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CYCLICITY OF A SIMPLE FOCUS VIA THE VANISHING

MULTIPLICITY OF INVERSE INTEGRATING FACTORS

ISAAC A. GARCÍA1, JAUME LLIBRE2 AND SUSANNA MAZA1

Abstract. First we provide new properties about the vanishing mul-
tiplicity of the inverse integrating factor of a planar analytic differential
system at a focus. After we use this vanishing multiplicity for study-
ing the cyclicity of some simple foci of several classes of planar analytic
differential systems.

1. Introduction and statement of the results

We consider planar differential systems

(1) ẋ = P (x, y), ẏ = Q(x, y),

where P, Q : U → R are C1 functions defined in the simple connected open
subset U of R2. A C1 function R : U → R such that

(2)
∂(RP )

∂x
= −∂(RQ)

∂y

is an integrating factor of system (1). The differential systems (1) having an
integrating factor in U have a first integral H : U → R satisfying that

RP =
∂H

∂y
, RQ = −∂H

∂x
.

As usual a first integral H : U → R is a function constant on the solutions
of the differential system (1).

It is immediate to check that R is an integrating factor of system (1) in
U if and only if R is a solution of the linear partial differential equation

(3) P
∂R

∂x
+ Q

∂R

∂y
= −

(
∂P

∂x
+

∂Q

∂y

)
R

in U .
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A C1 function V : U → R is an inverse integrating factor if V verifies the
linear partial differential equation

(4) P
∂V

∂x
+ Q

∂V

∂y
=

(
∂P

∂x
+

∂Q

∂y

)
V

in U . We note that V satisfies (4) in U if and only if R = 1/V satisfies (3)
in U \ Σ where Σ = {(x, y) ∈ U : V (x, y) = 0}.

In 1996 it was proved in [11] the following result. Assume that the C1

planar differential system (1) defined in the open subset U of R2 has an
inverse integrating factor V : U → R. If γ is a limit cycle of system (1)
contained in U , then γ is contained in Σ. For an easier proof see [13]. After
this result many papers have been published studying different aspects of
the limit cycles using the properties of the inverse integrating factor. For a
good survey see [8].

First in this paper we provide some new properties on the vanishing mul-
tiplicity of the inverse integrating factor of a planar analytic differential sys-
tem, see Theorem 1. Later on we use this vanishing multiplicity for studying
the cyclicity of some foci of several classes of planar polynomial differential
systems.

We deal with real planar analytic differential system with a monodromic
singular point at the origin, i.e. we consider differential systems (1) where
P (x, y) and Q(x, y) are real analytic functions in a neighborhood U of the
origin such that P (0, 0) = Q(0, 0) = 0, and the origin is either a focus or a
center. A focus is a singular point such that in a neighborhood of it all the
orbits different from the singular point spiral either tending to it or going
away from it. A center is a singular point having a neighborhood filled of
periodic orbits with the unique exception of the singular point.

We will only consider analytic system (1) being the origin a simple fo-
cus, i.e. the monodromic singular point is one of the following three types:
non-degenerate focus, degenerate focus without characteristic directions or
nilpotent focus (see the definitions in section 2). System (1) having a sim-
ple monodromic singular point, after performing a generalized polar blow-
up, can be transformed into a differential equation defined over a cylinder
blowing up the origin into a periodic orbit. More precisely, performing a
generalized polar blow-up, system (1) defined in a neighborhood U of the
origin pass to be defined into a cylinder C =

{
(r, θ) ∈ R × S1 : |r| < δ

}

for a certain δ > 0 sufficiently small. Here, we have considered the circle
S1 = R/ZT where T > 0 is the constant period associated to the polar
change and ZT = {kT : k ∈ Z}. This change to polar coordinates is a
diffeomorphism in U\{(0, 0)} and transforms the origin of coordinates into
the circle r = 0. In fact, the neighborhood U is transformed into an annulus
contained in the half-cylinder r ≥ 0, but we can consider its extension to
the values in which r < 0. In generalized polar coordinates system (1) can
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be seen as a differential equation over the cylinder C of the form

(5)
dr

dθ
= F(r, θ),

where F(r, θ) is an analytic function in C. The circle r = 0 is a particular
periodic orbit of the differential equation (5) and, therefore, F(0, θ) = 0 for
all θ ∈ S1.

In a neighborhood of r = 0 we can write the Taylor series

(6) F(r, θ) =
∑

i≥ℓ

Fi(θ)r
i,

where Fi(θ) are T–periodic functions and Fℓ(θ) ̸= 0. When the origin of (1)
is a focus, the circle r = 0 is an isolated periodic orbit (i.e. a limit cycle)
of the differential equation (5), and it is a non–isolated periodic orbit when
the origin of (1) is a center. The positive integer ℓ which appears in (6) is
called the vanishing multiplicity of F(r, θ) at r = 0.

Along the paper we shall work with inverse integrating factors V (r, θ)
of the differential equation (5); that is, with functions V : C → R which
are non–locally zero and which admit either a Taylor or Laurent series in a
neighborhood of r = 0,

(7) V (r, θ) =
∑

i≥m

vi(θ)r
i ,

with vm(θ) ̸= 0 and m ∈ Z, satisfying the partial differential equation (4)
which in polar coordinates writes

(8)
∂V (r, θ)

∂θ
+

∂V (r, θ)

∂r
F(r, θ) =

∂F(r, θ)

∂r
V (r, θ).

We remark that since V (r, θ) is a function defined over the cylinder C it
needs to be T–periodic in θ. The integer m which appears in (7) is called
the vanishing multiplicity of V (r, θ) at r = 0.

Let Ψ(θ; r0) =
∑

i≥1 Ψi(θ)r
i
0 be the flow associated to equation (5) such

that Ψ(0; r0) = r0. We recall that the Poincaré map Π : Σ ⊆ R → R
associated to the periodic orbit r = 0 of the differential equation (5) is
defined as Π(r0) = Ψ(T ; r0) =

∑
i≥1 cir

i
0 where the ci := Ψi(T ) are called

Poincaré–Liapunov constants.

To know the value of m in the simple focus case is useful because the
Poincaré map Π has a Taylor series of the form Π(r0) = r0+cmrm

0 +O(rm+1
0 )

with cm ̸= 0, see the details in [8]. In a non–degenerate focus we have that
m = 2j + 1 is odd where the integer j ≥ 1 is called the order of the focus.

The cyclicity of a focus of an analytic autonomous differential system in
the real plane is the maximum number of limit cycles which can bifurcate
from the focus under any analytic perturbation. In general to study the
cyclicity of a focus is not an easy problem. In [6] assuming the knowledge
of an inverse integrating factor the authors study the cyclicity of a simple
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focus of an analytic system (1) using the vanishing multiplicity of V (r, θ) at
r = 0. When an inverse integrating factor is known, they proved that the
cyclicity of a non-degenerate focus can be given in terms of the vanishing
multiplicity of the inverse integrating factor at the origin. For a nilpotent or
a degenerate focus without characteristic directions the maximum number
of limit cycles which can bifurcate from the focus is also determined in terms
of m only when certain perturbations are taken into account, see [6]. To be
more precise, consider an analytic system (1) with a simple focus at the
origin and take an analytic perturbation of it having the form

(9) ẋ = P (x, y) + P̄ (x, y, ε), ẏ = Q(x, y) + Q̄(x, y, ε),

where ε ∈ Rp are the parameters of perturbation, 0 < ∥ε∥ << 1 and the
functions P̄ (x, y, ε) and Q̄(x, y, ε) are analytic for (x, y) ∈ U a neighborhood
of the origin, analytic near ε = 0 and P̄ (x, y, 0) = Q̄(x, y, 0) ≡ 0. We
associate to the perturbed system (9) the vector field Xε = (P (x, y) +
P̄ (x, y, ε))∂x + (Q(x, y) + Q̄(x, y, ε))∂y. We are interested in giving a sharp
upper bound for the number of limit cycles which can bifurcate from the
focus at the origin of system (9) under such a kind of perturbation. This
sharp (realizable) upper bound is called the cyclicity of the origin of system
(1) and will be denoted by Cycl(Xε, 0) along this paper. Of course, these
limit cycles are created in a Hopf bifurcation.

In relation with system (9), a perturbed field (P̄ (x, y, ε), Q̄(x, y, ε)) is said
to have subdegree s if (P̄ (x, y, ε), Q̄(x, y, ε)) = O(∥(x, y)∥s). In this case, we

denote by X [s]
ε the vector field associated to such a perturbation.

On the other hand, the perturbed vector field (P̄ (x, y, ε), Q̄(x, y, ε)) is said
to be (1, n)–quasi–homogeneous of weighted subdegree (wx, wy) if P̄ (λx, λny, ε)

= O(λwx) and Q̄(λx, λny, ε) = O(λwy). In this case, we denote by X [wx,wy ]
ε

the vector field associated (9) under such a perturbation.

Our first result study the relationship between the vanishing multiplicities
of F(r, θ) and of V (r, θ), enlarging results from [5, 9, 6] in the sense that
we do not assume the knowledge of the explicit expression of an inverse
integrating factor and only its existence is used. The following result allows
in some cases to know the vanishing multiplicity m of V (r, θ) at r = 0,
and therefore the cyclicity of a simple focus via the vanishing multiplicity
of F(r, θ) at r = 0.

Theorem 1. We assume that the origin of the analytic differential system
(1) is a simple focus. Let ℓ and m be the vanishing multiplicities of F(r, θ)
and of V (r, θ) at r = 0, respectively. Then m ≥ ℓ ≥ 1. Moreover the
following statements hold.

(a) We have m = ℓ if and only if vk(θ) is constant for k = m, . . . , 2ℓ−1.
(b) Assume that ℓ ≥ 2 + k with k a non–negative integer. If

∫ T

0
Fℓ(θ) dθ =

∫ T

0
Fℓ+1(θ) dθ = · · · =

∫ T

0
Fℓ+k−1(θ) dθ = 0,
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but ∫ T

0
Fℓ+k(θ) dθ ̸= 0,

then m = ℓ + k.

Our other results are on the class of planar polynomial differential systems
of the form

(10) ẋ = −y + Pn(x, y), ẏ = x + Qn(x, y),

where Pn and Qn are real homogeneous polynomials of degree n ≥ 2.

After performing a change of variables to polar coordinates, system (10)
can be transformed into a differential system defined over the cylinder de-
fined by

{
(r, θ) ∈ R × S1

}
with S1 = R/2πZ. Thus, system (10) becomes

(11) ṙ = rna(θ), θ̇ = 1 + rn−1b(θ),

with a(θ) and b(θ) homogeneous trigonometric polynomials of degree n + 1
given by

a(θ) = cos θ Pn(cos θ, sin θ) + sin θ Qn(cos θ, sin θ),

b(θ) = cos θQn(cos θ, sin θ) − sin θ Pn(cos θ, sin θ).

We study the cyclicity of the focus at the origin of the polynomial dif-
ferential systems (10) for two subclasses of systems (10), the ones having
either a(θ), or b(θ) equal to a non–zero constant. Our results are stated in
the following two theorems.

Theorem 2. Assume that the polynomial differential system (10) has the
function a(θ) = a ∈ R. Then system (10) is of the form

(12)
ẋ = −y (1 + Λn−1(x, y)) + a x(x2 + y2)

n−1
2 ,

ẏ = x (1 + Λn−1(x, y)) + a y(x2 + y2)
n−1

2 ,

where n is odd, and Λn−1(x, y) is an arbitrary homogeneous polynomial of
degree n − 1. The following two statements hold.

(a) The origin of system (12) is a focus if and only if a ̸= 0. In this
case, the origin is the unique singularity of system (12), and this
system has no periodic orbits.

(b) The cyclicity of the focus of system (12) is Cycl(Xε, 0) = (n − 1)/2.

Theorem 3. Assume that the polynomial differential system (10) has the
function b(θ) = b ∈ R. Then system (10) is of the form

(13)
ẋ = −y + xΩn−1(x, y) − b y(x2 + y2)

n−1
2 ,

ẏ = x + y Ωn−1(x, y) + b x(x2 + y2)
n−1

2 ,

where n is odd, and Ωn−1(x, y) is an arbitrary homogeneous polynomial of
degree n − 1. The following two statements hold.
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(a) The origin of system (13) is a center if and only if

(14)

∫ 2π

0
Ωn−1(cos θ, sin θ) dθ = 0.

(b) If the origin of system (13) is a focus, then its cyclicity is given by
Cycl(Xε, 0) = (n − 1)/2.

The proof of the cyclicity in Theorem 3 uses results on the vanishing
multiplicity of V (r, θ) provided in the papers [5, 9, 6], whereas the proof of
Theorem 2 additionally also uses Theorem 1.

On the other hand the order of the nondegenerate focus for some classes
of polynomial differential systems (10) has been studied in [14, 16]. See also
for instance the paper [10] for interesting examples about the relationships
between order and cyclicity.

Strózyna and Zoladek proved in [17] that there is an analytic change of
variables such that any analytic system with nilpotent linear part can be
transformed into a generalized Liénard system

ẋ = −y , ẏ = a(x) + yb̃(x) ,

with a(x) = asx
s(1 + O(x)), s ≥ 2 and b̃(0) = 0. In addition, in the mon-

odromic case s = 2n − 1 with n ≥ 2, and after the change x 7→ u with
u(x) = (2n

∫ x
0 a(z)dz)1/(2n) = x(a2n−1 + O(x))1/(2n) and the reparametriza-

tion of the time t 7→ τ with dt/dτ = u2n−1/a(x) = a
−1/(2n)
2n−1 + O(x), we can

simplify even more the above normal form. In short it holds that, to study
monodromic singular points, we can reduce our attention to the study of
the analytic vector field

(15) ẋ = −y , ẏ = x2n−1 + yb(x) ,

where b(x) =
∑

j≥β bjx
j . We call n the Andreev number associated to system

(15). From here, it is not difficult to characterize the centers of monodromic
nilpotent singularities; see [3, 15].

Theorem 4 (Moussu). Consider the analytic system (15) having the origin
as a monodromic singular point, i.e. satisfying one of the following condi-
tions: (i) β > n − 1; (ii) β = n − 1 and b2

β − 4n < 0; (iii) b(x) ≡ 0. Then,

the origin is a center if and only if b(x) is an odd function.

In [7] it is proved the nonexistence of an analytic first integral of system
(15) in a neighborhood of the origin in the center case with β = n− 1. Here
we study the cyclicity at the origin of (15) in the focus case with β = n − 1
under the assumption of the existence of a local analytic inverse integrating
factor of (15). Our result is the following one.

Theorem 5. Consider the analytic nilpotent system (15) having a focus
at the origin with odd Andreev number n, and assume the existence of an
inverse integrating factor V (x, y) analytic in a neighborhood of the focus. If
β = n − 1 then the following holds.
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(a) The cyclicity Cycl(Xε, 0) of the origin of system (15) has the lower
bound Cycl(Xε, 0) ≥ (n + 1)/2 − 1.

(b) If only analytic perturbations of system (15) with (1, n)–quasihomo-
geneous weighted subdegrees (wx, wy) with wx ≥ n and wy ≥ 2n − 1
are taken into account, then no limit cycles can bifurcate from the

origin of system (15), that is, Cycl(X [n,2n−1]
ε , 0) = 0.

After Theorem 5, we only need to study the vanishing multiplicity m of
analytic inverse integrating factors at nilpotent foci of system (15) in the
case β > n − 1. We present some examples in the forthcoming proposition.
We emphasize that, in these examples we do not assume the existence of
a local analytic inverse integrating factor of (15). We only use statement
(a) of Theorem 7 which guarantees the existence of a smooth and non–flat
inverse integrating factor V (r, θ) of the associated differential equation (5)
in a neighborhood of r = 0.

Proposition 6. Consider system (15) with β > n − 1 having a focus at
the origin and let m be the vanishing multiplicity at r = 0 of a smooth and
non–flat inverse integrating factor of the associated equation (5). Then the
following holds.

(a) If β is even, then m = β − n + 2 and moreover Cycl(X [n,2n−1]
ε , 0) =

⌊(β − n + 1)/2⌋.
(b) Let β odd and b(x) = bβxβ + bγxγ with bβbγ ̸= 0, γ > β and γ even.

(b.1) If γ = β + 1 and β ≥ n + 1, then m = β − n + 3 and

Cycl(X [n,2n−1]
ε , 0) = ⌊(β − n + 2)/2⌋.

(b.2) If γ = β + 3 and β ≥ n + 3, then m = β − n + 5 and

Cycl(X [n,2n−1]
ε , 0) = ⌊(β − n + 4)/2⌋.

Here ⌊.⌋ denotes the integer part.

The paper is organized as follows. Theorems 1, 2 and 3 are proved in
sections 3, 4 and 5, respectively. Finally, in section 6 we shall prove Theorem
5 and Proposition 6.

2. Preliminary results

2.1. Focus without characteristic directions. We consider an analytic
system (1) of the form

(16) ẋ = Pd(x, y) + P̃ (x, y), ẏ = Qd(x, y) + Q̃(x, y),

where d ≥ 1 is an odd number, Pd(x, y) and Qd(x, y) are homogeneous

polynomials of degree d and P̃ (x, y), Q̃(x, y) ∈ O(∥(x, y)∥d+1). We assume
that P 2

d (x, y) + Q2
d(x, y) ̸≡ 0.

We say that a focus at the origin of system (16) is non-degenerate if d = 1
and the linear part of system (16) has complex eigenvalues of the form α ± β i
with α, β ∈ R and β ̸= 0. The origin of system (16) is a degenerate singular
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point if the determinant associated to the linear part of (16) is zero. When
d > 1, the origin of system (16) is a degenerate singular point.

A characteristic direction for the origin of system (16) is a linear factor
in R[x, y] of the homogeneous polynomial xQd(x, y) − yPd(x, y). If there
are no characteristic directions, then the origin is a monodromic singular
point of system (16). We remark that a non-degenerate focus never has
characteristic directions.

If d ≥ 1 and the origin of system (16) is a focus without characteristic
directions, we can perform the polar blow–up x = r cos θ, y = r sin θ, which
transforms the origin of coordinates to the circle of equation r = 0. In these
new coordinates, system (16) can be seen as a differential equation (5) over
the cylinder C where F(r, θ) is an analytic function in C. Clearly, in this
situation the period is T = 2π.

2.2. Nilpotent focus. We say that the origin of system (1) is a nilpotent
singular point if it is a degenerate singularity and it can be written as

(17) ẋ = y + P̃ (x, y) , ẏ = Q̃(x, y) ,

with P̃ (x, y) and Q̃(x, y) analytic functions near the origin without con-
stant and linear terms. The problem of knowing if a nilpotent singularity is
monodromic was solved by Andreev [2]. System (17) having a monodromic
singular point at the origin can be brought by means of an analytic change
of variables to the following Andreev analytic normal form

(18) ẋ = y (−1 + X1(x, y)), ẏ = f(x) + y ϕ(x) + y2 Y0(x, y),

where X1(0, 0) = 0, f(x) = x2n−1 + · · · and either ϕ(x) ≡ 0 or ϕ(x) =
bxβ +· · · with β ≥ n−1. Here n ≥ 2 is called the Andreev number associated
to (17).

We assume that the origin of system (18) is a nilpotent monodromic
singular point with Andreev number n. Then, doing the generalized polar
blow-up (x, y) 7→ (r, θ) with (x, y) = (r Csθ, rn Snθ) system (18) pass to an
ordinary analytic differential equation (5) over a cylinder. We recall that
the functions ξ(θ) = Cs θ, η(θ) = Sn θ are the unique solution of the Cauchy
problem

dξ

dθ
= −η,

dη

dθ
= ξ2n−1, ξ(0) = 1, η(0) = 0.

Notice that Cs θ and Sn θ are T–periodic with T = 2

√
π

n

Γ
(

1
2n

)

Γ
(

n+1
2n

) where

Γ(·) denotes the Euler Gamma function.

3. Vanishing multiplicities

The existence, uniqueness and regularity of the inverse integrating factor
V (r, θ) of the differential equation (5) in a neighborhood of r = 0 is stated
in the following theorem. The existential part of (a) is proved in [4], while
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the uniqueness part is showed in [5], see also [6]. Statement (b) is showed
in [9].

Theorem 7. Let the origin be a simple monodromic singular point of the
analytic differential system (1). Then the following statements hold.

(a) If the origin is a focus, then there exists an inverse integrating factor
V (r, θ) of the differential equation (5) which is smooth and non–flat
in the variable r in a neighborhood of r = 0. Moreover V (0, θ) = 0
for all θ ∈ [0, T ) and V (r, θ) is unique, up to a nonzero multiplicative
constant.

(b) If the origin is a center, then there exists an inverse integrating
factor V (r, θ) of the differential equation (5) which is analytic in a
neighborhood of r = 0 and such that V (0, θ) ̸= 0 for all θ ∈ [0, T ).
Moreover there is an analytic first integral H(r, θ) of (5) near r = 0.

We can consider a more general situation in which V (r, θ) is either smooth
(C∞) and non–flat in a neighborhood of r = 0, or it has a finite order pole at
r = 0. Thus function V (r, θ) has a Laurent series representation of the form
(7) with vm(θ) ̸= 0 and m ∈ Z. Actually, in [5] it is proved that vm(θ) ̸= 0
for θ ∈ [0, T ). Moreover, in [6] it is shown that if m ≤ 0, then the origin of
system (1) is a center. In [9] it is also proved the following result.

Theorem 8. We assume that the origin of the differential system (1) is a
simple monodromic singularity. Let V (r, θ) be an inverse integrating fac-
tor of the corresponding equation (5), which has a Laurent expansion in a
neighborhood of r = 0 of the form (7). Then the origin is a center if and
only if

∫ T

0

F(r, θ)

V (r, θ)
dθ ≡ 0,

for all r ≥ 0 sufficiently small.

We note that Theorems 7 and 8 will be used in the proofs of our Theorems
2 and 3.

The next simple consequence of Theorem 8 is pointed out in [9] .

Corollary 9. Let ℓ ≥ 1 and m ≥ 1 be the vanishing multiplicities of F(r, θ)
and V (r, θ) at r = 0, respectively. If m < ℓ then the origin of system (1) is
a center.

We will prove a sufficient condition to compute the value of the vanishing
multiplicity m of V (r, θ) at r = 0, when the origin of the analytic differential
system (1) is a focus and we do not know the explicit expression of V (r, θ).

Proof of Theorem 1. When the origin is a focus, we know that m ≥ ℓ ≥ 1,
see [9]. Introducing the Taylor series (5) and (7) into the partial differential
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equation (8) we have

[
v′
m(θ)rm + · · ·

]
+

[
mvm(θ)rm−1 + · · ·

] [
Fℓ(θ)r

ℓ + · · ·
]

=(19)
[
ℓFℓ(θ)r

ℓ−1 + · · ·
]
[vm(θ)rm + · · · ] ,

where the dots denote higher order terms. In order to obtain the minimum
exponent of the powers of r in (19) we must compare the integer numbers
m and m + ℓ − 1, which are equal only in the case ℓ = 1. Therefore we split
the proof into two cases, namely ℓ = 1 and ℓ ≥ 2.

Case ℓ = 1. If ℓ = 1, then equating the coefficients of the power rm in (19)
we get that v′

m(θ) = (1 − m) F1(θ) vm(θ). Therefore

vm(θ) = vm(0) exp

(∫ θ

0
(1 − m)F1(α)

)
dα.

Now, using the T–periodicity of vm(θ) and the fact that F1(θ) ̸≡ 0 and
vm(θ) ̸≡ 0, we obtain that m = 1 if and only if v1(θ) is constant for all

θ ∈ [0, T ), and that if

∫ T

0
F1(θ) dθ ̸= 0 then m = 1.

In short, we get both statements (a) with m = ℓ = 1, and (b) with k = 0
and m = ℓ = 1.

Case ℓ ≥ 2. In this case, equating in (19) the coefficients of the powers rk

for k = m, . . . , m + ℓ − 2, we get that vk(θ) = Ck ∈ R are constants with
Cm ̸= 0. Now, comparing the coefficients in (19) of the next power rm+ℓ−1

we obtain

(20) v′
m+ℓ−1(θ) = Cm(ℓ − m)Fℓ(θ) .

Since Fℓ(θ) ̸= 0, we get that

vm+ℓ−1(θ) = vm+ℓ−1(0) exp

(∫ θ

0
(ℓ − m)F1(α)

)
dα.

From this expression we see that m = ℓ if and only if vm+ℓ−1(θ) = Cm+ℓ−1 =
vm+ℓ−1(0). This proves statement (a) of the theorem.

Since by hypothesis ℓ ≥ 2, equating again in (19) the coefficients of all
the powers rs for s ≥ m + ℓ, we get that

(21) v′
m+ℓ+j(θ) =

j+1∑

i=0

(ℓ − m + j + 1 − 2i) vm+i(θ) Fℓ+j+1−i(θ) ,

for any integer index j ≥ 0. It is clear that, in order to preserve the T–
periodicity of the functions vm+ℓ+j(θ), we must impose that the righthand
side of (21) be a function with zero average.
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Since ℓ ≥ 2+k, from a previous analysis we know that vi(θ) = Ci ∈ R are
constants for i = m, . . . ,m + k with Cm ̸= 0. Now, consider the expression
of v′

m+ℓ+k−1(θ) given by (21) with j = k − 1, that is,

(22) v′
m+ℓ+k−1(θ) =

k∑

i=0

(ℓ − m + k − 2i) Cm+i Fℓ+k−i(θ).

Assume now the hypotheses of the statement (b) of the theorem. If k = 0,

we have

∫ T

0
Fℓ(θ) dθ ̸= 0. Therefore imposing zero average in the righthand

side of (20) we get m = ℓ.

If k ≥ 1, then taking zero average in (22) we have that

(ℓ − m + k) Cm

∫ T

0
Fℓ+k(θ) dθ = 0,

or equivalently m = ℓ + k. This proves statement (b). �

Remark 10. We will sketch that using the Bautin’s method for comput-
ing the Poincaré–Liapunov constants we obtain the same conclusion than
statement (b) of Theorem 1.

Let Ψ(θ; r0) =
∑

i≥1 Ψi(θ)r
i
0 be the flow associated to equation (5) such

that Ψ(0; r0) = r0. The Poincaré map Π : Σ ⊆ R → R is defined as
Π(r0) = Ψ(T ; r0) =

∑
i≥1 cir

i
0 where the ci := Ψi(T ) are called Poincaré–

Liapunov constants. The values of the Poincaré–Liapunov constants ci can
be determined in a recursive way, although many computations are involved.
The standard Bautin’s method consists in imposing that Ψ(θ; r0) is a so-
lution of (5) and next equating the same powers of r0. In this way one
has a set of recursive linear differential equations for each Ψi(θ) which are
uniquely determined from the initial condition Ψ(0; r0) = r0 which implies
that Ψ1(0) = 1 and Ψi(0) = 0 for i ≥ 2.

We have ∂Ψ/∂θ = F(Ψ, θ), that is,

(23) Ψ′
1(θ)r0 + · · · = Fℓ(θ) [Ψ1(θ)r0 + · · · ]ℓ + O(rℓ+1

0 ).

Equating in (23) the coefficients of the powers rk
0 for k = 1, . . . , ℓ − 1 gives

Ψ′
k(θ) = 0. Therefore, Ψ1(θ) = 1 and Ψi(θ) = 0 for i = 2, . . . , ℓ−1. Thus we

have c1 = 1 and ci = 0 for i = 2, . . . , ℓ − 1. Equating now the coefficient of

rℓ
0, the next equation is Ψ′

ℓ(θ) = Fℓ(θ) or equivalently Ψℓ(θ) =
∫ θ
0 Fℓ(θ) dθ.

Therefore cℓ =
∫ T
0 Fℓ(θ) dθ.

Now we are in position to show statement (b) of Theorem 1 with k = 0,

that is, if
∫ T
0 Fℓ(θ) dθ ̸= 0 then cℓ ̸= 0 and hence m = ℓ. Statement (b) of

Theorem 1 with k ≥ 1 is proved in the same way, going even further in the
performed analysis.

Remark 11. Since in statement (b) of Theorem 1 we have ℓ ≥ 2 + k (thus
k ≤ ℓ − 2) and m = ℓ + k, the possible values of m allowed by Theorem 1
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are bounded by
2(k + 1) ≤ m ≤ 2(ℓ − 1) .

Actually, since m must be odd in the nondegenerate focus case, the improved
bound in this case is 2k + 3 ≤ m ≤ 2ℓ − 3. Unfortunately, the maximum
value 2ℓ − 3 that m can reach is far from an optimal upper bound for m as
the following example shows.

We reproduce using our notation the example of Theorem 1 in [16]. For
any ℓ ≥ 4 such that ℓ + 1 is either a prime number or an integer power of a
prime number, the equation

dr

dθ
= F(r, θ) =

rℓa(θ)

1 + rℓ−1b(θ)
=

∑

j≥0

(−1)j a(θ) bj(θ) r(j+1)ℓ−j ,

with a(θ) = R sin((ℓ + 1)θ), b(θ) = R cos((ℓ + 1)θ) + 2 sin((ℓ − 1)θ) and R a
nonzero real parameter has m = 2ℓ(ℓ − 1) + 1.

4. Case a(θ) constant

We shall need the following result which is a partial result of Theorem 1
of [6].

Theorem 12. Let (7) be an inverse integrating factor of the polynomial
differential system (10) having a weak focus at the origin. Then m ≥ 1 is
odd and the cyclicity of this focus is (n − 1)/2.

Proof of Theorem 2. First we claim that system (12) is the more general
form of a system (10) whose associated homogeneous trigonometric polyno-
mial a(θ) is constant. To prove the claim, note that if a(θ) = a is a constant,
we must have

(24) xPn(x, y) + yQn(x, y) = a (x2 + y2)(n+1)/2.

Define now the polynomial

(25) ∆(x, y) = xQn(x, y) − yPn(x, y).

Using the Cramer’s rule for solving system (24) and (25) with respect to the
variables Pn and Qn we obtain

(26)

Pn(x, y) =

∣∣∣∣
a (x2 + y2)(n+1)/2 y

∆(x, y) x

∣∣∣∣
∣∣∣∣

x y
−y x

∣∣∣∣
,

Qn(x, y) =

∣∣∣∣
x a (x2 + y2)(n+1)/2

−y ∆(x, y)

∣∣∣∣
∣∣∣∣

x y
−y x

∣∣∣∣
.

We have (x2 + y2)Pn(x, y) = a x(x2 + y2)(n+1)/2 − y∆(x, y). Thus, we get

that x2 + y2 divides ∆(x, y) and, therefore Pn(x, y) = ax(x2 + y2)
n−1

2 −
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yΛn−1(x, y), with Λn−1 an arbitrary homogeneous polynomial of degree n−
1. Moreover, the second equation of (26) gives Qn(x, y) = xΛn−1(x, y)) +

ay(x2 + y2)
n−1

2 , proving thus the claim.

In polar coordinates system (12) becomes

(27) ṙ = arn, θ̇ = 1 + b(θ) rn−1,

where b(θ) = Λn−1(cos θ, sin θ) is an arbitrary homogeneous trigonometric
polynomial of degree n − 1. If a > 0 (resp. a < 0) then in R2\{(0, 0)}
we have that ṙ > 0 (resp. ṙ < 0) and system (12) has no periodic orbit.
In particular, the origin is the unique singularity of (12) which is a global
repeller or attractor according with a > 0 or a < 0, respectively. Note that
if a = 0, then system (12) becomes orbitally equivalent to the linear center,
that is, ẋ = −y(1 + Λn−1(x, y)), ẏ = x(1 + Λn−1(x, y)).

Near the origin the equation of the orbits of (27) is

(28)
dr

dθ
= F(r, θ) =

arn

1 + b(θ) rn−1
= a rn + O

(
r2n−1

)
.

Hence, the vanishing multiplicity of F(r, θ) at r = 0 is n. Since
∫ 2π

0
Fn(θ) dθ =

∫ 2π

0
a dθ ̸= 0,

taking into account statement (b) of Theorem 1 with k = 0, the vanishing
multiplicity of V (r, θ) at r = 0 is m = n. From Theorem 12 the cyclicity of
the origin of system (12) is (n − 1)/2 . �

5. Case b(θ) constant

Proof of Theorem 3. Using an analogous proof to that of Theorem 2 we
would see that (13) is the more general form of a system (10) whose homo-
geneous trigonometric polynomial b(θ) is constant. If b(θ) = b is constant,
we must have

(29) xQn(x, y) − yPn(x, y) = b (x2 + y2)(n+1)/2.

Define now the polynomial

(30) Ψ(x, y) = xPn(x, y) + yQn(x, y).

Applying the Cramer’s rule for solving system (29) and (30) with respect to
the variables Pn and Qn we obtain that x2 + y2 divides Ψ(x, y). Therefore

Pn(x, y) = xΩn−1(x, y) − b y(x2 + y2)
n−1

2 with Ωn−1 an arbitrary homoge-
neous polynomial of degree n − 1. Moreover, we obtain that Qn(x, y) =

y Ωn−1(x, y) + b x(x2 + y2)
n−1

2 , and system (10) becomes system (13).

In polar coordinates system (13) becomes

(31) ṙ = rn a(θ), θ̇ = 1 + b rn−1,
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where a(θ) = Ωn−1(cos θ, sin θ). On the other hand, the differential equation
of the orbits of system (31) is

(32)
dr

dθ
= F(θ, r) =

rn a(θ)

1 + b rn−1
= a(θ)rn+1 + O(r2n−1),

which has the inverse integrating factor

V (θ, r) =
rn

1 + b rn−1
= rn + O(r2n−1).

Therefore, by Theorem 8, the origin is a center of (13) if and only if
∫ 2π

0

F(θ, r)

V (θ, r)
dθ = 0,

which implies that the unique center condition is
∫ 2π

0
a(θ) dθ = 0,

equivalently to (14).

Besides, since n is the vanishing multiplicity of V (r, θ) on r = 0, taking
again into account Theorem 12, the cyclicity of the focus at the origin of
system (12) is (n − 1)/2 . �

Corollary 13. System (13) has in polar coordinates the first integral

H(θ, r) =
r1−n

1 − n
+ b ln r − A(θ),

being A(θ) a primitive of a(θ).

Proof. The variables in (32) can be separated as

1 + b rn−1

rn
dr = a(θ) dθ.

Integrating we get the first integral

H(θ, r) =
r1−n

1 − n
+ b ln r − A(θ),

being A(θ) a primitive of a(θ), that is A′(θ) = a(θ). �

Remark 14. System (13) possesses the following dynamic behavior accord-
ing with the sign of the parameter b ∈ R.

• If b = 0 then θ̇ = 1 and therefore the origin is an isochronous mon-
odromic singular point of system (13). The origin is the only finite
singularity of (13). Moreover, (13) has a degenerate infinity (i.e. the
equator of the Poincaré disc is filled of singular points).

• If b > 0 then θ̇ > 0. Thus the origin is the only finite singularity of
(13) which is monodromic.
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• If b < 0 then, besides the origin, system (13) can have other sin-
gularities. These singular points are located on a circle of radius
R∗ = n−1

√
−1/b. More precisely, the polar coordinates of them are

(r, θ) = (R∗, θ∗) with a(θ∗) = 0.

6. The cyclicity of some nilpotent focus

The following theorem is one of the main results of [6] and will be strongly
used in the proofs of Theorem 5 and Proposition 6 given in this section.

Theorem 15 ([6]). We assume that the origin of system (17) is monodromic
with Andreev number n. Let V (r, θ) be an inverse integrating factor of the
corresponding equation (5) which has a Laurent expansion in a neighborhood
of r = 0 of the form V (r, θ) = vm(θ) rm + O(rm+1), with vm(θ) ̸≡ 0 and
m ∈ Z.

(a) If the origin of system (17) is a focus, then m ≥ 1, m + n is even
and its cyclicity Cycl(Xε, 0) satisfies Cycl(Xε, 0) ≥ (m + n)/2 − 1.
In this case, m is the vanishing multiplicity of V (r, θ) on r = 0.

(b) If the origin of system (18) is a focus and if only analytic perturba-
tions of (1, n)–quasihomogeneous weighted subdegrees (wx, wy) with
wx ≥ n and wy ≥ 2n − 1 are taken into account, then the maximum
number of limit cycles which bifurcate from the origin is ⌊(m−1)/2⌋,
that is, Cycl(X [n,2n−1]

ε , 0) = ⌊(m − 1)/2⌋.
Proof of Theorem 5. First of all we recall that the fact of having the An-
dreev number n odd is a necessary condition for the existence of an analytic
inverse integrating factor V (x, y) around any nilpotent focus at the origin
for system (17), see [6].

We will denote by P(1,n)
k ⊂ R[x, y] the set of (1, n)–quasihomogeneous

polynomials of weighted degree k. That is, pk(x, y) ∈ P(1,n)
k if pk(λx, λny) =

λkpk(x, y) for all λ ∈ R. Moreover, a vector field Xi = pi+1∂x + qi+n∂y is
a (1, n)–quasihomogeneous polynomial vector field of weighted degree i if

pi+1 ∈ P(1,n)
i+1 and qi+n ∈ P(1,n)

i+n .

With the former definitions, we write the analytic normal form (15) as

(33) ẋ =
∑

i≥n

pi(x, y) , ẏ =
∑

i≥2n−1

qi(x, y) ,

where pi and qi are in P(1,n)
i . It is clear that

pn(x, y) = −y , q2n−1(x, y) =

{
x2n−1 if β > n − 1 ,
x2n−1 + bn−1yxn−1 if β = n − 1,

and pj(x, y) ≡ 0 for all j > n. In other words, if X denotes the associated
vector field to system (15), then X =

∑
i≥n−1 Xi where Xi denotes a (1, n)–

quasihomogeneous polynomial vector field of weighted degree i.
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Let V (x, y) be an analytic inverse integrating factor of system (15). Then
we can assume the following Taylor expansion V (x, y) =

∑
i≥s Vi(x, y) with

Vi a given (1, n)–quasihomogeneous polynomial of weighted degree i. As
usual we denote by divX the diveregence of the vector field X . Imposing
XV = V divX and taking its lower (1, n)–quasihomogeneous terms (in fact
of weighted degree n + s − 1) we get

(34) Xn−1Vs = Vs divXn−1 .

That is, Vs(x, y) is an inverse integrating factor of Xn−1. Due to the quasi-
homogeneity of Xn−1, it follows that V2n(x, y) = xq2n−1 −nypn is an inverse
integrating factor of Xn−1 and thus a polynomial solution of the partial dif-
ferential equation (34). In order to have another polynomial solution of (34)
linearly independent with V2n it is necessary that Xn−1 possesses a polyno-
mial first integral. But this option is only possible when β > n − 1, and
therefore Xn−1 = −y∂x + x2n−1∂y is Hamiltonian, see [1].

In short we have proved that, when β = n − 1 any analytic local inverse
integrating factor of (15) has a Taylor expansion around the origin of the
form V (x, y) =

∑
i≥2n Vi(x, y) with V2n(x, y) = x2n + bn−1yxn +ny2. In this

case, after taking generalized polar coordinates x = r Cs θ, y = rn Sn θ and
using that x2n + ny2 = r2n, system (15) becomes

ṙ =
x2n−1ẋ + yẏ

r2n−1
= Ξ(r, θ), θ̇ =

xẏ − nyẋ

rn+1
= Θ(r, θ).

Finally, from here we get an ordinary analytic differential equation (5) over
a cylinder. Using that Cs2nθ + n Sn2θ = 1, we have that the Jacobian
determinant of the polar blow-up is rn and therefore the associated equation
(5) has the inverse integrating factor given by

Ṽ (r, θ) =
V (r Cs θ, rnSn θ)

rn Θ(r, θ)
,

where Θ(r, θ) = Θn−1(θ) rn−1 + O (rn) with Θn−1(θ) = 1 + bn−1 Csnθ Sn θ.
We emphasize that Θn−1(θ) > 0 as it is proved in [6]. Using quasi-homo-
geneity leads V (r Cs θ, rnSn θ) =

∑
i≥2n wi(θ)r

i with wi(θ) = Vi(Cs θ, Sn θ)

and hence w2n(θ) = Θn−1(θ). Putting all together the result is Ṽ (r, θ) =

r + · · · , that is, the vanishing multiplicity m of Ṽ at r = 0 is m = 1. Now,
using the results of [6] we obtain the desired result. More precisely, our
statements (a) and (b) follow from statements (a) and (b) of Theorem 15
with m = 1, respectively. �
Proof of Proposition 6. The statements about the cyclicity of the nilpotent
focus follow from Theorem 15 once we know the value of m.

First we prove statement (a). Notice that, since β is even we have
a focus at the origin of system (15). In short, we have ẋ = −y, ẏ =
x2n−1 + y

∑
i≥β bix

i which is expressed in generalized polar coordinates

x = r Cs θ, y = rn Sn θ as ṙ =
∑

i≥β ai(θ)r
i+1, θ̇ = rn−1 +

∑
i≥β b̂i(θ)r

i
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with ai(θ) = biCsi θ Sn2 θ and b̂i(θ) = biCsi+1 θ Sn θ for i ≥ β. Hence we
obtain an equation (5) of the form

dr

dθ
= F(r, θ) =

∑
i≥β ai(θ)r

i−n+2

1 +
∑

i≥β b̂i(θ)ri−n+1
=

∑

i≥ℓ

Fi(θ)r
i,

with ℓ = β − n + 2. Observe that ℓ ≥ 2 due to the assumption β > n − 1.
We recall briefly at this point two properties of integrals along one period

T of the generalized trigonometric functions that we shall use along this
proof, see [12] for more details:

∫ T

0
Csq θ Snp θ dθ =





0 if p or q are odd;

2√
np+1

Γ(p+1
2 )Γ( q+1

2n )

Γ(p+1
2 + q+1

2n )
if both p and q are even.

Actually we get
∫ T

0
Fℓ(θ) dθ =

∫ T

0
a(θ) dθ = bβ

∫ T

0
Csβ θ Sn2 θ dθ ̸= 0,

because bβ ̸= 0 and β is even by hypothesis.
Using now statement (b) of Theorem 1 with k = 0, the vanishing multi-

plicity of the inverse integrating factor V (r, θ) at r = 0 is m = ℓ.

Now, we shall prove statement (b). We remark that, since β is odd and
γ is even we have a focus at the origin for system (15). In short, taking
again generalized polar coordinates as before we obtain an equation (5) of
the form

dr

dθ
= F(r, θ) =

aβ(θ)rℓ + aγ(θ)rj

1 + b̂β(θ)rℓ−1 + b̂γ(θ)rj−1
=

∑

i≥ℓ

Fi(θ)r
i,

with ai(θ) = biCsi θ Sn2 θ and b̂i(θ) = biCsi+1 θ Sn θ for i ∈ {α, β}. Here
ℓ = β − n + 2 ≥ 2 and j = γ − n + 2 > ℓ. Actually we obtain that

∫ T

0
Fℓ(θ) dθ =

∫ T

0
aβ(θ) dθ = bβ

∫ T

0
Csβ θ Sn2 θ dθ = 0,

because β is odd. Now we split the proof of the subcases (b.1) and (b.2):

(b.1) Take γ = β + 1, hence j = ℓ + 1. Now we have the expansion
F(r, θ) = aβ(θ)rℓ + aβ+1(θ)r

ℓ+1 + · · · because ℓ ≥ 3 since β ≥ n+1.
Therefore

∫ T

0
Fℓ+1(θ) dθ =

∫ T

0
aβ+1(θ) dθ = bβ+1

∫ T

0
Csβ+1 θ Sn2 θ dθ ̸= 0,

because β is odd. Using now statement (b) of Theorem 1 with k = 1,
the vanishing multiplicity of the inverse integrating factor V (r, θ) at
r = 0 is m = ℓ + 1 = β − n + 3. Recall that we can use Theorem 1
because of the extra hypothesis β ≥ n + 1.
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(b.2) Take γ = β+3, hence j = ℓ+3. Now we have the expansion F(r, θ) =
aβ(θ)rℓ + aβ+3(θ)r

ℓ+3 + · · · because ℓ ≥ 5 since β ≥ n + 3. Hence
Fℓ(θ) = aβ(θ), Fℓ+1(θ) = Fℓ+2(θ) ≡ 0 and Fℓ+3(θ) = aβ+3(θ).
Therefore∫ T

0
Fℓ(θ) dθ =

∫ T

0
Fℓ+1(θ) dθ =

∫ T

0
Fℓ+2(θ) dθ = 0,

but∫ T

0
Fℓ+3(θ) dθ =

∫ T

0
aβ+3(θ) dθ = bβ+3

∫ T

0
Csβ+3 θ Sn2 θ dθ ̸= 0,

because β is odd. From statement (b) of Theorem 1 with k = 3, we
have m = ℓ + 3 = β − n + 5.

The proof is finished. �
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