methacrylate wall temperatures 

Figure 3 shows the PM wall temperature as a function of time. Initially the samples are at room 

temperature. For the foam samples, the wall temperature quickly drops to the solidification temperature. 

The temperature is then sustained in a small temperature interval, signifying the PCM is solidifying. 

After the PCM is solidified, the temperature drops until –5 C̊ at which point the experiment is 

terminated. 

The profile of the best performing metal foam (copper, 40 PPI, porosity of 93.3 %) is compared to the 

no-foam case. There are three apparent stages in the solidification of the foam sample. Firstly the metal 

foam and PCM are cooled until the PM wall reaches the solidification temperature. At this moment, 

solidification has started in between the centre of the cold plate and the PM wall. Due to heat gains from 

the environment, the experiment deviated from a 2D case and therefore solidification had not started 

near the corners of the enclosure. Before solidification starts at the PM wall, locations closer to the cold 

plate will already start solidification. Therefore, the slope of the temperature changes as the temperature 

drops. The phase change temperature is maintained quite constantly throughout the solidification. Soon 

after the solidification is completed between the cold and the PM wall, the temperature drops to – 5 ̊C. 

Due to the heat gains from the environment, the sample is not completely frozen at this point. 

The profile in the no-foam case is different. Because the effective conductivity is now very low, PCM 

at the cold wall is already solidifying when PCM at the PM wall is still above 6 ̊C. A solidification front 

forms gradually growing until it reaches the surrounding of the wall thermocouple. Once most of the 

PCM in this vicinity is solidified, the temperature quickly drops to – 5 ̊C.   

 

 
Figure 3. Polymethyl methacrylate wall temperature. 

The no-foam case thus shows the temperature profile of a single phase front process. The metal foam 

cases do not. To qualitatively understand the solidification in the metal foam, two extreme heat transfer 

mechanisms are considered. In the first mechanism, the metal foam is treated as a fin with fin efficiency 

1. The first stage of the phase change is the metal foam cooling down to the cold plate temperature. 

Once the metal has cooled down below the solidification temperature, the PCM starts to solidify not 

only on the cold wall, but throughout the rectangular enclosure. Each pore thus has its own melting 

front: pore front solidification. The resulting temperature profile drops quickly to the phase change 

temperature and stays within the melting range until solidification is completed. Figure 4 b gives a 

schematic representation of pore front solidification. 

The second mechanism is depicted schematically on Figure 4 a. The metal foam is close to local 

thermodynamic equilibrium with the PCM. The phase change front moves along the normal of the cold 
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wall. The result is a single phase change front as opposed to a phase change front in each individual 

pore. In this case, the wall temperature would gradually drop as the solidification front gets closer to the 

PM wall. If the enclosure is modelled using the volume averaging technique [18], the first mechanism 

corresponds to a two-equation model [26] while the second mechanism to a single-equation one [22, 

27]. Both models are applied in literature for metal-foam-PCM combinations. The solidification 

mechanism in metal foam is thus a combination of both extreme cases with the relative contribution of 

each mechanism depending on foam and PCM properties. Qualitatively this can be shown from the 

obtained temperature curves. 

 

The temperature curves can be subdivided in three parts: initial drop, solidification, final drop to -5 ̊C. 

The solidification phase in the absence of foam however exhibits a larger temperature drop. The no foam 

case is the extreme example of the single phase front solidification mechanism. The lower the 

temperature drop in the solidification phase, the more uniform the temperature in the PCM-foam 

composite. A uniform temperature throughout the sample complies to the pore-front solidification.  

To compare the different samples, two metrics will be used. Firstly the total solidification time. The 

shortest solidification time is achieved by the 40 PPI 93.3 % copper foam. It is also closest to pore front 

solidification since the temperature drop in the solidification stage is the smallest of all tested samples. 

Comparing the aluminium foam samples with the copper foam samples show a clear influence of metal 

foam material. The effect of pore density on the total solidification time depends on the foam material. 

For aluminium foam, the influence of pore density is trumped by that of thermal contact resistance 

between cold plate and metal foam. For copper foam, pore density has a strong influence, shortening 

solidification times by 20 %. The porosity seems to have a minor influence for copper foam. Finally, all 

foam parameters reduce solidification times by at least 25 %. The difference between the best 

performing foam (40 PPI, 93.3 %, copper foam) and the worst performing foam (10 PPI, 95.5 %, 

aluminium foam) is however about 28 %. 

Cold plate PM wall 
Pore front 

Cold plate PM wall 
Single phase front 

Figure 4. Phase change front mechanisms in metal foam enhanced phase change material; (a) 

single phase front ; (b) pure phase front. 
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Figure 5. Polymethyl methacrylate wall temperature, detail during PCM solidification. 

The slope of the PM wall temperature in the solidification region is a second metric for the metal foam 

enhanced PCM performance. Figure 5 shows the temperature profiles of the metal foam enhanced PCM 

during the solidification phase. Linear regression is performed during the solidification phase. There is 

a significant difference between the slopes of aluminium-copper foams and between foams of different 

porosities. The three copper foam samples with a porosity of 93.3% do not have a significantly different 

slope, nor do the 5PPI and 10 PPI (new) 95.5% aluminium samples. The main effect influencing the 

balance between pore front and single front solidification are thus material and porosity, not pore 

density. 

4.  Conclusion 

Phase change materials can provide a safe, reliable solution to maintain temperatures in challenging cold 

chains. They however have low thermal conductivities, which inhibit fast cooling of the PCM packages. 

Therefore, metal foam can be inserted in PCM to increase effective thermal conductivity and decrease 

cooling time. Open cell metal foam is often characterized by material, porosity and pore density. The 

effect of these characteristics on metal-foam-PCM composites is however still unclear. In the present 

study, 7 different metal foams are impregnated with PCM and compared to the case without metal foam. 

Solidification in foam samples goes by two main mechanisms: pore front and single phase front 

solidification. All samples outperform the sample without foam by at least 25 %. However, the 

difference between the best- and the worst-performing metal foam inserts is 28 %, signaling a large 

potential for future research. The presented conclusions in this article are however only qualitative 

because of significant heat gains from the environment. Future research should include an estimate of 

heat gains as well as an effort to reduce them. Furthermore, further tests on the effect of metal foam 

parameters are necessary to determine optimal PCM enhancement methods. 
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