

WIKIDATA LIQUID GALAXY VISUALIZATION

 Guillem Barbosa Costa

 Sisco Giné De Solà

 Màster Enginyeria Informàtica

 September 2017

1

Acknowledgments

I would like to thank Francesc Giné De Solà, my project tutor, for having patience and

dedication to guide me through all of this work. He has given me constant support during

these months and he helped me so much with going ahead with the project.

Thanks also to the organization of Lleida Liquid Galaxy to be able to develop the project

in the Lab and give me all the possible facilities. Especially, very close to the Andreu

Ibañez, I have been very pleased and the treatment has been perfect.

I also thank all my colleagues for teaching me so much about these months, my family

to be always present, and friends for their encouragement.

Thanks to all to make it possible

Contents

Acknowledgments 1

1. Introduction 2

1.1. Project motivation 3

1.2. Work objectives 4

2. Task planning and project cost 5

3. Technologies 8

3.1. Liquid Galaxy System 8

3.2. KML Language 11

3.3. Wikidata 13

3.3.1. What is Wikidata? 13

3.3.2. The Wikidata repository 14

3.3.3. Working with Wikidata 17

3.4. SPARQL Language 18

4. Design and software development 21

4.1. Software languages and tools 21

4.1.1. What is Python? 21

4.1.2. Django 23

4.1.3. Material Design 24

4.1.4. Atom 25

4.2. Project idea 27

4.3. Project structure 29

5. Web Application Interface Design 36

5.1. Index page 37

5.2. Most Populated Cities page 39

5.3. Premier League Stadiums page 40

5.4. Longest Rivers page 42

5.5. Spanish Airports page 43

5.6. Summer Olympic Games page 44

5.7. Try the Demo page 46

5.8. Use case example 48

6. Conclusions and future work 51

6.1. Future work 53

2

Chapter 1

Introduction

During this summer I have been participating in Google Summer of Code 2017 [1],

working in the Lleida Liquid Galaxy [2] Lab. A few months before, thinking about what

project to do I came up with the option of working in this organization and learning

about Liquid Galaxy technology. I had some project proposals and finally I decided to

work with the Wikimedia foundation [3] projects and show the data through the Liquid

Galaxy that offers a good visualization so any user of the application would appreciate.

The project idea is simple, and what is intended is that the application is very usable and

that the interaction is as simple as possible.

The Wikidata Liquid Galaxy Visualization (WDLGV) project has the purpose of showing

some data from the Wikidata in the Liquid Galaxy. This information is obtained from

Wikidata [4], who acts as central storage for the structured data in Wikimedia projects.

The visualization is represented in Liquid Galaxy system, and the information appears

in a bubble and different shapes. There is also the possibility to generate a tour that

shows the place and starts an orbit around it. The user has at his disposal five options to

select and the user experience is funny, interesting and easy.

This report contains a small explanation of the different points that make up the

development of this project. First, objectives must be established, which will guide in

order not to deviate from what you want to achieve. The usability of the application is a

very important feature that should not be overlooked, and an application with good

usability has been developed. Before beginning with the design, tasks must be planned

and estimating the hours and the budget, and once this has happened, it goes to design

and implementation. It explains the design of the application to have an idea

(architecture, code, classes, ...), and on the screens of the interface detail the most

important aspects. Finally, talk about use cases examples to understand how the

3

application works. The outlook for the future and the conclusions are the sections that

close this document on the WDLGV application.

1.1. Project motivation

When I was offered the option to start a project with Liquid Galaxy technology and also

have the option of being able to participate in Google Summer of Code, I didn’t doubt

to get me started on this project. It was also interesting to learn new forms of

programming, take responsibility and have new knowledge. The main topic of the

project was defined with the days, first began with understanding how Liquid Galaxy

works, and then I thought what I wanted to do related to this technology with an

application that would have a good base and different functionalities. The option to

work directly with data from Wikipedia, which is worldwide known, I liked it, so it had a

wide choice of data and very complete. It was Andreu Ibañez who spoke to me about

the option to develop this project, so he had contacts in the Wikipedia foundation and

there was the possibility to work with them. After speaking at some meetings, I finally

decided to start my project and work for a few months.

The project approach should be clear, because in order to participate in Google Summer

of Code, the proposal had to be submitted for acceptance. This aspect motivates me to

start with the project and define well the objectives and functionalities. Working for

Google for a few months was a great opportunity to learn and start a new experience

very well valued.

The project consists of developing a web server, a web application and it must be able

to connect with the Liquid Galaxy system and send KML [5] files so that they can be

showed on the multiple screens that are part of the Liquid Galaxy. This integration and

relationship between the different parts is the programming body of the project that in

the end must be well developed and available for use by any person. The project, once

completed will be available in Lleida Liquid Galaxy Lab and in all visits, exhibitions, demo

days, ... the application will be visible to everyone who wants to interact with it.

4

1.2. Work objectives

It is important to establish the objectives of the project, these are the basis for making

decisions during the development and to avoid any deviation over the main purpose.

From the beginning it must be clear what it is that is wanted and how to do it. The

exposed objectives help to understand the application and what is needed to achieve

everything that was proposed at the beginning of the project.

According to the project motivation, the main objective of this project is to develop a

framework to show the Wikipedia data in a cluster display wall, such as the Liquid

Galaxy is. This objective can be divided in the following work objectives:

• Know and understand the different technologies related with the project:

Liquid Galaxy, Material Design [6], Django [7], SPARQL [8] language, …

• Develop a web application that makes queries to the Wikidata Query

database.

• Implement a server that runs the application correctly.

• Define the different use cases that the application will offer.

• Develop internal code that generates a KML file to be sent to Liquid Galaxy

system.

• Make an SSH connections between the web application and the Liquid

Galaxy for sending files.

• Implement an application easy to use, usable by any user and with a

comprehensible language.

• Design a responsive application to be able to adapt to any type of device.

5

Chapter 2

Task planning and project cost

The objective of this planning is to provide a framework of work for a project of these

dimensions that allows reasonable estimates of resources, cost and temporary planning.

These estimates are made in time limited to the beginning of the project and are

updated as the project advances. In addition, the estimates must define the scenarios

of the best case and the worst case so that the results of the project can be limited. The

goal of planning is achieved through a process of discovery of information that leads to

reasonable estimates.
Planning is an important step in any development, compels to collect and order the tasks

necessary to carry out the project and allows a global vision of the whole. It's a software

level production planning, so all tasks are for programmers and analysts.

This project has been developed during Summer Google of Code period which has a

duration of 3 months, but it must be said that I have been working on this project for a

few more weeks. In total, the duration of the project has been about 4 months, working

on it 4 hours at the beginning, and 8 during the months of GSoC17.

Before starting with the project, I planned a little the tasks to do to be clear where I

wanted to go. It is important to define well the tasks to follow step by step with the

planning and to go ahead at a good pace with the development of the project. We must

also consider other aspects with the available resources, the quality of these, possible

risks, ... We must have everything controlled before starting the project. In this way, we

make sure that the project will possibly have a good future and satisfies the goals

marked in the beginning.

Below are the planning table with all the tasks that have been defined and that have

been fulfilled to advance satisfactorily with the project. The tasks can be divided into 3

phases. The first one to organize and raise the project, the second contains the whole

6

body of the project, implementation, development and design, and the last one is the

review and presentation phase.

Fi
gu

re
 1

:
T

as
ks

 p
la

n
n

in
g

ta
b

le

7

This project has been done with work and effort and the planned tasks have been

completed during the planning time. This is why the cost of the project has been planned

considering that it has been developed by a single worker, in this case myself as a

programmer. During the month of May, which was the month of initiation in the

laboratory, I have been working in the mornings about 5 hours a day. Then, at the end

of this month, when Google Summer of Code started, I have been working in the

morning and in the afternoon, in total about 8 hours each day. In the Figure 2 it has

estimated the hours that has been dedicated to each task to be able to calculate the

total hours and get the cost of the entire development of the project. The price per hour

of a junior programmer with a minimum experience is 12 euros per hour, so the total

cost is (the documentation doesn’t include it):

733 total hours – 50 documentation hours = 683 hours * 40 €/h = 27320 euros

It’s important to keep in mind that there are other costs, for example those associated

with the Liquid Galaxy system, or the hardware used for the project development. The

software used is free and has no cost. At least, a Liquid Galaxy system must have 3 basic

computers to be able to launch Google Earth. The estimated cost for each computer is

350 euros, in total a minimum Liquid Galaxy system has a cost of 350 * 3 = 1050 euros.

Figure 2: Estimated hours per task

8

Chapter 3

Technologies

3.1. Liquid Galaxy System

In this project, Liquid Galaxy works as a key tool that will be connected to the web

application to show all the data with good visualization in the screens.

As an important part of the project, it needs a proper explanation about how it works

and how to understand their environment.

Liquid Galaxy is an open source project founded by Google. Created in 2008 by Google

employee Jason Holt. It’s a general data visualization tool for operations, marketing, and

research. Liquid Galaxy is a cluster display wall originally built to run Google Earth [9]

to create an immersive experience for the user. Liquid Galaxy gives the ability to fly

around Google Earth, view panoramic video and photos, develop interactive tours, and

graphically display GIS data in an immersive, panoramic environment with its 6-axis

controller, allowing you instantly to zoom in, out, and turn around with completely fluid

motion.

Figure 3: Lleida Liquid Galaxy

https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/GIS

9

As you can see in the Figure 3, Liquid Galaxy combines high-definition displays, multiple

computers and the 3Dconnexion Space Navigator [10] control to create an immersive

global navigation experience. The view of the user, which spans across all the screens,

curves around to fill the user's peripheral vision with the globe, countries, streets—

essentially whatever the user is looking at. Each node runs the Google Earth application

and the user only interacts with the master node, which is in the center. Each movement

of the mouse makes the master node launches a synchronization protocols that consists

of the following steps:

• The master node captures the coordinates of the position in Google Earth

indicated by the user. These coordinates are codified in a UDP packet,

named ViewSync, which contains the following information from the view in

the application: latitude, longitude, altitude, heading, tilt, roll and planet

name.

• When the master’s view is moved, it sends ViewSync packets to broadcast

with the objective of sending it to all the nodes in the cluster network.

• Every slave node has a configuration file, which holds an offset from the

original master’s view. When the slaves receive a ViewSync packet from the

master, they automatically calculate and adjust their relative view by adding

the local offset.

• Every node accesses Internet with its own coordinates to download the

required data (maps, imagery, 3D layer, …) independently from the other

nodes.

The Liquid Galaxy system presented in this section was built specifically to give

service to run Google Earth. However, the immersive visualization environment that

Liquid Galaxy provides opens this kind of system for use in a wide range of

applications that can benefit from an immersive visualization environment. Some

https://en.wikipedia.org/wiki/3Dconnexion

10

examples of applications that can be run in this system are WebGL with Aquarium,

video streaming, videogames like Quake 3 Arena, videoconferences, ...

Any user who wants to interact with Liquid

Galaxy just be clear that their interaction

will be through the Space Navigator, that

allows to fly and see whatever they want.

The navigation is done from the master

node, and this one is who is synchronizing

with the rest of nodes to provide a pleasant

experience and show a panoramic

visualization in all the screens.

In Figure 4, we can see the Space Navigator which is specifically designed to

manipulate digital content or camera positions. Simply push, pull, twist or tilt the

3Dconnexion controller cap to intuitively pan, zoom and rotate.

Getting deeper into the Liquid Galaxy filesystem, there are two configuration files that

are so important to understand how it works. The first one is kmls.txt that contains the

KML file path to download it and then show all the representation in Liquid Galaxy. The

other one is query.txt, it’s saved in a temporal folder, and once used is removed from

the system. In this file you specify where you want to go, with the coordinates and the

type of trip you want to perform. This information will be so useful when we start to

explain the design and development of the project.

Figure 4: Space Navigator

11

3.2. KML Language

Keyhole Markup Language (KML) is an XML-based markup language designed to

annotate and overlay visualizations on various two-dimensional, Web-based online

maps or three-dimensional Earth browsers (such as Google Earth). KML was developed

for be used with Google Earth, which was originally named Keyhole Earth Viewer.

Google Earth was the first program able to view and graphically edit KML files. A KML

file includes specifications for various features for display within Google Earth, Maps

and Mobile, and other three-dimensional Earth or geo browser programs.

KML's feature set includes placemarks, 3D models, text descriptions, images, polygons,

and so forth. Each location has an associated longitude and latitude and view-specific

data such as heading, altitude and tilt may be provided to define a so-called "camera

view" for geospatial data. KML shares some of its grammar with the geography markup

language, or GML, an Open XML markup language defined to express geographical data

and features. KML documents are often distributed in the form of KMZ files, which are

nothing more than a zipped KML document inside a file with kmz extension. A KMZ file

usually contains a single KML document, invariably named "doc.kml" along with images

for overlays and icons it may reference internally.

An example KML document is:

Figure 5: KML file example / KML elements

http://searchsoa.techtarget.com/definition/XML
https://en.wikipedia.org/wiki/Google_Earth

12

The Figure 5 example, shows only the Placemark tag with the coordinates point

(longitude, latitude, altitude). The Style defines colors, icons, sizes, … and it’s necessary

to define with <styleUrl> when the Placemark it is created. There are other features,

geometries, abstract views, … All the KML elements allow to create files with a great

variety of options that once thrown on Google Earth in the Liquid Galaxy generate a

spectacular visualization and experience to the user.

To generate the KML files has been used the pyKML [11] library. pyKML is a Python

package for creating, parsing, manipulating, and validating KML, a language for

encoding and annotating geographic data. pyKML adds additional functionality specific

to the KML language. pyKML is open source and packaged releases can be found on the

Python Package Index (PyPI).

http://code.google.com/apis/kml/documentation/
http://pypi.python.org/pypi/pykml

13

3.3. Wikidata

3.3.1. What is Wikidata?

Wikidata is a free, collaborative, multilingual, secondary database, collecting structured

data to provide support for Wikipedia, Wikimedia Commons, the other wikis of the

Wikimedia movement, and to anyone in the world. The content of Wikidata is available

under a free license, exported using standard formats, and can be interlinked to other

open data sets on the linked data web.

Wikidata is a central storage repository that can be accessed by others, operated by

the Wikimedia Foundation. Content loaded dynamically from Wikidata does not need

to be maintained in each individual wiki project, and provides storage for media files

and access to those files for all Wikimedia projects, and which are also freely available

for reuse.

• Free. The data in Wikidata is published allowing the reuse of the data in many

different scenarios. You can copy, modify, distribute and perform the data, even

for commercial purposes, without asking for permission.

• Collaborative. Data is entered and maintained by Wikidata editors, who decide

on the rules of content creation and management. Automated bots also enter

data into Wikidata.

• Multilingual. Editing, consuming, browsing, and reusing the data is fully

multilingual. Data entered in any language is immediately available in all other

languages. Editing in any language is possible and encouraged.

• A secondary database. Wikidata records not just statements, but also their

sources, and connections to other databases. This reflects the diversity of

knowledge available and supports the notion of verifiability.

• Collecting structured data. Imposing a high degree of structured organization

allows for easy reuse of data by Wikimedia projects and third parties, and

enables computers to process and understand it.

• Support for Wikimedia wikis. Wikidata assists Wikipedia with more easily

maintainable information boxes and links to other languages, thus reducing

https://www.wikidata.org/wiki/Help:Wikimedia
https://en.wikipedia.org/wiki/Wikimedia_Foundation

14

editing workload while improving quality. Updates in one language are made

available to all other languages.

• Anyone in the world. Anyone can use Wikidata for any number of different ways

by using its application programming interface.

3.3.2. The Wikidata repository

The Wikidata repository consists mainly of items, each one having a label and a little

description. Items are uniquely identified by a Q followed by a number, such as Lleida

(Q15090).

Statements describe detailed characteristics of an item and consist of a property and a

value. Properties in Wikidata have a P followed by a number, such as with instance of

(P31) or image (P18).

There are many possibilities of items, and each one has their own properties. Usually

the “instance of” is present in all items to indicate a relationship with another similar

item. The other properties will depend on the type of item, according to which we refer

we have an information or another. For example, for a person item the information will

be as place of birth, achievements, image, … for a city or building, the coordinates

(longitude, latitude) will be the most important, and also there are more proprieties as

country, population, …

All this information can be displayed in any language, even if the data originated in a

different language. The information shown was always the most recent and therefore

any query that is done will return the most current data.

https://www.wikidata.org/wiki/Special:MyLanguage/Help:Items
https://www.wikidata.org/wiki/Special:MyLanguage/Help:Label
https://www.wikidata.org/wiki/Q42
https://www.wikidata.org/wiki/Special:MyLanguage/Help:Statements
https://www.wikidata.org/wiki/Special:MyLanguage/Help:Properties

15

ITEM PROPERTY VALUE

Q15090 P17 Q29

Lleida country Spain

Q15090 P1376 Q12727

Lleida capital of Segrià

The Table 1 shows an example of how the item is related to its property and value. The

city of Lleida, for example, has the proprieties “country” and “capital of” and each of the

properties has an associated value. In this case, the value has a code which represents

another item, but there is also the possibility that the value is a numerical or simple text

that doesn’t have any associated identifier. Property identifier always starts with P, and

item or value identifier starts with Q.

Table 1: Wikidata statement group example

Figure 6: Wikidata repository. Lleida (Q15090)

16

In the Figure 6 we can see how the repository is distributed. To the top there are the

item, its identifier, the description and the multilingual option to deploy. The statement

group contains some information about the item. The first one is present in all because

it refers to relation items, for example Lleida instance of a city (Q515), or Leo Messi

instance of human (Q5). Then, the other information it depends on the amount of data,

and each property will have a statement group. There is the option to be able to edit

any data to improve the tool, in the right band of the page there are the “edit” option

to do this.

The Figure 7 shows some properties of Allianz Arena stadium (Q127429). For example,

the value of “coordinate location” isn’t an item, and the value is geolocation coordinates

that mark the position where the stadium is in the world. On the other hand, the other

properties its value is another item with the identifier. The property “country” can have

different values, and each of the possible countries has its own identifier that makes it

an item. As it has been said before, the main item is always instantiated with “instance

of” property.

Figure 7: Allianz Arena. Items and properties interconnected.

17

3.3.3. Working with Wikidata

There are different ways to access Wikidata using built-in tools, external tools, or

programming interfaces. Wikidata Query Service [12] and Reasonator are some of the

popular tools to search for and examine Wikidata items. The tools page has an extensive

list of interesting projects to explore.

Wikidata Query Service works with SPARQL language, and it’s the tool to make queries

toward Wikidata and obtain the data. The interface is simple, and it has some facilities

that helps the user. Figure 8 shows the Wikidata Query Service interface. To the right,

the query is written in SPARQL language, and there is the possibility to help with query

help that allows to filter and show the items and properties that you want. It’s so useful

because in this way it’s easier to know and discover which identifier needs in each case,

item and property. Once the query is ready, just press the play button to run the query

and then the query result will appear on the bottom. The result data is returned as a

double dictionary, first there are the key which identifies the label, and then it’s

necessary to select the value (result [“population”][“value”]). To handle the result, it is

simple and at the same time easy to save because the data are ordered very clearly.

Figure 8: Wikidata Query Service

18

3.4. SPARQL Language

SPARQL (SPARQL Protocol and RDF Query Language) is an RDF query language, that is

a semantic query language for databases, able to retrieve and manipulate data stored

in Resource Description Framework (RDF) format. It was made a standard by the RDF

Data Access Working Group (DAWG) of the World Wide Web Consortium, and is

recognized as one of the key technologies of the semantic web. SPARQL allows for a

query to consist of triple patterns, conjunctions, disjunctions, and optional patterns.

SPARQL allows users to write queries against what can loosely be called "key-value"

data or, more specifically, data that follows the RDF specification of the W3C. The

entire database is thus a set of "subject-predicate-object" triples. RDF data can also

be considered in SQL relational database terms as a table with three columns – the

subject column, the predicate column, and the object column. Unlike relational

databases, the object column is heterogeneous: the per-cell data type is usually

implied (or specified in the ontology) by the predicate value. SPARQL thus provides

a full set of analytic query operations such as JOIN, SORT, AGGREGATE for data

whose schema is intrinsically part of the data rather than requiring a separate

schema definition.

SPARQL has four types of queries. It can be used to:

1. ASK whether there is at least one match of the query pattern in the RDF graph

data.

2. SELECT all or some of those matches in tabular form (including aggregation,

sampling and pagination through OFFSET and LIMIT).

3. CONSTRUCT an RDF graph by substituting the variables in those matches in a set

of triple templates.

4. DESCRIBE the matches found by constructing a relevant RDF graph.

https://en.wikipedia.org/wiki/RDF_query_language
https://en.wikipedia.org/wiki/Semantic_Query
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/World_Wide_Web_Consortium
https://en.wikipedia.org/wiki/Semantic_web
https://en.wikipedia.org/wiki/Triplestore
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Pattern
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/World_Wide_Web_Consortium
https://en.wikipedia.org/wiki/Resource_Description_Framework
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Ontology_(information_science)
https://en.wikipedia.org/wiki/SQL#Language_elements
https://en.wikipedia.org/wiki/Database_schema

19

Figure 9 shows the SPARQL query to obtain the top 10 most populated cities in the

world. The SELECT clause contains all the labels that will be in the response, but

before it is necessary to get this labels with its property. For example, first of all,

city label is an instance of/subclass of city (Q515), and the label city has some

properties like population (P1082), area (P2046), coordinates (P625), … Also, is

indicated the language in which we work, English in our case. This query is ordered

by population number, and the limit of response is 10 so we want only the top 10

cities.

For each use case available in the application, a new query is made in Wikidata

Query Service, and for each case, logically, the query change and different

properties and items are filtered to get the values out of the result .

In the same code, once the query is defined, it is executed internally and the result

obtained is treated also in the same code. This step takes some time, and being a

backend process it’s positive to inform to the user during the query, so in this way

the user knows what is happening.

Figure 9: SPARQL Query most populated cities example

20

In the Figure 10 we can see how the results are represented by a table, each of the

rows are the cities, and each of these has its own values of the items. With this type

of representation is seen clearly the results, but there are some other options as

image grid, graph, map, tree, … There is also the option of being able to download

the results in different formats like JSON, TSV, CSV, but in my case, I don’t download

them as the query is done in the same code, and the result can already be analyzed

with a simple loop and save each item in a variable.

Figure 10: Wikidata Query result

21

Chapter 4

Design and software development

The whole project has been developed in python language, all the code is distributed in

different classes and functions. The Web Application is in Django, and the interface design

follows Material Design. The user interaction is simple, and has been include the Google

Assistant [13] interaction (has been configured in the Lleida Liquid Galaxy Lab to test with

app demos).

4.1. Software languages and tools

4.1.1. What is Python?

Python [14] is a general-purpose programming

language created in the late 1980s, and named

after Monty Python, that’s used by thousands of

people to do a lot of things. Its syntax allows programmers to express concepts in

fewer lines of code than might be used in languages such as C++ or Java. The language

provides constructs intended to enable writing clear programs on both a small and large

scale. It’s small, very closely resembles the English language, and has hundreds of

existing third-party libraries.

There are 3 characteristics of this language that give a very good opinion and make it a

very used language within the programming.

https://en.wikipedia.org/wiki/Source_lines_of_code
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Java_(programming_language)

22

• Readability: Python very closely resembles the English language, using words

like ‘not’ and ‘in’ to make it to where you can very often read a program, or script,

aloud to someone else and not feel like you’re speaking some arcane language.

This is also helped by Python’s very strict punctuation rules which means you

don’t have curly braces { } all over your code. Also, Python has a set of rules,

known as PEP 8, that tell every Python developer how to format their code. This

means you always know where to put new lines and, more importantly, that

pretty much every other Python script you pick up, whether it was written by a

novice or a seasoned professional, will look very similar and be just as easy to

read.

• Libraries: Python has been around for over 20 years, so a lot of code written in

Python has built up over the decades and, being an open source programming

language, a lot of this has been released for others to use. Almost all of it is

collected on https://pypi.python.org, pronounced “pie-pee-eye” or, more

commonly called “the CheeseShop”. You can install this software on your system

to be used by your own projects. For example, if you want to use Python to build

scripts with command line arguments, you’d install the “click” library and then

import it into your scripts and use it. There are libraries for pretty much any use

case you can come up with, from image manipulation, to scientific calculations,

to server automation.

• Community: Python has user groups everywhere, usually called PUGs, and

does major conferences on every continent other than Antarctica. PyCon NA

2013 also started a trend of offering “Young Coder” workshops, where

attendees taught Python to kids between 9 and 16 years of age for a day,

getting them familiar with the language and, ultimately, helping them hack and

mod some games on the Raspberry Pis they were given. Being part of a such a

positive community does a lot to keep you motivated.

https://pypi.python.org/

23

4.1.2. Django

Django is a high-level Python Web framework that

encourages rapid development and clean, pragmatic

design. Built by experienced developers, it takes care of

much of the hassle of Web development, so you can focus on writing your app without

needing to reinvent the wheel. It’s free and open source. Some Django strengths are:

• Fast: Django was designed to help developers take applications from concept to

completion as quickly as possible.

• Loaded: Django includes dozens of extras you can use to handle common Web

development tasks. Django takes care of user authentication, content

administration, site maps, RSS feeds, and many more tasks.

• Secure: Django takes security seriously and helps developers avoid many

common security mistakes, such as SQL injection, cross-site scripting, cross-site

request forgery and clickjacking. Its user authentication system provides a secure

way to manage user accounts and passwords.

• Scalable: Some of the busiest sites on the planet use Django’s ability to quickly

and flexibly scale to meet the heaviest traffic demands.

• Versatile: Companies, organizations and governments have used Django to build

all sorts of things — from content management systems to social networks to

scientific computing platforms.

24

4.1.3. Material Design

Created and designed by Google, Material Design is a

design language that combines the classic principles of

successful design along with innovation and technology.

Google's goal is to develop a system of design that

allows for a unified user experience across all their products on any platform.

As of 2015, most of Google's mobile applications for Android had applied the new design

language, including Gmail, YouTube, Google Drive, Google Docs, Sheets and

Slides, Google Maps, Inbox, Google+, all of the Google Play-branded applications, and to

a smaller extent the Chrome browser and Google Keep. The desktop web-interfaces of

Google Drive, Docs, Sheets, Slides and Inbox have incorporated it as well. More recently,

it has started to appear in Chrome OS, such as in the system settings, file manager, and

calculator apps.

The canonical implementation of Material Design for web application user interfaces is

called Polymer.[8] It consists of the Polymer library, a shim that provides a Web

Components API for browsers that do not implement the standard natively, and an

elements catalog, including the "paper elements collection" that features visual

elements of the Material Design.

The Material Design guidelines contain evolving visual, interactive, and motion

guidance that can be customized to your app and website.

Material Components provide a reliable development environment for apps and

websites across Android, iOS, and the web. Components are updated as the

Material Design system evolves, ensuring consistent pixel-perfect

implementation and adherence to Google’s front-end development standards,

such as internationalization and accessibility support. Material has certain

immutable characteristics and inherent behaviors; solid, occupies unique points in

space, impenetrable, mutable shape, changes in size only along its plane, unbendable,

can join to other material, can separate, split and heal, can be created or destroyed,

https://en.wikipedia.org/wiki/Gmail
https://en.wikipedia.org/wiki/YouTube
https://en.wikipedia.org/wiki/Google_Drive
https://en.wikipedia.org/wiki/Google_Docs,_Sheets_and_Slides
https://en.wikipedia.org/wiki/Google_Docs,_Sheets_and_Slides
https://en.wikipedia.org/wiki/Google_Maps
https://en.wikipedia.org/wiki/Google_Inbox
https://en.wikipedia.org/wiki/Google%2B
https://en.wikipedia.org/wiki/Google_Chrome_for_Android
https://en.wikipedia.org/wiki/Google_Keep
https://en.wikipedia.org/wiki/Chrome_OS
https://en.wikipedia.org/wiki/Canonicalization
https://en.wikipedia.org/wiki/Polymer_(library)
https://en.wikipedia.org/wiki/Material_Design#cite_note-8
https://en.wikipedia.org/wiki/Shim_(computing)
https://en.wikipedia.org/wiki/Web_Components
https://en.wikipedia.org/wiki/Web_Components

25

moves along any axis, … Understanding these qualities of material will help you

manipulate material in a way that’s consistent with the vision of material design.

In this project MUI (Material User Interface) is used for the design of the interface,

which is associated with Material Design. MUI is a lightweight CSS framework that

follows Google's Material Design guidelines. The MUI package includes all the

necessary code to use MUI components on the web and over email.

4.1.4. Atom

The platform for the project development has

been Atom [13]. Atom is a text editor that's

modern, approachable, yet hackable to the core, a tool you can customize to do

anything but also use productively without ever touching a config file. Here there are

some features of the used tool:

• Cross-platform editing: Atom works across operating systems. You can use it

on OS X, Windows, or Linux.

• Built-in package manager: Search for and install new packages or start creating

your own, all from within Atom.

• Smart autocompletion: Atom helps you write code faster with a smart, flexible

autocomplete.

• File system browser: Easily browse and open a single file, a whole project, or

multiple projects in one window.

• Multiple panes: Split your Atom interface into multiple panes to compare and

edit code across files.

• Find and replace: Find, preview, and replace text as you type in a file or across

all your projects.

https://www.google.com/design/spec/material-design/introduction.html

26

Other features to highlight are the following:

• Packages: There is the possibility to choose from thousands of open source

packages that add new features and functionality to Atom, or build a package

from scratch and publish it for everyone else to use.

• Themes: Atom comes pre-installed with four UI and eight syntax themes in

both dark and light colors. You can also install themes created by the Atom

community or create your own.

• Customization: It's easy to customize and style Atom. It’s possible to tweak the

look and feel of your UI with CSS/Less and add major features with HTML and

JavaScript.

• Under the hood: Atom is a desktop application built with HTML, JavaScript,

CSS, and Node.js integration. It runs on Electron, a framework for building cross

platform apps using web technologies.

• Open source: Atom is open source. With a good community it can be

improved.

Figure 11: Atom interface

https://atom.io/packages
https://atom.io/packages
https://atom.io/themes
http://electron.atom.io/

27

4.2. Project idea

Figure 12 graphically and visually represents the distribution of the project to give

us an idea of its structure. The project idea is to develop a web application that

collects data from Wikidata through real-time queries. It’s possible to obtain any

kind of information, so Wikidata storage a large amount of data that can be

consulted at any time. Once this data is well analyzed and treated, the next step is

generating a KML file, and then sends this file to the Liquid Galaxy. Finally, the KML

file is received by the Liquid Galaxy and the user can see all the data in a more visual

way through the Liquid Galaxy system screens. The data representation is varied like

as trips, tours, flights, placemarks, cylinders, balloons , …

As it has already been said, the Liquid Galaxy will launch the Google Earth

application and on this will be shown the KML file that has been sent. Google

Assistant interaction is also included in the diagram, but it’s only configured in

Figure 12: Project idea design

28

Lleida Liquid Galaxy LAB so there is available a Google Home to try the voice

recognition and interact with the application.

At all times the server is running to launch the application, and the web application

interface is available in any type of format device; tablet, mobile, computer, … The

user has two ways of interacting with the Liquid Galaxy. When the application is

launched, the most recommended is to use the interface that the application offers,

so it has its functionalities and will show the information to Liquid Galaxy. The other

option is to use the space navigator, in this way the interaction is directly with the

Liquid Galaxy and the user can travel in any direction, position and altitude.

29

4.3. Project structure

To know a little more about the application, in this section we will quickly pass

through the structure of the project. The Python classes with their code and their

functions, the KML generated files, the HTML templates, ... The whole logic of the

application is in the code of each class, and that's why it is also important to know

what’s behind each screen, so at first glance, a user sees a very simple functionality,

but the reality is that there are hours of work, fixing errors, modifying and improving

functions, ...

The Figure 13 represents the application design and also specifies in detail that piece

of the code that is associated with each part. In this way, we can get an idea of how

the project code is structured and what is the function of the classes, functions,

styles, files, ... To explain point by point the different files and folders in the project,

are organized by groups and each of these is associated with a part of the design.

Figure 13: Structure of project files

30

Figure 14 is related to Figure 13, each file has a color that indicates where it is and

can be identified in the project design. Figure 14 represents the entire file system

of the project and each important folder is displayed to show the files it contains.

Inside the folder "WDLG" there are the Python classes of the project, all the logic is

defined here and it’s structured so that the functions of each of the classes are

related to each other. It’s important to maintain a good quality of code, since for

future revisions or corrections to be much easier to return to understand the code.

objects folder (Figure 15) contains the classes that

represent each of the objects that the use cases

implemented. In these classes are saved the data of the

real-time queries, and once they are stored in their

respective class, then it is possible to do any kind of

treatment with them, so it’s easier to query on a class and

get the data according to the desired variable. For example,

generate the KML file, all the data is storage in the classes and for each use case the

file is generated.

Figure 14: Project files and folders

Figure 15: objects folder

31

All classes have the same structure, a constructor to add the values to each variable,

and some extra function like adding the coordinates or an image. For example,

city.py variables are city name, population, area, image, … and has a function to add

the coordinates “def coordinates (self, longitude, latitude)”.

There are two files which have a great importance for the connection between the

server and the web application. views.py and urls.py are the main part when

developing a Django project. In the Figure 16, it can be seen the diagram of how it

works and how the different components are related between them.

views.py it is one of the most important class and contains an important part of the

code with its functions. All functions defined in views.py will be the once that will

be executed once the user selects an option in the interface. These functions mainly

are the ones in charge to make the queries to the Wikidata

(populated_cities_query, premierLeague_stadiums_query, longest_rivers_query,

Figure 16: Django project structure

32

…). The data obtained in the generated query is saved in objects classes (airport,

city, clubstadium, olympicgame, river). This data can be read at any time, and it’s

useful for the HTML templates. Also, other functions are defined such as starting a

tour, stopping a tour, cleaning the KML folder, relaunch de Liquid Galaxy, ... All the

functions have in common an interesting aspect, once arrived at the end of the

function, this must do a return HTML page, each function has its associated

template. When the HTML page it’s returned to be shown, it’s possible to pass

parameters as simple values, lists, ... so that in the new loaded page can appear the

new information obtained in the function. For example, in our case, after the query,

some of the data obtained is displayed in the interface to give an extra information

to the user.

The function response is the HTML page that is obtained according to the function

and before, it reads the data that are stored in the objects classes for each use case.

The request is through the URL that is according to the option that the user chooses.

In the urls.py file it is defined.

urls.py is responsible for defining the route or URL path for each function

implemented in the views.py. It’s necessary to know which function to launch when

the user selects an option (each option has associated a URL).

For example, as it can be seen in Figure 17, when the user wants to get the most

populated cities option, the URL path will be “<server_ip>:port/populated_cities”

and thanks to urls.py, the application knows that in the views.py must to execute

the function “populated_cities_query”. Now the function will do everything that has

been defined. Each URL path has associated one function, and in this way the

application knows at all moment which function launches depending on what the

user chooses on the web application.

Figure 17: urls.py file

33

The classes that are in utils folder (Figure 18) are the

ones that complement the views.py functions. To

make the code more structured, and easier to read

and follow, it has defined other classes that contain

different functions that are necessary to complete the

queries, analyze the data, ... According to the colors,

each class has importance in a part of the code design.

As it has already been said, are complementary classes

for other project functions. There are 6 files:

• auxiliar_functions.py: Auxiliary functions to obtain values through another

and functions to complete a dictionary with key and values. It’s a useful class

for all the project.

• cylinders.py: Class that generate the cylinders for the case of us of the

Olympic games. When this class is called, 3 large cylinders are generated to

simulate the podium, and for each country 3 cylinders more for the different

medals types (golden, silver and bronze). Has a great importance in the

Liquid Galaxy visualization step.

• informationList.py: This class works to save the generated objects once the

query is called. For example, when the populated cities have already been

obtained, a list is generated and stored temporarily in this class. In this way,

to get any data we can obtain the list and obtain information of any of the

cities.

• kml_generator.py: Is responsible for generating the KML file for each option.

There are many common functions that differ only in the parameters that

are passed to it. In general, the structure is very similar in all cases. To

generate the KML file it has been used pykml library, and the file is sent to

the Liquid Galaxy to be visualized.

• project_configuration.py: There are the functions that are responsible for

obtaining the server IP, the Liquid Galaxy master IP, set the SSH connection,

Figure 18: utils folder

34

... Is also the intermediate step between the class views.py and the

kml_generator.py, here it checks the case being treated and define the KML

file type to generate.

• wikiapi.py: Class for the whole topic of obtaining data through Wikidata. In

some cases, it is necessary to do a scraping or cut a piece of code to get some

special data. Here the connection is established, the query is called and the

results are made the necessary operations to obtain the desired information.

It’s associated in Wikidata step, so it’s useful to obtain data when the query

is running.

manage.py is automatically created in each Django

project. This file runs the Django application and start

the server. Then, the Web Application is ready to be

used. In addition, once the application is launched

(specifying the Liquid Galaxy IP), a galaxy_ip text file

is created with this IP and a command is launched so

that the SSH connection knows the host and it is done

correctly.

To launch the application in a single step easier, there

is a script WDL-Start that automates all the steps to

launch the server and to be able to start using the application. First a folder is

created and inside it is created the two necessary files that are sent to Liquid Galaxy

(kmls.txt, query.txt). Once this it runs manage.py on port 8000 and as a parameter

you must pass the Liquid Galaxy IP on which we want to connect. “python3

manage.py $1 runserver 0.0.0.0:8000 –noreload”

Figure 19: project structure

35

In the static folder (Figure 20) there are some folders like:

• css: is the css style, different styles are

implemented.

• demos: the folder where the generated

demos are stored. These are sent to Liquid

Galaxy.

• html_balloons: the html templates of

balloons that shows the information in the

Liquid Galaxy.

• img: static and dynamic images included in the application.

• js: JavaScript functions for the all application.

• river_points: the detailed points of the obtained rivers, are necessary to

implement the experiences for all rivers and to have a good visualization in

the Liquid Galaxy.

• utils: some files that are useful for application. For example, empty file is

used to clean KML files in the Liquid Galaxy, or earth_rotation file is to

generate a rotation while the user doesn’t select an option. These files are

basically related to the Liquid Galaxy for a better project presentation.

templates folder (Figure 21) contains the HTML

files for the design of the screens of the

interface. Each use case has its own screen, in

addition to the side menu. Header and footer

templates are always important to maintain an

identical style across all application screens.

Each function in views.py has associated a

template, and when the function of the

selected use case is called, then the HTML page

is loaded and is the response that is returned.

Figure 20: static folder

Figure 21: templates folder

36

Chapter 5

Web Application Interface Design

In this chapter will detail the entire design of the application interface. The different

screens developed, the modifications, the improvements, ... The interface has been

developed with Material Design and it tries to be as simple as possible and with

good usability. It’s important that a normal user can use and interact with the

application without difficulty.

It will be explained how the different screens work, and in this way, will review the

functionality of the application and each of the options that the user must interact.

To ensure that the user is always aware of what the application is running, an

overlay has been developed. It must consider that every time a Wikidata query is

made, this takes a few seconds, so during this time it’s necessary to inform the user

of what is happening. It shows an overlay that informs the user step by step of what

is happening. According to the chosen option the text suffers some variation, but

always follow the same steps. First, use case Wikidata query, then data is analyzed

and saved in classes, and finally, KML is generated to be send in Liquid Galaxy. This

information is shown to the user each time the application performs an internal

action and have to report what is doing. Figure 22 shows the different overlay steps

that inform to the user which internal application process is running.

Figure 22: Overlay informative steps

37

5.1. Index page

The index page (Figure 23) is the page that is showed when the application is

started. It’s simple, the main thing is the side menu that offers the options to the

user to start interacting with the application. There are six possible options to select,

and each of them has a different functionality. They are the following:

• Most Populated Cities

• Premier League Stadiums

• The Longest Rivers

• Spanish Airports

• Summer Olympic Games

• Try The Demo

Significant names have been chosen so there is no doubt and it is clearly understood

that each of the use cases offered. Whenever you click on the upper left application

icon is accessed on this home page, this way it returns to the beginning and from

here it starts again.

Figure 23: index page

38

Another interesting feature, is on the right side, there is a dropdown with 4 options

of configuration. These are:

• Clear KML folder: Removes all the KML files generated by the application.

These are storage in static/kml folder.

• Stop current Tour: Stops any tour that is running. It’s recommended use the

stop button in each page, but this option it is in case of need.

• Relaunch Liquid Galaxy: Liquid Galaxy restarts, “lg-relaunch” command

launches.

• Clear Liquid Galaxy Cache: All files are deleted from the cache in the Liquid

Galaxy master.

39

5.2. Most Populated Cities page

This page, populated_cities (Figure 24), offers the possibility to take a tour of the

ten most populated cities in the world. It can be clearly see where we are thanks to

the title and the icon, and below is a small explanation so that the user has a guide

to know how to act and avoid any type of problem. It shows the cities with their

country and population. All this information is obtained in real time thanks to the

query made in the Wikidata. Below, we find two buttons, one to start the tour and

the other to stop it. Once the tour has started, then the Liquid Galaxy takes the

lead. The button “Stop Tour” can be clicked whenever the user wants, and

automatically Liquid Galaxy receives the command “exittour=true”.

Figure 24: most populated cities page

40

5.3. Premier League Stadiums page

premier_league_stadiums page (Figure 25) gives the option to take a tour of all the

Premier League stadiums, or select a specific team and fly to his stadium. There is a

combo dropdown which offers all the

teams to be selected. Once the team

has been selected, then it’s necessary to

click “Get Stadium” button to start

flying to the stadium.

When the Liquid Galaxy arrives at the

stadium, then the body of the page

adds the shield of the selected team,

and text with the name of the club and

the name of the stadium. In the Figure

26, we have selected Arsenal Football Club, so in the new page appears the Arsenal

shield and text with the name of the club and the stadium.

Figure 25: Premier League stadiums page

Figure 26: Premier League stadium selected page

41

In the case of selection the tour of the 20 stadiums, then the button “Start Premier

League Tour” must be selected and automatically will start a tour for all stadiums in

order of capacity. To stop the tour just click the “Stop Tour” button.

In all the pages there is the helping part for the user, it is of great utility so that they

have a guide of how to go step by step.

In this case, Figure 27 is the overlay it shows the Premier League logo to inform that

the information is about football and England teams. When the team is selected in

combo, while the application is generating the KML file, in the overlay appears the

club shield selected and text (“Fly to the stadium… <Club name>”). In the example,

the selected club is Arsenal Football Club, and fly to Emirates Stadium.

Figure 27: Special overlay for Premier League stadiums

42

5.4. Longest Rivers page

longest_rivers page (Figure 28) offers the top 10 longest rivers for the user to select

the one he wants. When the user clicks on the river button, then opens a new

window that offers two possibilities with their explanations. While no river is

selected, in the Liquid Galaxy appears the rivers marked with a line and an earth

rotation starts.

It has been selected Amazon River, and there are two possible experiences to

launch. Figure 29 shows the river page that is opened for each river, depending on

which river is selected.

Tour experience runs a tour on the river

from a height where it’s possible to follow

all the progress in detail.

Track experience runs a track line that

follows all over the river from a height

where it’s possible to see the entire route.

At any time, the user can stop the tour or

close the window and click to another river

on the rivers main page.

Figure 28: longest rivers page

Figure 29: river page

43

5.5. Spanish Airports page

spanish_airports page (Figure 30) is like the use case of the most populated cities.

The page shows a list of the Spanish airports obtained with the query. On the bottom

there are the two buttons, one to start the tour and the other to stop it. If the user

has already interacted with the most populated cities page, then this use case will

be easy so it is very similar.

Figure 30: Spanish airports page

44

5.6. Summer Olympic Games page

summer olympic games page (Figure 31) shows the

last 7 Summer Olympic games. There is a button for

each game, and its necessary click in to get

information. In the Liquid Galaxy is shown

cylinders representation above the host city of the

event. The representation is the podium of the

countries with more medals, and for each country

the type of medals achieved.

The overlay that appears in this use case is the

Olympic rings, and a text that contains the

Olympic Game selected. Figure 32 is an example

by London 2012 selected game.

Figure 31: summer olympic games

page

Figure 32: summer olympic game overlay

45

Once the KML file is generated and the cylinders are loaded in the Liquid Galaxy,

the same page is reloaded and new data and information are showed. In the image

example, London 2012 has been selected, and some extra information has appeared

on the page.

46

5.7. Try the Demo page

demo page (Figure 33) is the section to test the application, where we can find 3

possible demos already generated that allow to test the application and to see how

it behaves. Lleida tour allows to travel through the city of Lleida and get some extra

information in the balloon. Allianz Arena Tour offers a view of Bayern Munich

stadium. 1992 Barcelona Summer Olympics flies towards the city of Barcelona and

shows the cylinders representation that shows medals data and the countries of the

medal table. Each of the demos options have their own buttons to start or stop the

tour. It’s simple because what is intended is that the user without knowing anything

about the application could prove it without any problem and learn easily .

Figure 33: try demo page

47

As can be seen in the Figure 34, the foot of the page is formed by the name of the

author of the project (Guillem Barbosa Costa), and naming Google Summer of Code

for giving me the opportunity of these summer scholarships. The icon information

will open a new window where appears collaborators logos.

Figure 34: footer.html

48

5.8. Use case example

Use cases are a technique for capturing potential requirements for a new system or

for a software update. Each use case provides one or more scenarios that indicate

how the system interacts with the user or another system to achieve a specific

objective. Normally, in cases of use, it is avoided to use terms or technical words,

since a language that is closer to the end user of the product is preferable.

Sometimes, for the development of user cases, along with analysts there are also

inexperienced users who help professionals with the analysis

As it has been said, a use case is a sequence of interactions that are developed

between a system and its actors as a response to an event that initiates a main actor

on the system itself. Usage case diagrams are to specify the communication and

behavior of a system through its interaction with users and / or other systems. Or

what is the same, a diagram that shows the relationship between the actors and the

cases of use in a system. A relationship is a connection between the elements of the

model. We find the association, which is the most basic relationship, dependence

and generalization. You can also use "include" and "extend".

Here is an example of a well-detailed use case of the application:

Figure 35: Premier League Stadiums use case

49

Figure 35 represents the action when the user selects the Premier League Stadiums

option in the side menu. Inside this action it extends two new possible actions, Start

Premier League Tour, a tour with the 20 Premier League stadiums, or Get Stadium,

where previously a team of the Premier League is chosen and then flying to the

selected stadium.

Figure 36 details the specification of the use case chosen to develop.

Use case: Premier League Stadiums (select team stadium).

Actors: Main: User (initiator).

Purpose: See the Premier League stadiums in the Liquid Galaxy.

Description: The user has a combo list with all the Premier League teams, choose the

team and start to travel to the stadium with “Get Stadium” button click.

Type: Primary and essential.

Typical course of events

User System

1. The user selects the Premier League

Stadiums option.

 2. The system shows the HTML page

(premier_league_stadiums.html).

3. The user open the Premier League

teams combo list.

 4. The system shows the list of teams

obtained with the Wikidata query.

5. The user selects one team and click

“Get Stadium” button. (extends “Get

Stadium”).

 6. The system generates KML file where

there is information about the stadium

and the team.

50

 7. The system shows the overlay during

this time. The shield and the name of the

stadium are shown in the overlay.

 8. The system returns to show the html

page, and this time with the shield, the

name of the team and the name of the

stadium selected.

9. The user can see the web page and in

the Liquid Galaxy the flight to the

stadium.

Alternative courses:

5.b. The user does not select any team from the list.

 1. The user clicks the “Get Stadium” button.

 2. The system can’t generate the KML file, so no team has been selected.

 3. Liquid Galaxy doesn’t receive any file, there is no flight.

 4. The user can choose a team and continue with the course of the events.

5.c. The user clicks the “Start Premier League Tour” button.

 1. The system generates a KML file tour with the 20 stadiums.

 2. The system, sends the KML file to the Liquid Galaxy and starts the tour.

 3. The user can see in the Liquid Galaxy the Premier League stadiums tour.

3.b. The system makes the query, but the network fails and no results are obtained.

 1. The system shows the HTML page, but the combo teams list is empty.

 2. The user can’t select any team.

 3.a. The user clicks the “Get Stadium” button.

 1. 5b alternative course.

 3.b. The user selects another time the Premier League Stadiums option.

 1. Start the typical course again (2).

 Figure 36: Premier League Stadiums use case specification

51

Chapter 6

Conclusions and future work

Now, after months of work and effort, with the completed application, conclusions

can be drawn regarding everything that surrounds the development of a project of

these characteristics. The objectives that were detailed at the beginning have been

perfectly achieved, and the application has all the functionalities that had been

raised when initiating the project.

The planning of the tasks has been fulfilled and this has allowed to be able to move

forward with little complications. The features have been completed and tested to

certify how well the application works. In addition, the usability and the ease of use

of the application has been achieved. The application interaction will be very easy

and with a simple and understandable language.

Some of the tasks, because of there have been some difficulties, have had to be

extended, but other tasks have been carried out and finished more ahead of

schedule. Some complicated errors or the complexity of some part of the

development, have also made some tasks longer, but in general, the planning

established at the beginning has been quite fulfilled .

In general, the project has been a success, during the application has been

developed, you could see the evolution and test the application so that you could

see or discover some error or improvement to do at the same time of development.

This project has been submitted to Google Summer of Code. During this summer it

has been developed following the timeline, the evaluations by parts and the help of

the mentors in any problem. Figure 37 shows that the project has been certified and

completed, so it’s a good recognition to the work done and a great experience.

52

As I said, the experience has been very good, I have learning developing the project,

I have discovered new techniques and languages, and my colleagues have made me

discover many things that have been useful to me. I have gained in knowledge, but

also in responsibility, perseverance and sacrifice. A project of this caliber brings

many positive aspects, and the truth is that soon, this time that I have worked with

the project will value and serve me to improve.

It is very satisfying and gratifying to see how the application has been growing and

improving is a great joy. The application will be available in the Lleida Liquid Galaxy

Lab, and can be used by all types of users. This is another part that makes me happy,

so the work of this months will continue to be present and active, and I hope to

offer a good product and that they enjoy it.

Figure 37: Google Summer of Code certificate

53

6.1. Future work

To finish and close the project, there is some work that can improve it. Small touch-

ups in the design of the interface, to make it even simpler, and add other new

features that give a more varied air of options. Liquid Galaxy offers many

possibilities, in this application we have focused especially on displaying Wikidata

information from certain places, but we can also add other more complex cases that

bring new experiences. Thanks to the large amount of data that Wikidata offers, we

have good ideas for new implementations, so the work that remains to be done is

to think and plan new tasks to improve the functionalities offered by the application.

For the moment, we have the operational application, is working well, and any

changes that implements will be done with the maximum perfection and always

within the possibilities that have. Finally, it could improve and permanently

implement the interaction with Google Assistant, this would give an innovative and

modern touch to the application. It has worked with this new technology, but is not

completely finished, so it would be a good way to improve the application.

54

References

[1] Google Summer of Code.

• https://summerofcode.withgoogle.com/about/

[2] Liquid Galaxy.

• https://liquidgalaxy.endpoint.com/

• https://en.wikipedia.org/wiki/Liquid_Galaxy

[3] Wikimedia Foundation.

• https://wikimediafoundation.org/wiki/Home

[4] Wikidata.

• https://www.wikidata.org/wiki/Wikidata:Main_Page

• https://en.wikipedia.org/wiki/Wikidata

[5] Keyhole Markup Language (KML).

• http://searchmicroservices.techtarget.com/definition/Keyhole-Markup-Language-KML

• https://developers.google.com/kml/documentation/kmlreference

[6] Django.

• https://www.djangoproject.com/

• http://www.pythonforbeginners.com/learn-python/what-is-django/

[7] Material Design.

• https://material.io/guidelines/material-design/introduction.html#introduction-goals

• https://envato.com/blog/introduction-material-design/

[8] SPARQL language.

• https://ontotext.com/knowledgehub/fundamentals/what-is-sparql/

• https://www.w3.org/TR/rdf-sparql-query/

https://summerofcode.withgoogle.com/about/
https://liquidgalaxy.endpoint.com/
https://en.wikipedia.org/wiki/Liquid_Galaxy
https://wikimediafoundation.org/wiki/Home
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://en.wikipedia.org/wiki/Wikidata
http://searchmicroservices.techtarget.com/definition/Keyhole-Markup-Language-KML
https://developers.google.com/kml/documentation/kmlreference
https://www.djangoproject.com/
http://www.pythonforbeginners.com/learn-python/what-is-django/
https://material.io/guidelines/material-design/introduction.html#introduction-goals
https://envato.com/blog/introduction-material-design/
https://ontotext.com/knowledgehub/fundamentals/what-is-sparql/
https://www.w3.org/TR/rdf-sparql-query/

55

[9] Google Earth.

• https://www.google.es/intl/es/earth/index.html

[10] Space Navigator.

• https://www.3dconnexion.es/index.php?id=26&redirect2=www.3dconnexion.es

[11] pyKML library.

• https://pythonhosted.org/pykml/

[12] Wikidata Query Service.

• https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/A_gentle_introductio

n_to_the_Wikidata_Query_Service

• https://query.wikidata.org/

[13] Google Assistant.

• https://assistant.google.com/

[14] Python language.

• https://en.wikipedia.org/wiki/Python_(programming_language)

• http://whatis.techtarget.com/definition/Python

[15] Atom.

• https://atom.io/

https://www.google.es/intl/es/earth/index.html
https://www.3dconnexion.es/index.php?id=26&redirect2=www.3dconnexion.es
https://pythonhosted.org/pykml/
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/A_gentle_introduction_to_the_Wikidata_Query_Service
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/A_gentle_introduction_to_the_Wikidata_Query_Service
https://query.wikidata.org/
https://assistant.google.com/
https://en.wikipedia.org/wiki/Python_(programming_language)
http://whatis.techtarget.com/definition/Python
https://atom.io/

