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a combined stable isotope analysis of archaeobotanical and archaeozoological remains. 38 

 39 

Abstract 40 

Considerable archaeological and archaeobotanical datasets are now available to describe cereal 41 

cultivation in north-eastern France, from the Iron Age to the Roman period. This study aims to 42 

complement these with additional lines of evidence by using stable isotope analysis on charred 43 

cereal grains. Our research focused on two regions: the Île-de-France, where intensive and 44 

specialized bread wheat cultivation, from the end of the La Tène period and throughout the 45 

whole Roman period, may have induced soil impoverishment; and Champagne, where crop 46 

production would have been challenged by the difficult soil conditions of the chalky plains. 47 

Soil fertility was investigated through δ15N and δ13C analyses of 1480 charred wheat and 48 

barley grains, derived from 19 occupation periods, dated from the Late La Tène to the Late 49 

Antiquity periods. In the Île-de-France, charred grain ∆13C values suggested good prevailing 50 

hydric conditions throughout the studied period, with drier episodes in the 1st and 3rd century 51 

AD; while in Champagne, the lower ∆13C values for spelt probably reflect the lower water 52 

holding capacity of the chalky soils. A wide range of δ15N values (0.8 to 8.7 ‰) was measured 53 

in cereal grains, implying a wide range of soil fertility conditions. Jouars-Pontchartrain and 54 

Palaiseau (Île-de-France) yielded the highest cereal δ15N values, whereas Acy-Romance 55 

(Champagne) delivered among the lowest. From these three sites, the δ15N values of red deer 56 

bone collagen (30 specimens) were used to estimate the reference δ15N values for unmanured 57 

plants. There were no significant differences between the estimated δ15N values of unmanured 58 

plants and cereals in Acy-Romance. However, there were significant differences in Palaiseau 59 

and Jouars-Pontchartrain, indicating that the cultivated cereals inherited their high δ15N values 60 

from manured soil. At Jouars-Pontchartrain, the cereals’ δ15N value (almost 9‰) suggested a 61 

high trophic level manuring source, possibly from pig and/or human faeces. 62 

 63 

 64 

Keywords: nitrogen isotope composition, cereal grains, bone collagen, animal manure, soil 65 
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Introduction 67 

Domestic crops originating from the Near East were introduced into Europe at the turn of the 68 

7th millennium cal BC. Along their western and northern diffusion across Europe, crops had to 69 

be acclimatized to a great variety of climatic and environmental conditions – including 70 

topography and soil - and cultivation practices had to adapt in order to improve and maintain 71 

yield and productivity (Bakels 1997; Araus et al. 2014). From the earliest steps of agriculture, 72 

the conditions of cultivation were managed and improved through irrigation and fertilization 73 

practices, as evidenced from archaeobotanical and pedological records. Irrigation practices 74 

were demonstrated from carbon isotope analysis of charred cereal grains (Araus et al. 1997b, 75 

2014; Riehl et al. 2014). Manuring practices were investigated on the basis of palaesols studies 76 

(Simpson et al. 1997; Guttmann et al. 2005, Meharg et al. 2006), nitrogen isotope analysis of 77 

charred cereal grains (Bogaard et al 2007; 2013; Aguilera et al 2008; Araus et al. 2014), and 78 

archaebotanical weed assemblages (Jones et al. 2000; Bogaard et al. 2007; Charles et al. 2003). 79 

Later on, plant cultivation had to face other challenges including climatic fluctuations at multi-80 

century scales, and socio-economical evolutions. Among those, the urbanisation leads to a 81 

profound reorganisation of the rural landscapes in Western Europe. During the Late Iron Age 82 

indeed, the densification of settlements in Northern France implied an important extension of 83 

the land surfaces associated with crop production (Malrain et al. 2015) but this went also with a 84 

more extensive management of cereals cultivation (Zech-Matterne and Brun 2016). During the 85 

Roman period, specialisation in crop production involved massively the naked wheats (see 86 

below).  87 

The aim of this paper is to explore how fertilisation middles helped Gallic and Roman farmers 88 

to face new challenges in crop production when the urbanisation of Northern Gaul started in 89 

the 2nd century B.C. and a large feeding trade-system was established in the decades following 90 

the Roman conquest. 91 

 92 

Crop production in the Roman and La Tène period 93 

Cereal cultivation in north-eastern France has been investigated by numerous 94 

bioarchaeological studies. This has enabled trends in the evolution of cultivation practices, and 95 

the intentional selection of plant species from the Middle Iron Age to the end of the Roman 96 

period to be described. Analyses of the plant remains, from 2200 contexts and 170 occupations 97 

dated from the 4th century BC to the 5th century AD, highlighted specialized crop cultivation, 98 

focused primarily on the large-scale exploitation of emmer and hulled barley, associated with 99 

spelt wheat in some locations (Zech-Matterne et al. 2014). In France, the evolution of the 100 
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topographic location of rural settlements through time - from a dataset of 700 archaeological 101 

sites - demonstrates a diversification of cultivated lands during the 4th century BC (La Tène 102 

B); at a time when plateaus started to be assigned to agricultural activities (Malrain et al. 103 

2013). During the 2nd century BC, the emergence of oppida and small towns established a new 104 

framework for the control of production and food supply. This incipient urbanization 105 

developed a growing need for cereals that were free-threshing and ready to be milled or 106 

consumed. Naked wheat began to replace emmer and spelt, which was much harder to dehusk 107 

and which returned lower yields. The cultivation of bread wheat rose progressively from the 108 

end of the La Tène period (Zech-Matterne et al. 2014). The Roman conquest in 57-52 BC 109 

accelerated this new requirement, and bread wheat cultivation was established at a regional 110 

scale in the Seine, Oise and Aisne river valleys. In the 1st century AD, the zoning of areas, 111 

which persisted throughout the Roman period, was initiated: a northern zone, in which hulled 112 

wheat was maintained; a central zone, where naked wheat was intensively cultivated; and an 113 

eastern zone, where barley was the dominant crop, even though naked wheat stocks were being 114 

traded from southern regions. The strong association between crops and animal breeding 115 

species at a regional scale has already been highlighted (Lepetz and Matterne 2003): in the 116 

northern regions (Nord-Pas-de-Calais and Picardy) the prevalence of hulled wheat was 117 

associated with cattle breeding; while in the southern regions (Île-de-France) the presence of 118 

naked wheat was associated with caprines. From the 2nd century AD onwards, pulse 119 

cultivation began to increase in importance in areas where naked wheat had previously been 120 

preferable; and in the northern part of the ‘naked wheat area’, spelt wheat started to be more 121 

heavily exploited. The limit between these two zones fluctuated through time. Spelt and bread 122 

wheat are both suitable for bread making and were probably interchangeable in terms of 123 

consumption. However, spelt is much less demanding in terms of manure and soil tillage, 124 

whereas bread wheat, though more productive, is much more demanding in terms of soil 125 

requirements (Campbell 1997). 126 

 127 

Soil exhaustion and adopted solutions 128 

Naked wheat was cultivated in the Île-de-France region during all five centuries of the Roman 129 

period. This may have caused a progressive depletion of soil nutrients, though most of the Paris 130 

Basin plateaus are covered with thick layers of loess and loamy soils of the ‘brown’ and 131 

‘washed brown’ types (luvisols). Soil exhaustion may be reflected by the implementation of 132 

crop rotation, including leguminous plants, a century after the generalization of naked wheat 133 
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cultivation (Zech-Matterne et al. 2014). But were these Roman solutions, such as the use of 134 

manure, green manure and the introduction of rotation cycles involving pulses, effective? 135 

A tentative approach to answer this question was previously carried out using the functional 136 

ecology of the weed communities of cultivated fields (Zech-Matterne and Brun 2016). The 137 

composition of weed assemblages is responsive to major changes in cultivation practices, 138 

including manuring (Jones et al. 2000; Bogaard et al. 2007; Charles et al. 2003). A large-scale 139 

statistical analysis (i.e. 96 sites and 119 weed species) highlighted that in 6th and 5th century 140 

BC rural settlements, the dominant weed species reflected cultivation on the most fertile plots; 141 

partly because many farmsteads were established on alluvial soils and fields were regularly 142 

manured. On the contrary, during the Late La Tène period all types of soil were exploited, but 143 

from the beginning of the Roman period, middle quality soils prevailed and poor soils were as 144 

well cultivated. This could indicate a diversification of farming land due to constraints on 145 

arable land access, or a lack of fertilization on some plots owing to the establishment of 146 

extensive systems (Zech-Matterne and Brun 2016). 147 

Therefore, the objective of this study was to elucidate if the specialisation of agricultural 148 

species and cultural practices in northern Gaul, during the Middle La Tène period and the 149 

beginning of the Roman period, depended on soil impoverishment over time, especially where 150 

intensive and specialised bread wheat cultivation had challenged yield maintenance. A 151 

particular focus was applied to determine how the Romans were able to manage soil fertility on 152 

the chalky plains of the Champagne region, where strong edaphic constraints existed 153 

(deficiencies of nutrients and water), and to evaluate the role of animal manuring practices in 154 

the management of soil fertility. To achieve these objectives, stable isotope analysis was 155 

performed on archaeobotanical (carbonized cereal grains) and archaeozoological remains 156 

(animal bones). 157 

 158 

Stable isotope background 159 

The stable carbon (δ13C) and nitrogen isotope ratios (δ15N) in plants are related to 160 

environmental parameters and physiology (Farquhar et al. 1989; Araus et al. 2003; Ferrio et al. 161 

2003). A growing number of studies apply this approach to archaeological plant remains in 162 

order to reconstruct past climatic and agricultural conditions (Araus et al. 1997a; Araus et al. 163 

2014; Bogaard et al. 2007; Bogaard et al. 2013; Aguilera et al. 2008; Aguilera et al. 2012; 164 

Riehl et al. 2014) 165 

 166 

Stable carbon isotopes in plants 167 
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The C3 photosynthetic pathway predominated European plants (Pyankov et al. 2010), including 168 

cultivated cereals, at least until the Early Bronze Age. During this time, millet, a C4 cereal, 169 

appears for the first time in north-eastern France (Toulemonde 2013); however, the low 170 

proportion or absence of millet in the studied sites from the La Tène period does not suggest 171 

large scale cultivation (Jacob et al. 2008; Zech-Matterne et al. 2009).  172 

δ13C of plants is isotopically depleted in 13C respect to the atmospheric CO2, which is the 173 

carbon source for photosynthesis (Farquhar et al. 1989). Environmental factors, including 174 

temperature, precipitation, irradiance and vapour pressure deficit do exert an influence on the 175 

CO2 interchange between plants and atmosphere, and consequently impact the δ13C values of 176 

C3 plants. The plant reacts under environmental stress (i.e. low light intensity or low water 177 

availability) by closing the stomata, leading to an increase of δ13C values (Farquhar et al. 178 

1989). Inversely, when the environmental conditions are favourable, the stomata remain open 179 

and the Rubisco enzyme discriminates against the 13C, causing an increase in negative δ13C 180 

values (Condon et al. 1992; Araus et al. 1997a; Ferrio et al. 2003). Consequently, in dry 181 

environments, comparably low δ13C values in cultivated plant remains may highlight irrigation 182 

practices (Araus et al. 2003; Ferrio et al. 2005b). 183 

 184 

Stable nitrogen isotopes in plants 185 

Non-leguminous plants synthesize proteins from nitrogen (N) absorbed in the soil. Plants need 186 

microorganisms to transform N from organic material into a soluble form, in order to absorb it 187 

through the roots as nitrates (NO3
-) and ammonium (NH4

+), causing different N isotope 188 

compositions (Robinson 2001). Differences in nitrogen sources, patterns of nitrogen uptake 189 

and/or assimilation pathways can lead to different discrimination rates against 15N (Evans 190 

2001). The natural abundance of stable N isotopes in soils and plants is affected by abiotic 191 

factors including temperature and precipitation regimes. These induce differences in nitrogen 192 

cycling (Handley et al. 1999; Amundson et al. 2003; Aranibar et al. 2004) or soil processes, 193 

including biotic factors such as land use and agricultural practices (Compton et al. 2007; 194 

Commisso and Nelson 2006; Bogaard et al. 2007). All these considerations exercise influence 195 

on the isotopic fractionations during the soil-plant-animal interactions, and are entailed in the 196 

complex interpretation of the isotopic signal of the N cycle: the δ15N values of plants provide 197 

information about the δ15N values of the different assimilated N forms, the relationship 198 

between plant N demand and N supply and the rate of N derived from the organic material 199 

decomposition (Evans 2001; Aguilera et al. 2008; Kalcsits et al. 2014). Despite this, the δ15N 200 
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of plants in natural environments can be considered to be a reliable approximation on the δ15N 201 

of the environmental substrate (Handley and Raven 1992; Dawson et al. 2002; Marshall et al. 202 

2007; Bai and Houlton 2009).  203 

The influence of organic fertilizers, specifically those originating from animal dung, on soil 204 

δ15N values has been demonstrated in long-term agricultural experiments in temperate 205 

Europe (Riga et al. 1971; Gerzabek et al. 2001; Bol et al. 2005): the δ15N values of cereals 206 

was increased (Bol et al. 2005; Fraser et al. 2011). In addition, the enrichment of the δ15N 207 

values of cereals consecutive to N inputs through animal manuring is related to the intensity 208 

and duration of manuring (Bol et al. 2005; Choi et al. 2006; Bogaard et al. 2007; Szpak et al. 209 

2012). In particular, some long-term experiments were carried out in temperate zones: 210 

Rothamsted (UK), Askov (Denmark) and Bad Lauchstädt (Germany), in which the manuring 211 

impact on the δ15N values of cereals was assessed (Bol et al. 2005; Bogaard et al. 2007; 212 

Fraser et al. 2011). In these studies, a direct connection was established between fertilizer 213 

application and the enrichment of the cereals δ15N values, recording differences from 4 to 214 

9‰ between unmanured and manured plots, depending of studied sites (Bogaard et al. 2007; 215 

Fraser et al. 2011). In summary, different ranges of δ15N values were identified for modern 216 

cereals grown under a gradient of intensity of fertilization practices: δ15N values below 2.5‰ 217 

mainly corresponded to unmanured fields (Fraser et al. 2011; Bol et al. 2005); δ15N values 218 

from 2,5‰ to 6‰ reflected a medium level of fertility resulting from light manuring, a 219 

residual effect after a period of heavy manuring, or the natural fertility in the first years of a 220 

newly cultivated land (Fraser et al. 2011); while δ15N values above 6‰ suggested intensive 221 

and systematic manuring (Fraser et al. 2011).  222 

Depending on the climate, soil type and history of use, these threshold values may vary at a 223 

local scale. One particular challenge is to determine the baseline δ15N value of unmanured 224 

soil. In this case, the weed flora associated with the grain assemblage could not be used as a 225 

reference for the baseline nutritional status of the soil. Indeed, its presence within the crop 226 

assemblage suggests it was grown in the same fields under the same manuring regime. 227 

However, an estimation of the δ15N values of non-fertilized plants was able to be obtained 228 

indirectly from the bone collagen δ15N values of associated wild herbivores, taking into 229 

account a 3-4‰ 15N-enrichment between diet and bone collagen (Schoeninger and DeNiro 230 

1984; Bocherens and Drucker 2003). 231 

The interpretation of the δ15N values of archaeological plants was able to be used both as an 232 

integrative proxy to characterize local nitrogen cycling processes, and as an indicator of the 233 
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nutritional status of ancient crops (Handley and Raven 1992; Amundson et al. 2003; Bai and 234 

Houlton 2009; Aguilera et al. 2008). 235 

 236 

Methodological aspects 237 

The majority of cereal grains retrieved from archaeological sites was preserved in a charred 238 

state. Various experiments carried out at different temperatures, times and atmospheric 239 

conditions regarding the possible effect of carbonization on the isotopic signal of cereal grains,  240 

have so far produced divergent conclusions (Marino and DeNiro 1987; Araus et al. 1997b; 241 

Bogaard et al. 2007; Ferrio et al. 2007; Aguilera et al. 2008; Fraser et al. 2013; Nitsch et al. 242 

2015); but at the moment, the general consensus is that it has either no impact (Marino and 243 

DeNiro 1987; Araus and Buxó 1993; Kanstrup et al. 2012; Fraser et al. 2013) or a minimum 244 

impact (Nitsch et al. 2015) on the stable carbon isotope composition. As for the effect of 245 

carbonization on the nitrogen isotope composition, there is contradictory evidence either for no 246 

signal modification (Bogaard et al. 2007; Aguilera et al. 2008; Kanstrup et al. 2012) and 247 

modification leading to a significant 15N-enrichement (Fraser et al. 2013; Styring et al. 2013; 248 

Nitsch et al. 2015).  249 

The chemical pre-treatment of archaeobotanical material prior to analysis is another 250 

controversial issue. This pre-treatment is intended to remove post-depositional contamination 251 

from the sediment, which could alter the stable isotope ratios measured in the grains. Those 252 

contaminants potentially include carbonates, nitrates and/or humic acids, depending on the soil 253 

composition and soil conditions where the archaeological seeds were preserved. The necessity 254 

of a pre-treatment, and the choice between several alternatives (acid/base concentrations, 255 

soaking times and temperatures: DeNiro and Hastorf 1985; Bogaard et al. 2007; Fraser et al. 256 

2013; Vaiglova et al. 2014) depends on the soil conditions. Some studies have demonstrated no 257 

difference between pre-treated and non-treated archaeological samples (Lightfoot and Stevens 258 

2012; Wallace et al. 2015). Among the pre-treatments currently undertaken, the most 259 

commonly applied involves a 1M or 6M HCl acidification (DeNiro and Hastorf 1985; Brock et 260 

al. 2010; Kanstrup et al. 2012; Fiorentino et al. 2008). In this study, we also tested to see 261 

whether different concentrations of these would lead to significantly different results. 262 

 263 

Materials and Methods 264 

Archaeobotanical remains  265 

The charred grains came from 12 archaeological sites comprising 19 occupation periods 266 

situated in the Île-de-France and Champagne regions, dating from the Late La Tène period to 267 
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Late Antiquity (Figure 1 and Table S1). All these sites can be considered as farmsteads, of the 268 

fermes indigènes (enclosures), small Roman farms or villa rustica type, with the exception of 269 

Acy-Romance, a “village” and Jouars-Ponchartrain, a small town. The samples come from 270 

deeply or semi-excavated structures devoted to grain storage (mainly storage pits and cellars) 271 

or from rubbish pits and rubbish deposits in the enclosure ditches. Most of the assemblages can 272 

be regarded as ‘mass finds’ and their composition is rather homogenous. Crop management 273 

appears mainly to have been based on cereals (i.e. hulled and naked wheat, hulled barley), 274 

alternating with fallow, indicated by the composition of the arable weed spectra specific for 275 

ancient cultivated or untilled places, as Artemisietea. Diachronic trends were able to be 276 

explored at Palaiseau and Epiais-lès-Louvres, where between three and five archaeological 277 

phases were represented. 278 

Both regions strongly differ in the types of prevailing soils. In the Île-de-France region, 10 279 

archaeological sites were studied on the loamy plateaus of the northern part of the Paris Basin; 280 

an area still regarded as a major cereal production basin, dominated by the cultivation of bread 281 

wheat. The calcareous substratum is covered by several meters of very fertile wind silt (loess). 282 

These luvisol soils have a high capacity for water retention, but exhaustible nutrient resources 283 

and calcium content. Emmer and hulled barley were the dominant crops during the Early 284 

Protohistoric period, but were replaced by naked wheat from the second half of the 2nd century 285 

BC (Zech-Matterne et al. 2014). 286 

Two archaeological sites were selected in the Champagne-Ardenne region, more specifically 287 

on the plaine crayeuse (chalky plain). Here the chalky substratum is directly covered by thin 288 

layers of chalk nodules resulting from its disintegration, known locally as graveluches. The 289 

shallow rendzina soil contains active limestone, which can generate a risk of ferric chlorosis. 290 

Due to the unavailability of iron, the constitution of chlorophyll is disrupted, as is the 291 

photosynthesis. The hydric reserves of the superficial layers are also lowered by the number of 292 

micro-fractures in the chalk. The most frequently cultivated cereals were hulled barley and 293 

spelt (Zech-Matterne et al. 2014). A total number of 148 sets of charred cereal grains were 294 

analysed, belonging to four species: Triticum aestivum - bread wheat and Hordeum vulgare - 295 

barley (free-threshing cereals); and Triticum spelta - spelt and Triticum dicoccum - emmer 296 

(hulled cereals). Each sample set included 10 charred grains from the same context and 297 

stratigraphic unit. All the crops sampled derived from defined concentrations and storage 298 

structures (Table S1).  299 

 300 

Pre-treatment experiment 301 
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The experiment involved 795 archaeological cereal grains. The four species (spelt, barley, 302 

emmer wheat, bread wheat) were each represented by approximately 200 grains. Each species 303 

came from a single archaeological context, but the different species came from different sites 304 

all located in North-Eastern France. Spelt came from Amiens “ZAC Cathédrale”, barley came 305 

from Chambly “La-Marnière”; emmer and bread wheat came from Mareuil-lès-Meaux “La 306 

Grange du Mont” (Figure 1). At all sites loamy soils with a small proportion of organic matter 307 

prevailed, so no humic acid contamination was expected (Vaiglova et al. 2014). Therefore, the 308 

pre-treatment only involved the first acid step; further basic acid steps were not applied 309 

(DeNiro and Hastorf 1985; Aguilera et al. 2008).  310 

Two HCl concentrations (1M and 6 M) were tested on entire and powdered grains. The grains 311 

were treated individually with HCl during 24 hours at room temperature, soaked in distilled 312 

water three times (24h-12h-6h), oven-dried at 60ºC for 48 hours, milled to a fine powder (only 313 

entire grains) and homogenized. A total of 80 bulk samples were analysed (5 grain samples*4 314 

pre-treatments*4 cereals), each of which was comprised of 10 grains (with the exception of 315 

two groups with 7 and 8 grains) to minimize the effect of inter-grain variability (Figure S1). 316 

 317 

Archaeozoological remains 318 

The reference δ15N value for unmanured soils was estimated from the analysis of local wild 319 

herbivore bone collagen (Cervus elaphus: red deer) (cf. Bogaard et al. 2013). Although 320 

domestic animals largely predominate the faunal assemblages from the sites, they were 321 

avoided for this purpose because of the observed association between cultivation and 322 

husbandry in these agricultural systems (Lepetz and Matterne 2003): domestic animals may 323 

have been fed the by-products from cereal cultivation. From the assemblages of Palaiseau, 324 

Jouars-Pontchartrain and Acy-Romance (Table 2), 30 specimens were selected.  325 

To commence collagen extraction, 300 mg of powdered bone was used following the 326 

procedure described in Bocherens et al. (1991). The δ13C and δ15N values of the red deer diet 327 

were estimated by applying a 5‰ 13C-enrichment (Lee-Thorp 1989; Ambrose and Norr 1993) 328 

and a 3‰ 15N-enrichment between diet and bone collagen (Schoeninger et al. 1984; Bocherens 329 

and Drucker 2003).  330 

 331 

Stable isotope analysis 332 

Aliquots of 1 mg for archaeological cereal grains and 500 µg for bone collagen were weighed 333 

into tin capsules for coupled δ15N and δ13C measurements. The capsules were combusted in an 334 
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Elemental Analyzer Thermo Flash 2000 interfaced to a Thermo DeltaV Advantage isotope 335 

ratio mass spectrometer. Isotope ratios are expressed as per mille deviations using the δ 336 

notation relative to the air N2 and VPDB standards, for δ15N and δ13C, respectively. The 337 

analytical precision (standard deviation of working standards) determined for all runs was 338 

0.16‰ for δ15N and 0.15‰ for δ13C. 339 

In order to compare the δ13C values from different periods, the carbon isotope discrimination 340 

of archaeological grains (Δ13C) was calculated following the equation of Farquhar et al. (1989); 341 

in order to correct for fluctuations in the δ13C in atmospheric CO2 throughout the Holocene 342 

(Ferrio et al. 2007) (Table 1).  343 

In addition, stable isotopes were used as direct sources of information to reconstruct 344 

environmental conditions without any correction for carbonization effect. A recent study by 345 

Nitsch et al. (2015) in which cereals and pulses were considered together, recommends 346 

applying a 0.31‰ correction to the δ15N values of charred remains, even though charring 347 

caused a bigger shift on pulses than cereals. Given the uncertainties on the existence of any 348 

systematic effect of carbonization on the δ13C and δ15N of cereals grains, and given that when 349 

observed the shifts are of similar amplitude as the analytical precision of IRMS, we decided to 350 

apply no correction in this study. 351 

 352 

Statistical analyses 353 

All data were subjected to analysis of variance (ANOVA) to ascertain the effect of chemical 354 

treatments. Unless otherwise stated, differences were considered statistically significant when 355 

P<0.05. All analyses were carried out using standard SAS-STAT procedures. 356 

 357 

Results 358 

Pre-treatment experiment 359 

A three-way ANOVA was conducted on 80 sample sets to examine the main effects of 360 

species/context, concentration, the state of the grain (i.e. powdered or entire) and the 361 

interaction between different pre-treatments and species/context on the stable isotope values 362 

of archaeological grains (Supplementary Information Table S2). For δ15N values, 363 

species/context and the state of the grain yielded statically significant values at the 0.05 364 

significance level, but no significant difference (NS, p=0.32) existed among 1M and 6M HCl 365 

concentrations. A small and significant difference (0.191‰, p=0.022) existed with regards to 366 

the state of the grain during pre-treatment: the chemical pre-treatment carried out on entire 367 
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grain yielded higher δ15N values (Fig. 2). The interaction effects of the factors were not 368 

significant. 369 

Regarding the δ13C values, no significant difference (NS, p=0.881) between the state of the 370 

grain during chemical pre-treatment was found; however, the HCl concentrations did 371 

influence the carbon isotopic signal (p=0.033). The cereal grains treated with the lowest 372 

concentration of HCl (1M) presented a mean value of -23.17‰, while the cereals grains 373 

treated with a strong acid (6M HCl) presented the slightly more positive mean value of -374 

23.06‰. For C isotopes, the interactions were also not statistically significant. 375 

 376 

δ15N and δ13C of archaeological crop seeds 377 

The δ15N values of charred cereal grains presented a wide range among sites, periods and 378 

species (Table 1). The values measured in the Champagne soils were within the range of those 379 

measured in the Île-de-France: varying between 0.73‰ at Bonneuil and 8.71‰ at Jouars-380 

Pontchartrain (Fig.3a-b). Significant interspecific differences appeared between crops grown at 381 

the same site: Bailly (1), Mareuil-lès-Meaux (6), Houdan (7) and Acy-Romance (11). The δ15N 382 

values of H. vulgare differed significantly from the Triticum species, though not always in the 383 

same direction, with higher δ15N values for H. vulgare compared to Triticum at Bailly (1) and 384 

lower values in all other instances.  385 

On a regional scale, no temporal trends were observed. At Palaiseau (2) and Epiais-lès-Louvres 386 

(8), where the sampling included various occupation phases, different temporal patterns were 387 

observed. No significant variations at Palaiseau (δ15N = 6.64 ± 0.28‰), during a period of 388 

nearly 300 years, were noted; but fluctuations over a broad range of δ15N values (from 2.56 to 389 

5.35 ‰) were detected at Epiais-lès-Louvres, during a period of 350 years.  390 

The Δ13C values varied markedly among species, sites and across time periods. The values of 391 

both regions were comprised between 15.87 ‰ (T. aestivum of Epiais-lès-Louvres, earliest 392 

phase) to 18.46 ‰ (H. vulgare at Bailly). The mean specific Δ13C values were 17.97±0.36 ‰, 393 

17.07±0.82‰, 17.14±0.24‰ and 16.46±0.32‰ for H. vulgare, T. aestivum, T. dicoccum and 394 

T. spelta, respectively. Interspecific differences were observed between crop species cultivated 395 

at the same site. Barley delivered higher Δ13C values than wheat (T. aestivum, T. dicoccum and 396 

T. spelta) in all instances, with a maximum difference of 1.6‰ between barley and bread 397 

wheat at Mareuil-lès-Meaux (6). On the time scale, the Δ13C values of T. aestivum remained 398 

stable (17.85±0.22‰) throughout the temporal sequence at Palaiseau (2); while fluctuations 399 
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over a range of 2‰ were visible throughout the occupation at Epiais-lès-Louvres (8), following 400 

the same directions as those observed in the δ15N values. 401 

 402 

Bone collagen δ15N and δ13C 403 

Results from the stable isotope analysis of the red deer bone collagen are reported in Table 2 404 

and Fig. 4. The C (34.7 to 43.2 %) and N contents (12.6 to 15.7 %) and the C:N ratios, 405 

comprised between 3.1 and 3.3, allowed us to consider all extracts reliable for interpretation 406 

(DeNiro and Hastorf 1985). 407 

Intersite differences in the red deer δ13C values were not significant. The mean δ13C value for 408 

all sites was -21.9 ± 0.46‰. Significant differences in the red deer δ15N values were observed 409 

between sites (F=7.73, p=0.002). Palaiseau delivered the highest δ15N values (5.7±0.69‰), 410 

while Acy-Romance presented the widest variability (4.9±0.91‰).  411 

The estimated δ13C and δ15N values for the red deer’s diet (‘wild plants’) are reported in Figure 412 

4; by comparison, the cultivated cereals had higher δ13C values (by approximately 3-4‰). The 413 

estimated δ15N values for wild plants were 2.7±0.7, 1.3±0.84 and 1.8±0.9‰ at Palaiseau, 414 

Jouars-Pontchartrain and Acy-Romance, respectively.  415 

The δ15N values measured in cereals are also considerably higher than those estimated for wild 416 

plants at Palaiseau and Jouars-Ponchartrain, but are comparable to those estimated for the wild 417 

plants at Acy-Romance.  418 

 419 

Discussion 420 

 421 

Pre-treatment for isotopic analyses of archaeological grains 422 

Results from the experimental pre-treatments observed no clear pattern regarding the effect of 423 

the HCl concentration or the state of the grain on stable isotope values.  424 

Changes in acid concentration did not imply any difference to the δ15N values, contrary to the 425 

results of Vaiglova et al. (2014). A small but significant difference in the δ15N values between 426 

the state of the grain during the pre-treatment was detected (0.19‰), although this is close to 427 

the IRMS sensitivity value; but the possibility of losing a high percentage of the material due 428 

to milling, prior to pre-treatment, and the requirement of the use of a centrifuge at each step 429 

was not justifiable for such a negligible difference.  430 

Conversely, although the δ13C samples treated with 1M or 6M HCl differed significantly, this 431 

difference was too small (0.11‰, again, close to the IRMS sensitivity) to be considered 432 
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important for the interpretation of the crop stable isotope results. The fact that a high acid 433 

concentration could modify the carbon isotopic signal has already been reported by Vaiglova et 434 

al. (2014). This study compared treated (with gentle or harsh acid) and untreated samples of 435 

legumes and cereals which were then analysed together. The impact of the harsh acid 436 

concentration on the δ13C values was greater, but this could be attributed to the fact that a 437 

distinct composition exists among samples of legumes and cereals (López et al. 2005).  438 

We can deduce no significant effect of using pre-treatments to remove contamination from 439 

entire or powdered grains. Consequently, for this study the entire grains were treated with 1M 440 

HCl in order to minimize material loss and to apply less aggressive methods prior to stable 441 

isotope analyses.  442 

 443 

Environmental conditions from the Δ13C of archaeological cereal grains 444 

Most studies examining the effects of environmental factors on plant stable carbon isotopic 445 

composition have focused on arid or semi-arid climates where water availability applies major 446 

restrictions on plant growth (Araus et al. 2003; Ferrio et al. 2005b; Flohr et al. 2011; Riehl et 447 

al. 2014). In temperate zones, where water availability is not a limiting factor for plant growth, 448 

the relationship between the Δ13C and water conditions is not clearly defined, since other 449 

factors like irradiance or temperature can exercise influence on photosynthesis (Khazaei et al. 450 

2008). In any case, many studies have shown correlations between δ13C or Δ13C values and 451 

amount of precipitation or irrigation, but those may also differ with the crop growing season. 452 

While some studies correlated the δ13C with the total water inputs (i.e.: precipitation and 453 

irrigation water over the whole growing season) (Flohr et al 2011; Wallace et al. 2013); others 454 

highlighted good correlations between δ13C values and total water inputs during grain filling 455 

(i.e: precipitation plus irrigation water from flowering to maturity stage) (Araus et al 1997b; 456 

1999b; Ferrio et al. 2005b). In the present study, a qualitative reconstruction was attempted that 457 

takes into account the general relationship between Δ13C and water availability, given that 458 

more specific experiments would be necessary in order to better assess the correlation between 459 

climatic variables and carbon isotopes in these temperate conditions. 460 

However, the few experiments conducted in well-watered regions or under irrigation have 461 

shown that the ∆13C values from the charred grains of Triticum aestivum were higher than 17-462 

17.5‰, indicating a well-watered status (high precipitation/irrigation; Araus et al. 1999b; 463 

Wallace et al. 2013). Taking this into consideration, it appears that the ∆13C values of Triticum 464 

aestivum measured in the archaeological assemblages from the Île-de-France region suggest 465 
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good prevailing hydric conditions, throughout the studied time period except in two instances. 466 

Water availability remained stable throughout the La Tène period, except for the 1st and 3rd 467 

century AD, and exhibits lower ∆13C values. This observation is in agreement with the climate 468 

reconstruction of Central Europe by Büntgen et al. (2011), based on the analysis of Quercus sp. 469 

tree-ring width. The reconstruction of the April to June precipitation indicates two depressions 470 

coinciding with our climatic inferences, during years when the June to August temperatures 471 

increases. The combination of both variables may have increased the vapour pressure deficit, 472 

which can be translated into lower Δ13C values (Condon et al. 1992; Ferrio and Voltas 2005a). 473 

On the other hand, the well-watered or irrigated barley grains appear in the literature with ∆13C 474 

values of 18-19‰ (Flohr et al. 2011, Wallace et al. 2013).  The isotopic values from the 475 

charred grains of barley from the both studies regions were higher than from wheat 476 

(differences between 0.76 and 1.6‰). The same tendency has been reported in previous studies 477 

on archaeobotanical remains and modern material, and has been attributed to distinct growing 478 

cycles (Araus et al. 1999a; Ferrio et al. 2005b; Wallace et al. 2013). Whilst this argument is 479 

admitted in dry environments, this explanation may be not be adequate in temperate zones, 480 

where distribution of monthly precipitation is very different of Mediterranean climates and the 481 

water constraints are less. Nevertheless, these higher values of ∆13C of barley could provide 482 

evidence that wheat was not cultivated in selected areas with better water availability, as the 483 

∆13C values of wheat are often lower. 484 

In the Champagne region, in spite of a limited number of samples, the lower values of the 485 

carbon isotope composition, observed for spelt, most probably reflect low water availability 486 

due to the reduced holding capacity of the chalky soils.  487 

 488 

Crop fertility conditions during the La Tène and Roman period 489 

Considering that the δ15N values of plants are correlated with the nutrient status of ecosystems 490 

(Fogel et al 2008), and taking into account that the 15N signal of cereal grains potentially 491 

reflects the overall nutrient quality of agricultural soils, including the effect of manuring (Bol 492 

et al. 2005; Bogaard et al. 2007; Fraser et al. 2011; Szpak et al. 2012), the wide range of δ15N 493 

values measured at these sites implies that cereals were grown in a wide range of soil fertility 494 

conditions, and may suggest different manuring rates (Bol et al. 2005; Bogaard et al. 2007) . 495 

Most assemblages delivered δ15N values from between 3‰ to 6‰, reflecting a medium level 496 

of fertility; a condition which could result from various scenarios: a light application of 497 

manure, the cultivation of new productive lands or the remaining fertility of manured and 498 
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cultivated lands (Fraser et al. 2011). On the one hand, the cereals from Jouars-Pontchartrain (9) 499 

and Palaiseau (2) yielded δ15N values above 6‰, reflecting a high level or long-term heavy 500 

manuring. On the other hand, the cereals from Bonneuil (5) and Acy-Romance (11) yielded 501 

low δ15N values, which could reflect impoverished or long-term unmanured soils.  502 

At Jouars-Ponchartrain (9), similarly high δ15N values were measured in wheat and barley, 503 

which suggests that the same cultural practices were applied to both species. Conversely, 504 

interspecific differences appeared in all other sites, implying heterogeneous strategies of 505 

cultivation, depending on the cereal species (Aguilera et al. 2008).  506 

In general, Triticum aestivum (naked wheat) presents higher δ15N values than hulled wheat 507 

(Triticum dicoccum or Triticum spelta) when cultivated contemporaneously at the same site; 508 

exceptions to this are the earliest assemblages of Bailly (1; 5th century BC) and Morigny-509 

Champigny (10; 3rd century BC). During La Tène I, naked wheat was probably grown in 510 

marginal fields; then, later on, the preference for naked wheat increased and it started to be 511 

cultivated as the main crop in selected areas or on manured soils (Zech-Matterne et al. 2014). 512 

In the Champagne region, the δ15N values of spelt were higher than those measured in barley.  513 

While Näsholm et al. (2000) demonstrated that could exist interspecific differences in δ15N 514 

values of agricultural grasslands caused by various N-uptake patterns and N assimilation. 515 

Fraser et al. (2011) demonstrated similar effect of manuring on cereal grain δ15N in different 516 

species. Therefore, the observed difference between crop species could be explained either by 517 

distinct cropping systems, where the best soils would be allocated to wheat species; or different 518 

manuring levels applied to different species; or a difference in the cereal ability to recover 15N 519 

from organic manure depending of interspecific competition with weeds (Ruisi et al. 2015). 520 

 521 

Manuring practices in the cropping systems 522 

There are multiple conditions that can cause higher δ15N values; one of which is scarce 523 

precipitation: a negative correlation that has been reported between mean annual precipitation 524 

and leaf δ15N (Handley et al. 1999; Amundson et al. 2003), even though Fraser et al. (2011) 525 

detected a positive relationship between the δ15N values of cereals grown in manure fields and 526 

mean annual precipitation, the same study no correlation between δ15N values of cereals 527 

cultivated in unmanured fields and precipitation was evidenced. Another cause of higher δ15N 528 

values is high temperature, given that cold and humid systems tend to preserve and recycle N 529 

(Handley et al. 1999). However, climatic conditions were not responsible for the increase in 530 

δ15N values here; since the general trend inferred by the Δ13C values indicate good growing 531 

environmental conditions for wheat and barley, in agreement with reconstructed precipitation 532 
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and temperature from oaks (Büntgen et al. 2011). Another influential factor which could have 533 

caused the high δ15N values is salinity, but this was ruled out as the current flora composition 534 

of the region, and the weeds recovered from the archaeological sites, did not show a significant 535 

frequency of salt tolerant plants (Zech-Matterne and Brun 2016).  536 

The high δ15N values of domestic plants could indicate naturally rich soils or farming 537 

practices. The δ15N values from red deer bone collagen can be used to estimate the fertility of 538 

unmanaged soils and distinguish between natural causes and intentional management. At 539 

Palaiseau (2) and Jouars-Pontchartrain (9), which delivered among the highest δ15N values in 540 

the Île-de-France, soil fertility was probably enhanced through manuring, leading to a 541 

significant rise in the δ15N values of cereals in comparison to those estimated for the wild 542 

vegetation (Figure 4). On the contrary, at Acy-Romance (11) in Champagne, where the δ15N 543 

values measured in red deer bone collagen were very similar to those obtained at Jouars-544 

Ponchartrain, suggesting a similar δ15N baseline value for non-fertilized plants; the δ15N 545 

values measured in cereal crops were similar to those estimated for plants grown on 546 

unmanaged soils, suggesting no fertilization practices in this agrarian system of the 547 

Champagne region. 548 

The highest difference between cultivated cereals and wild plant δ15N values was reported at 549 

Jouars-Pontchartrain (ca. + 7.0 ‰). This considerable 15N-enrichment in cereals may be due to 550 

a distinct quality of animal manure. While the effect of animal manure on plants δ15N may vary 551 

greatly, due to numerous variables constraining N-uptake and assimilation by plants (Szpack 552 

2014), the origin of animal fertilizer can also influence 15N-enrichment: poultry or cattle 553 

produce faeces with slightly lower δ15N values than caprines and considerably lower than pigs. 554 

In keeping with most archaeological sites from these periods, the relative proportion of animal 555 

species within the assemblages was essentially composed of five domesticates: cattle, pig, 556 

sheep, horse and dogs; the latter two being consumed during the La Tène period. However, 557 

different proportions were noted across sites and within sites, depending on the areas 558 

excavated, the different nature of the archaeological structures and the living standards of the 559 

inhabitants. It is therefore difficult to define a unique snapshot of food and breeding at a 560 

specific site: some areas may have delivered numerous cattle or horse bones, while other places 561 

may have been rich in sheep or pig remains. Overall, the feeding at Acy-Romance was based 562 

primarily on beef and horse. At Jouars-Pontchartrain sheep and cattle were well represented, as 563 

were pigs from several domestic rubbish pits; the faeces from all of these animals could have 564 

been potentially used to manure the fields. Human waste or sewage could also have used been 565 
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at this site, as documented in the written records of the Roman period (Cordier 2003; Bakels 566 

1997; Poirier and Nuninger 2012). 567 

Palaiseau presents a consistent trend in cereal δ15N values along the analysed temporal 568 

sequence from 2nd century BC to 2nd century AD. This consistency, during 300 years of 569 

cultivation, is also in favour of human management; and implies a good knowledge of 570 

fertilization practices for the purpose of improving and sustaining the fertility of cultivated soil.  571 

 572 
 573 

Conclusions  574 

This multiscale stable isotope investigation on crop fertility conditions revealed interesting 575 

aspects of interregional, intersite and interspecies variability. This was due to the abundance of 576 

carpological assemblages from the Iron Age to the Roman period, noticeably more consistent 577 

than from most Neolithic contexts, and strong preliminary knowledge on crop cultivation 578 

systems. Interregional differences in edaphic conditions, of the lower water holding capacity of 579 

the Champagne chalky soils compared to the Île-de-France luvisols, was reflected in lower 580 

∆13C values for spelt cultivated in the former region. In Acy-Romance and Champfleury in 581 

Champagne, no manuring was applied to correct the lower fertility of soils, but was managed 582 

by the selection of crop species (spelt and barley) better suited to the prevailing soil conditions.  583 

Alternatively, in the Île-de-France region, the δ15N values measured in charred grains showed 584 

high intersite variability, suggesting a wide range of soil fertility conditions, most probably 585 

linked to different manuring rates and history. Where an intrasite diachronic approach was 586 

rendered possible, different time trajectories were also highlighted between sites; suggesting, 587 

again, a significant influence of cultivation practices on similar soil substrates. Within each 588 

site, intercrop variability was more difficult to interpret, given that it may partly include 589 

internal differences in crop physiology or different cropping systems.  Hopefully further 590 

studies in this area, preferentially on ancient varieties of cereals, will successfully address this 591 

issue. It was noted that intercrop variability was not systematic, suggesting that it may reflect 592 

different treatments for different cereal types. In most cases, higher δ15N values were measured 593 

in naked wheat compared to hulled wheat from the same site, which may be explained by the 594 

particular care given to naked wheat. 595 

The use of animal manure was clearly demonstrated at Palaiseau and Jouars-Ponchartrain. At 596 

Jouars-Ponchartrain, the 7‰ 15N-enrichment in cultivated cereals, compared to the estimated 597 

values for unmanured plants, highlighted the need to identity the actual fertiliser used (i.e. 598 

cattle or caprines/ pig or human). A closer examination of the association between plant and 599 
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animal domesticates (Lepetz and Matterne. 2003) may help to clarify this. The relationship 600 

between crop and animal husbandry may also include a return from the manured plant to the 601 

animal in the form of fodder. This particular topic is the subject of ongoing work in this region. 602 

  603 

 20 



References 604 

 605 
Aguilera, M., Araus, J. L., Voltas, J., Rodriguez-Ariza, M. O., Molina, F., Rovira, N., Buxo, R. 606 
and Ferrio, J. P. 2008. Stable carbon and nitrogen isotopes and quality traits of fossil cereal 607 
grains provide clues on sustainability at the beginnings of Mediterranean agriculture. Rapid 608 
Communications in Mass Spectrometry 22, 1653-1663. 609 

Aguilera, M., Ferrio, J. P., Pérez, G., Araus, J. L. and Voltas, J. 2012. Holocene changes in 610 
precipitation seasonality in the western Mediterranean Basin: a multi-species approach using 611 
δ13C of achaeobotanical remains. Journal of Quaternary Science 27, 192-202. 612 

Ambrose, S. H. and Norr, L. 1993. Experimental evidence for therelationship of the carbon 613 
isotope ratios of whole dietand dietary protein to those of bone collagen and carbonate, pp. 1-614 
37 in Lambert, J. B. and Grupe, G. (eds.), Prehistoric Human Bones: Archaeology at the 615 
molecular level. Berlin: Springer-Verlag. 616 

Amundson, R., Austin, A. T., Schuur, A. G., Yoo, K., Matzek, V., Kendall, C., Uebesax, A., 617 
Brenner, D. and Baisden, W. T. 2003. Global patterns of the isotopic composition of soil and 618 
plant nitrogen. Global Biogeochemical Cycles 17, 1031, doi:10.1029/2002GB001903, 2003. 619 

Aranibar, J. N., Otter, L., Macko, S. A., Feral, C. J. W., Epstein, H. E., Dowty, P. R., Eckardt, 620 
F., Shugart, H. H. and Swap, R. J. 2004. Nitrogen cycling in the soil-plant system along a 621 
precipitation gradient in the Kalahari sands. Global Change Biology 10, 359-373. 622 

Araus, J. L. and Buxó, R. 1993. Changes in carbon isotope discrimination in grain cereals from 623 
the north-western Mediterranean basin during the past seven millennia. Australian Journal of 624 
Plant Physiology 20, 117-128. 625 

Araus, J. L., Bort, J., Ceccarelli, S. and Grando, S. 1997a. Relationship between leaf structure 626 
and carbon isotope discrimination in field grown barley. Plant Physiology and Biochemistry 627 
35, 533-541. 628 

Araus, J. L., Febrero, A., Buxó, R., Camalich, M. D., Martin, D., Molina, F., Rodriguez-Ariza, 629 
M. O. and Romagosa, I. 1997b. Changes in carbon isotope discrimination in grain cereals from 630 
different regions of the western Mediterranean basin during the past seven millennia. 631 
Palaeoenvironmental evidence of a differential change in aridity during the late Holocene. 632 
Global Change Biology 3, 107-118. 633 

Araus, J. L., Slafer, G. A. and Romagosa, I. 1999a. Durum wheat and barley yields in antiquity 634 
estimated from 13C discrimination of archaeological grains: a case study from the Western 635 
Mediterranean Basin. Australian Journal of Plant Physiology 26, 345-352. 636 

Araus, J. L., Febrero, A., Catala, M., Molist, M., Voltas, J. and Romagosa, I. 1999b. Crop 637 
water availability in early agriculture: evidence from carbon isotope discrimination of seeds 638 
from a tenth millennium BP site on the Euphrates. Global Change Biology 5, 201-212. 639 

Araus, J. L., Villegas, D., Aparicio, N., García-del-Moral, L. F., Elhani, S., Rharrabti, Y., 640 
Ferrio, J. P. and Royo, C. 2003. Environmental factors determining carbon isotope 641 
discrimination and yield in durum wheat under Mediterranean conditions. Crop Science 43, 642 
170-180. 643 

 21 



Araus, J. L., Ferrio, J. P., Voltas, J., Aguilera, M. and Buxó, R. 2014. Agronomic conditions 644 
and crop evolution in ancient Near East agriculture. Nature Communications 5. 645 

Bai, E. and Houlton, B. Z. 2009. Coupled isotopic and process-based modeling of gaseous 646 
nitrogen losses from tropical rain forests. Global Biogeochemical Cycles 23, GB2011. 647 

Bakels, C. C. 1997. The beginnings of manuring in western Europe. Antiquity 71, 442-445. 648 

Bocherens, H., Fizet, M., Mariotti, A., Langebadre, B., Vandermeersch, B., Borel, J. P. and 649 
Bellon, G. 1991. Isotopic biogeochemistry (C-13, N-15) of fossil vertebrate collagen - 650 
Application to the study of a past food. Journal of Human Evolution 20, 481-492. 651 

Bocherens, H. and Drucker, D. 2003. Trophic level isotopic enrichment of carbon and nitrogen 652 
in bone collagen: case studies from recent and ancient terrestrial ecosystems. International 653 
Journal of Osteoarchaeology 13, 46-53. 654 

Bogaard, A., Heaton, T., Poulton, P. and Merbach, I. 2007. The impact of manuring on 655 
nitrogen isotope ratios in cereals: archaeological implications for reconstruction of diet and 656 
crop management practices. Journal of Archaeological Science 34, 335-343. 657 

Bogaard, A., Fraser, R., Heaton, T. H., Wallace, M., Vaiglova, P., Charles, M., Jones, G., 658 
Evershed, R. P., Styring, A. K., Andersen, N. H., Arbogast, R. M., Bartosiewic, L., Gardeisen, 659 
A., Kanstrup, M., Maier, U., Marinova, E., Ninov, L., Schaefer, M. and Stephan, E. 2013. Crop 660 
manuring and intensive land management by Europe's first farmers. Proceedings of the 661 
National Academy of Sciences of the United States of America 110, 12589-12594. 662 

Bol, R., Eriksen, J., Smith, P., Garnett, M. H., Coleman, K. and Christensen, B. T. 2005. The 663 
natural abundance of 13C, 15N, 34S and 14C in archived (1923-2000) plant and soil samples 664 
from the Askov long-term experiments on animal manure and mineral fertilizer. Rapid 665 
Communications in Mass Spectrometry 19, 3216-3226. 666 

Brock, F., Higham, T., Ditchfield, P. and Bronk Ramsey, C. 2010. Current Pretreatment 667 
Methods for AMS Radiocarbon Dating at the Oxford Radiocarbon Accelerator Unit (ORAU). 668 
Radiocarbon 52. 669 

Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., Kaplan, J. O., 670 
Herzig, F., Heussner, K. U., Wanner, H., Luterbacher, J. and Esper, J. 2011. 2500 Years of 671 
European Climate Variability and Human Susceptibility. Science 331, 578-582. 672 

Campbell, K. G. 1997. Spelt: agrononomy, genetics, and breeding. Plant Breeding Reviews 15, 673 
187-213. 674 

Charles, M., Hoppe, C., Jones, G., Bogaard, A. and Hodgson, J. 2003. Using weed functional 675 
attributes for the identification of irrigation regimes in Jordan. Journal of Archaeological 676 
Science 30, 1429-1441. 677 

Choi, W. J., Arshad, A., Chang, S. X. and Kim, T. H. 2006. Grain N-15 of crops applied with 678 
organic and chemical fertilizers in a four-year rotation. Plant and Soil 284, 165-174. 679 

Commisso, R. G. and Nelson, D. E. 2006. Modern plant δ15N values reflect ancient human 680 
activity. Journal of Archaeological Science 33, 1167-1176. 681 

 22 



Compton, J., Hooker, T. and Perakis, S. 2007. Ecosystem N distribution and delta N-15 during 682 
a century of forest regrowth after agricultural abandonment. Ecosystems 10, 1197-1208. 683 

Condon, A. G., Richards, R. A. and Farquhar, G. D. 1992. The effect of variation in soil water 684 
availability, vapour pressure deficit and nitrogen nutrition on carbon isotope discrimination in 685 
wheat. Australian Journal of Agricultural Research 43, 935-947. 686 

Cordier, P. 2003. Le destin urbain du stercus et de l'urine, pp. 51-60 in Ballet, P., Cordier, P. 687 
and Dieudonné-Glad, N. (eds.), La ville et ses déchets dans le monde romain: rebut et 688 
recyclages. Poitiers: Monique Mergoil Ed. 689 

Dawson, T. E., Mambelli, S., Plamboek, A. H., Templer, P. H. and Tu, K. P. 2002. Stable 690 
isotopes in plant ecology. Annual Review of Ecology and Systematics 33, 507-559. 691 

DeNiro, M. J. and Hastorf, C. A. 1985. Alteration of 15N/14N and 13C/12C ratios of plant matter 692 
during the initial stages of diagenesis: Studies utilizing archaeological specimens from Peru. 693 
Geochimica et Cosmochimica Acta 49, 97-115. 694 

Evans, R. D. 2001. Physiological mechanisms influencing plant nitrogen isotope composition. 695 
Trends in Plant Science 6, 121-126. 696 

Farquhar, G. D., Ehleringer, J. R. and Hubick, K. T. 1989. Carbon isotope discrimination and 697 
photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40, 503-537. 698 

Ferrio, J. P., Florit, A., Vega, A., Serrano, L. and Voltas, J. 2003. Δ13C and tree-ring width 699 
reflect different drought responses in Quercus ilex and Pinus halepensis. Oecologia 137, 512-700 
518. 701 

Ferrio, J. P. and Voltas, J. 2005a. Carbon and oxygen isotope ratios in wood constituents of 702 
Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus 703 
Series B-Chemical and Physical Meteorology 57B, 164-173. 704 

Ferrio, J. P., Araus, J. L., Buxó, R., Voltas, J. and Bort, J. 2005b. Water management practices 705 
and climate in ancient agriculture: inference from the stable isotope composition of 706 
archaeobotanical remains. Vegetation History and Archaeobotany 14, 510-517. 707 

Ferrio, J. P., Voltas, J., Alonso, N. and Araus, J. L. 2007. Reconstruction of climate and crop 708 
conditions in the past based on the carbon isotope signature of archaeobotanical remains, pp. 709 
319-332 in Dawson, T. D. and Siegwolf, R. (eds.), Isotopes as tracers of ecological change.: 710 
Elsevier Academic Press. 711 

Fiorentino, G., Caracuta, V., Calcagnile, L., D'Elia, M., Matthiae, P., Mavelli, F. and Quarta, 712 
G. 2008. Third millennium B.C. climate change in Syria highlighted by carbon stable isotope 713 
analysis of 14C-AMS dated plant remains from Ebla. Palaeogeography, Palaeoclimatology, 714 
Palaeoecology 266, 51-58. 715 

Flohr, P., Jenkins, E., and Müldner, G. 2011. Carbon stable isotope analysis of cereal remains 716 
as a way to reconstruct water availability: preliminary results. Water History 3, 121-44. 717 
 718 

Fogel, M. L., Wooller, M. J., Cheeseman, J., Smallwood, B. J., Roberts, Q., Romero, I. and 719 
Meyers, M. J. 2008. Unusually negative nitrogen isotopic compositions (δ15N) of mangroves 720 

 23 



and lichens in an oligotrophic, microbially-influenced ecosystem. Biogeosciences 5, 1693–721 
1704. 722 

Fraser, R., Bogaard, A., Charles, M., Styring, A., Wallace, M., Jones, G., Ditchfield, P. and 723 
Heaton, T. 2013. Assessing natural variation and the effects of charring, burial and pre-724 
treatment on the stable carbon and nitrogen isotope values of archaeobotanical cereals and 725 
pulses. Journal of Archaeological Science 40, 4754-4766. 726 

Fraser, R. A., Bogaard, A., Heaton, T., Charles, M., Jones, G., Christensen, B. T., Halstead, P., 727 
Merbach, I., Poulton, P. R., Sparkes, D. and Styring, A. K. 2011. Manuring and stable nitrogen 728 
isotope ratios in cereals and pulses: towards a new archaeobotanical approach to the inference 729 
of land use and dietary practices. Journal of Archaeological Science 38, 2790-2804. 730 

Gerzabek, M. H., Haberhauer, G. and Kirchmann, H. 2001. Nitrogen distribution and 15N 731 
natural abundances in particle size fractions of a long-term agricultural field experiment. 732 
Journal of Plant Nutrition and Soil Science 164, 475-481. 733 

Guttmann, E. B., Simpson, I.A., Davidson, D.A. 2005. Manuring practices in antiquity: a 734 
review of the evidence, pp.68-76 in Brickley, M. and Smith, D. (eds.), Fertile Ground: Papers 735 
in Honour of Susan Limbrey.: Oxbow Books.  736 

Handley, L. L. and Raven, J. A. 1992. The use of natural abundance of nitrogen isotopes in 737 
plant physiology and ecology. Plant, Cell and Environment 15, 965-985. 738 

Handley, L. L., Austin, A. T., Robinson, D., Scrimgeour, C. M., Raven, J. A., Heaton, T. H. E., 739 
Schmidt, S. and Stewart, G. R. 1999. The 15N natural abundance (delta15N) of ecosystem 740 
samples reflects measures of water availability. Australian Journal of Plant Physiology 26, 741 
185-199. 742 

Jacob, J., Disnar, J. R. and Bardoux, G. 2008. Carbon isotope evidence for sedimentary 743 
miliacin as a tracer of Panicum miliaceum (broomcorn millet) in the sediments of Lake le 744 
Bourget (French Alps). Organic Geochemistry 39, 1077-1080. 745 

Jones, G., Bogaard, A., Charles, M. and Hodgson, J. 2000. Distinguishing the effects of 746 
agricultural practices relating to fertility and disturbance: A functional ecological approach in 747 
archaeobotany. Journal of Archaeological Science 27, 1073-1084. 748 

Kalcsits, L. A., Buschhaus, H. A. and Guy, R. D. 2014. Nitrogen isotope discrimination as an 749 
integrated measure of nitrogen fluxes, assimilation and allocation in plants. Physiologia 750 
Plantarum 151, 293-304. 751 

Kanstrup, M., Thomsen, I. K., Mikkelsen, P. H. and Christensen, B. T. 2012. Impact of 752 
charring on cereal grain characteristics: linking prehistoric manuring practice to delta N-15 753 
signatures in archaeobotanical material. Journal of Archaeological Science 39, 2533-2540. 754 

Khazaei, H., Monneveux, P., Mohammady, S. and Zhang, Z. B. 2008. Relationship between 755 
carbon isotope discrimination, grain yield and water use efficiency in bread wheat under well-756 
watered conditions. Wheat Information Service 106, 11. 757 

Lee-Thorp, J.A. 1989. Stable Carbon Isotopes in Deep Time: The Diets of Fossil Fauna and 758 
Hominids. University of Cape Town. 759 

 24 



Lepetz, S. and Matterne, V. 2003. Èlevage et agriculture dans le Nord de La Gaule durant 760 
l'époque Gallo-Romaine: une confrontation des données archéozoologiques et carpologiques. 761 
Revue Archeologique de Picardie 23-35. 762 

Lightfoot, E. and Stevens, R. E. 2012. Stable isotope investigations of charred barley 763 
(Hordeum vulgare) and wheat (Triticum spelta) grains from Danebury Hillfort: implications 764 
for palaeodietary reconstructions. Journal of Archaeological Science 39, 656-662. 765 

López, S., Davies, D. R., Giráldez, F. J., Dhanoa, M. S., Dijkstra, J. and France, J. 2005. 766 
Assessment of nutritive value of cereal and legume straws based on chemical composition and 767 
in vitro digestibility. Journal of the Science of Food and Agriculture 85, 1550-1557. 768 

Malrain, F., Blancquaert, G. and Lorho, Th. (2013) L'habitat rural du second âge du Fer. 769 
Rythmes de création et d'abandon au nord de la Loire. Paris. 770 

Marino, B. D. and DeNiro, M. J. 1987. Isotope analysis of archaeobotanicals to reconstruct 771 
past climates: effects of activities associated with food preparation on carbon, hydrogen and 772 
oxygen isotope ratios of plant cellulose. Journal of Archaeological Science 14, 537-548. 773 

Marshall, J.D., Brooks, J.R. and Lajtha, K. 2007. Sources of variation in the stable isotopic 774 
composition of plants, pp. 22-60 in Michener, R. and Lajtha, K. (eds.), Stable Isotopes in 775 
Ecology and Environmental Science.: Blackwell Publishing Ltd. 776 

Meharg, A. A., Deacon, C., Edwards, K. J., Donaldson, M., Davidson,D. A., Spring, C., 777 
Scrimgeour, C. M., Feldmann,J., Rabb, A. 2006. Ancient manuring practices pollute arable 778 
soils at the St Kilda World Heritage Site, Scottish North Atlantic. Chemosphere 64, 1818-1828 779 
 780 
Näsholm, T., Huss-Danell, K. and Hogberg, P. 2000. Uptake of organic nitrogen in the field by 781 
four agriculturally important plant species. Ecology 81, 1155-1161. 782 

Nitsch, E. K., Charles, M. and Bogaard, A. 2015. Calculating a statistically robust δ13C and 783 
δ15N offset for charred cereal and pulse seeds. STAR: Science & Technology of Archaeological 784 
Research 1, 1-8. 785 

Poirier, N. and Nuninger, L. 2012. Techniques d'amendement agraire et témoins matériels. 786 
Pour une approche archéologique des espaces agraires anciens. Histoire et Sociétés Rurales 38, 787 
11-50. 788 

Pyankov, V. I., Ziegler, H., Akhani, H., Deigele, C. and Lüttge, U. 2010. European plants with 789 
C4 photosynthesis: geographical and taxonomic distribution and relations to climate 790 
parameters. Botanical Journal of the Linnean Society 163, 283-304. 791 

Riehl, S., Pustovoytov, K. E., Weippert, H., Klett, S. and Hole, F. 2014. Drought stress 792 
variability in ancient Near Eastern agricultural systems evidenced by δ13C in barley grain. 793 
Proceedings of the National Academy of Sciences 111, 12348-12353. 794 

Riga, A., Praag, H. J., V and Brigode, N. 1971. Isotopic ratio of N in forest and agricultural 795 
soils in Belgium under various cultural treatments. Geoderma 6, 213-222. 796 

Robinson, D. 2001. δ15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution 797 
16, 153–162. 798 

 25 



Ruisi, P., Frangipane, B., Amato, G., Frenda, A.S. Plaia, A. Giambalvo1, D. and Saia, S. 2015. 799 
Nitrogen uptake and nitrogen fertilizer recovery in old and modern wheat genotypes grown in 800 
the presence or absence of interspecific competition. Frontiers in Plant Science 6:185.  801 
 802 
Schoeninger, M. J. and Deniro, M. J. 1984. Nitrogen and carbon isotopic composition of bone 803 
collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta 48, 625-639. 804 

Styring, A., Manning, H., Fraser, R., Wallace, M., Jones, G., Charles, M., Heaton, T., Bogaard, 805 
A. and Evershed, R. 2013. The effect of charring and burial on the biochemical composition of 806 
cereal grains: investigating the integrity of archaeological plant material. Journal of 807 
Archaeological Science 40, 4767-4779. 808 

Szpak, P., Millaire, J. F., White, C. D. and Longstaffe, F. J. 2012. Influence of seabird guano 809 
and camelid dung fertilization on the nitrogen isotopic composition of field-grown maize (Zea 810 
mays). Journal of Archaeological Science 39, 3721-3740. 811 

Szpak, P. 2014. Complexities of nitrogen isotope biogeochemistry in plant-soil systems: 812 
implications for the study of ancient agricultural and animal management practices. Frontiers 813 
in Plant Science 5, 1-19 814 

Toulemonde, F. 2013. Economie végétale et pratiques agricoles au Bronze final et au premier 815 
âge du Fer, de la côte de l'Île-de-France à la côte de Champagne. Université de Paris 1. 816 

Vaiglova, P., Snoeck, C., Nitsch, E., Bogaard, A. and Lee-Thorp, J. 2014. Impact of 817 
contamination and pre-treatment on stable carbon and nitrogen isotopic composition of charred 818 
plant remains. Rapid Communications in Mass Spectrometry 28, 2497-2510. 819 

Wallace, M., Jones, G., Charles, M., Fraser, R., Halstead, P., Heaton, T. H. E. and Bogaard, A. 820 
2013. Stable carbon isotope analysis as a direct means of inferring crop water status and water 821 
management practices. World Archaeology 45, 388-409. 822 

Wallace, M. P., Jones, G., Charles, M., Fraser, R., Heaton, T. H. E. and Bogaard, A. 2015. 823 
Stable Carbon Isotope Evidence for Neolithic and Bronze Age Crop Water Management in the 824 
Eastern Mediterranean and Southwest Asia. Plos One 10, e0127085. 825 

Zech-Matterne, V., Bouby, L., Bouchette, A., Cabanism, M., Derreumaux, M., Durand, F., 826 
Marinval, P., Pradat, Sellami, M. and Wiethold, J. 2009. L'agriculture du VIe au Ier siècle 827 
avant J.-C. en France: état des recherches carpologiques sur les établissements ruraux., pp. 828 
383-416 in Bertrand, I., Duval, A., Gomez de Soto, J. and Maguer, P. (eds.), Habitats et 829 
paysages ruraux en Gaule et regards sur d'autres régions du monde celtique. Chauvigny: 830 
Publications Chauvinoises. 831 

Zech-Matterne, V., Wiethold, J. and Pradat, B. 2014. L'essor des blés nus en France 832 
septentrionale : systèmes de culture et commerce céréalier autour de la conquête césarienne et 833 
dans les siècles qui suivent, pp. 23-50 in Xavier Deru  and Ricardo González Villaescusa 834 
(eds.), Consommer dans les campagnes de la Gaule romaine Actes du Xe congrès de 835 
l'Association AGER. Lille 3: Université Charles-de-Gaulle. 836 

Zech-Matterne, V. and Brun, C. 2016. Vers une agriculture extensive? Etude diachronique des 837 
productions végétales et des flores adventices associées, au cours de la période laténienne, en 838 
France septentrionale., pp. 623-638 in Malrain F. and Blancquaert G (eds.), Évolution des 839 

 26 



sociétés gauloises du Second âge du Fer, entre mutations internes et influences externes.: 840 
Revue Archéologique de Picardie. 841 
 842 

843 

 27 



Figures caption 844 

Fig. 1. Geographical location of the archaeological sites (Table 1). 845 

 846 

Fig. 2. Carbon and nitrogen isotope composition of the pre-treatment experiment for 847 

archaeological cereal grains of Triticum aestivum, Triticum dicoccum, Hordeum vulgare and 848 

Triticum spelta. Two concentrations:1 and 6 M HCl; and two states of grain: entire (e) and 849 

powder (p) were tested. 850 

 851 

Fig. 3. δ15N and ∆13C of archaeological grains recovered from archaeological sites of Île-de-852 

France (A and C, respectively). δ15N and ∆13C of archaeological grains recovered from 853 

archaeological sites of Champagne region (B and D, respectively). Numbers indicate 854 

archaeological sites (Table 1). Dotted lines indicate threshold for interpreting manuring rates: 855 

high (green) and low (red) based on Fraser et al. 2011. 856 

 857 

Fig. 4. δ15N and δ13C of domestic cereals, bone collagen of Cervus elaphus and estimated Cervus 858 

elaphus diet. 859 
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Fig. 3 884 
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Table 1. Stable isotopes results of cereals grains analysed for each species and the chronological 890 

data of the archaeological sites. 891 

Id Site Species Date δ13C air
a Nb δ13C  

(mean±1σ) 
δ15N  
(mean±1σ) 

 
            

ÎLE-DE-FRANCE       
        

1 BAILLY Hordeum vulgare 600-400 BC -6.48 5 -24.5 ± 0.29 4.4 ± 0.46 
1 BAILLY Triticum aestivum 600-400 BC -6.48 5 -23.7 ± 0.33 3.3 ± 0.4 
2 PALAISEAU Triticum aestivum 150-90 BC -6.44 5 -23.9 ± 0.24 6.5 ± 0.32 
2 PALAISEAU Triticum aestivum 30 BC-30 AD -6.41 5 -23.8 ± 0.26 6.6 ± 0.31 
2 PALAISEAU Triticum aestivum 100-200 AD -6.38 5 -23.8 ± 0.19 6.8 ± 0.14 
3 VARENNES-SUR-SEINE Triticum aestivum 120-60 BC -6.43 5 -24.3 ± 0.16 4.8 ± 0.38 
4 ROISSY Triticum aestivum 60-30 BC -6.42 5 -23.9 ± 0.28 3.0 ± 0.62 
5 BONNEUIL Triticum aestivum 0-100 AD -6.4 5 -22.2 ± 0.21 0.7 ± 0.48 
6 MAREUIL-LÈS-MEAUX  Hordeum vulgare 0-200 AD -6.4 3 -23.7 ± 0.12 4.6 ± 0.47 
6 MAREUIL-LÈS-MEAUX  Triticum aestivum 0-200 AD -6.4 20 -22.2 ± 0.23 5.4 ± 0.19 
6 MAREUIL-LÈS-MEAUX  Triticum dicoccum 0-200 AD -6.4 20 -23.1 ± 0.21 4.4 ± 0.4 
7 HOUDAN Hordeum vulgare 200-300 AD -6.36 2 -24.0 ± 0.14 2.7 ± 0.15 
7 HOUDAN Triticum aestivum 200-300 AD -6.36 5 -23.0 ± 0.42 5.8 ± 0.97 
8 EPIAIS-LÈS-LOUVRES  Triticum aestivum 30 BC-30 AD -6.41 5 -21.9 ± 0.15 3.6 ± 0.34 
8 EPIAIS-LÈS-LOUVRES  Triticum aestivum 50-150 AD -6.39 3 -23.8 ± 0.09 5.1 ± 0.2 
8 EPIAIS-LÈS-LOUVRES  Triticum aestivum 250-350 AD -6.35 5 -22.4 ± 0.31 3.0 ± 0.51 
8 EPIAIS-LÈS-LOUVRES  Triticum aestivum 300-350 AD -6.35 5 -23.3 ± 0.15 5.1 ± 0.27 
8 EPIAIS-LÈS-LOUVRES  Triticum aestivum 300-400 AD -6.35 5 -23.4 ± 0.24 4.7 ± 0.52 
8 EPIAIS-LÈS-LOUVRES  Triticum dicoccum 300-400 AD -6.35 5 -23.3 ± 0.21 4.8 ± 0.41 
9 JOUARS-PONTCHARTRAIN Hordeum vulgare 30 BC-15 AD -6.41 5 -23.8 ± 0.24 8.7 ± 0.7 
9 JOUARS-PONTCHARTRAIN Triticum aestivum 30 BC-15 AD -6.41 2 -23.0 ± 0.22 8.2 ± 0 
10 MORIGNY-CHAMPIGNY Triticum aestivum 325-250 BC -6.46 5 -23.3 ± 0.12 4.6 ± 0.38 
10 MORIGNY-CHAMPIGNY Triticum spelta 325-150 BC -6.46 3 -22.5 ± 0.32 4.7 ± 0.06 
        

CHAMPAGNE       
        

11 ACY-ROMANCE Hordeum vulgare 150-100 BC -6.45 5 -23.8 ± 0.1 1.3 ± 0.19 
11 ACY-ROMANCE Triticum spelta 150-100 BC -6.45 5 -22.4 ± 0.29 2.9 ± 0.42 
12 CHAMPFLEURY Triticum spelta 60-30 BC -6.42 5 -22.7 ± 0.29 4.3 ± 0.25 
                

aδ13C in atmospheric CO2 (Ferrio et al.2005). 892 
b N is the number of analysed aliquots. Each aliquot includes 10 grains. 893 
  894 

 33 



Table 2. Summary of the stable isotopes values, percentage carbon and nitrogen and C:N ratio of 895 

Cervus elaphus bone collagen. 896 

Site bone type δ15N (‰) δ13C (‰) %N %C C:N ratio  
       

2-PALAISEAU       
 tibia 6.33 -20.95 14.88 40.55 3.18 
Cervus elaphus mandible 5.91 -22.29 15.08 41.03 3.17 
n=10 metatarsal 6.30 -22.17 15.15 41.45 3.19 
 mandible 4.87 -22.24 15.42 42.28 3.20 
 metacarpal 4.86 -21.92 15.03 39.33 3.05 
 metatarsal 5.71 -21.81 12.79 35.01 3.19 
 mandible 5.06 -22.25 12.64 34.68 3.20 
 metatarsal 6.33 -21.78 15.38 41.88 3.18 
 metapodial 4.96 -21.62 13.58 37.00 3.18 
 metatarsal 6.53 -22.12 14.19 38.62 3.18 
              
       

9-JOUARS-PONTCHARTRAIN       
 calcaneum 4.50 -22.14 14.99 41.47 3.23 
Cervus elaphus metacarpal 6.05 -22.02 14.28 39.62 3.24 
n=10 phalange 1 3.55 -22.16 13.99 38.52 3.21 
 calcaneum 3.43 -22.25 15.07 41.33 3.20 
 phalange 1 4.53 -22.16 15.14 41.42 3.19 
 talus 4.81 -21.96 14.96 41.16 3.21 
 metatarsal 4.19 -22.44 15.64 42.70 3.19 
 radius 3.10 -21.49 13.66 37.67 3.22 
 metacarpal 3.95 -21.84 15.67 43.07 3.21 
 phalange 4.47 -20.98 15.63 43.21 3.23 
              
       

11-ACY-ROMANCE       
 tibia 3.83 -22.14 15.05 41.14 3.19 
Cervus elaphus metatarsal 4.11 -20.85 15.50 42.39 3.19 
n=10 mandible 5.22 -21.76 15.12 41.66 3.21 
 metatarsal 5.79 -20.85 14.70 40.72 3.23 
 scapula 4.59 -21.87 14.61 41.12 3.28 
 metatarsal 3.73 -21.85 15.65 42.89 3.20 
 metatarsal 4.80 -22.18 15.36 42.29 3.21 
 humerus 5.04 -21.88 14.28 39.67 3.24 
 humerus 6.68 -21.74 15.68 43.22 3.22 
 phalange 1 4.48 -22.71 14.84 40.77 3.21 
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