

Document downloaded from:

http://hdl.handle.net/10459.1/59152

The final publication is available at:

https://doi.org/10.1016/j.jhydrol.2016.12.041

Copyright cc-by-nc-nd, (c) Elsevier, 2017

Està subjecte a una llicència de <u>Reconeixement-NoComercial-</u> <u>SenseObraDerivada 4.0 de Creative Commons</u>

1	Uncertainty of the peak flow reconstruction of the 1907 flood in the Ebro River in
2	Xerta (NE Iberian Peninsula)
3	
4	Josep Lluís RUIZ-BELLET ^(a,*) , Xavier CASTELLTORT ^(a) , J. Carles BALASCH ^(a) ,
5	Jordi TUSET ^(b,c)
6	
7	^(a) Department of Environment and Soil Sciences, University of Lleida, Av. Rovira
8	Roure 191, 25198 Lleida, Catalonia
9	^(b) Forest Sciences Centre of Catalonia, Crta. Sant Llorenç de Morunys, km 2, 25280
10	Solsona, Catalonia
11	^(c) RIUS Fluvial Dynamics Research Group, University of Lleida, Av. Rovira Roure
12	191, 25198 Lleida, Catalonia
13	^(*) Corresponding author: jruizbellet@gmail.com
14	
15	Abstract
16	
17	There is no clear, unified and accepted method to estimate the uncertainty of hydraulic
18	modelling results. In historical floods reconstruction, due to the lower precision of input
19	data, the magnitude of this uncertainty could reach a high value. With the objectives of
20	giving an estimate of the peak flow error of a typical historical flood reconstruction with
21	the model HEC-RAS and of providing a quick, simple uncertainty assessment that an
22	end user could easily apply, the uncertainty of the reconstructed peak flow of a major
23	flood in the Ebro River (NE Iberian Peninsula) was calculated with a set of local
24	sensitivity analyses on six input variables. The peak flow total error was estimated at
25	$\pm 31\%$ and water height was found to be the most influential variable on peak flow,

26	followed by Manning's n. However, the latter, due to its large uncertainty, was the
27	greatest contributor to peak flow total error. Besides, the HEC-RAS resulting peak flow
28	was compared to the ones obtained with the 2D model Iber and with Manning's
29	equation; all three methods gave similar peak flows. Manning's equation gave almost
30	the same result than HEC-RAS. The main conclusion is that, to ensure the lowest peak
31	flow error, the reliability and precision of the flood mark should be thoroughly assessed.
32	
33	Keywords: error; sensitivity analysis; Manning's roughness coefficient; DEM
34	resolution; historical hydrology; hydraulic modelling
35	
36	
37	1. Introduction
38	
39	Information about long-past floods, either in the form of paleostage indicators
40	(sedimentary evidence) or historical documents, has in the last few decades begun to be
41	used to reconstruct peak flow values. This approach reveals fruitful because the longer
42	the time period considered, the greater the probability to include floods of extreme
43	magnitude, which greatly enrich the information contained within the flood data series.
44	
45	This relatively new branch of hydrology, subdivided in paleohydrology and historical
46	hydrology (depending on the type of information used: paleostage indicators or
47	historical documents) has suffered a great advance in the last decade (Bayliss and Reed,
48	2001; Benito et al., 2004, 2015; Brázdil et al., 2006; Elleder, 2010; Gaume et al., 2004;
49	Naulet et al., 2005).
50	

Different aspects of paleo- and historical hydrology have been investigated so far: the
improvement and systematization of historical information data bases, the use of
dendrogeomorphic evidences (Ruiz-Villanueva et al., 2010), the link between
meteorological, hydrological and hydraulic processes (Bürger et al., 2006; Pino et al.,
2015), or flood frequency analysis (Francés, 2004; Machado et al., 2015; Payrastre et
al., 2011).

57

However, although one such important issue as the estimation of the uncertainty of the results of the hydraulic modelling has been deeply analysed (Lang et al., 2010; Neppel et al., 2010; Pappenberger et al., 2005, 2006), no clear methodological procedures as to its determination have been formulated. As a consequence, only a few historical flood reconstructions try to give an estimation of the uncertainty of the results (Herget and Meurs, 2010; Naulet et al., 2005; Remo and Pinter, 2007).

64

And yet, uncertainty is an essential part of the result, an attribute of information (Zadeh,
2005). As Johnson (1996) points out, if uncertainties cannot be determined, the results
are inaccurate. Similarly, Beven (2006) thinks that not to estimate the uncertainty of a
model prediction is "simply indefensible (or unscientific)" because hydrology is a
highly uncertain science.

70

71 Actually, uncertainty in flow data is not negligible (Di Baldassarre and Montanari,

72 2009). Indeed, flow measurements with a current meter have errors between 5 and 20%

73 (Léonard et al., 2000; Pelletier, 1988; Schmidt, 2002). Pappenberger et al. (2006) find

that rating curve uncertainties cause an uncertainty of 18–25% in peak flow. Moreover,

Lang et al. (2010) state that extreme flows uncertainties are larger than those of average

76	flows. Thus, one should expect even larger uncertainties in historical hydrology
77	reconstructions, where one has to model long-past extreme floods from a scarce set of
78	data of sometimes unknown reliability, estimated rather than measured.
79	
80	Götzinger and Bardossy (2008) and Refsgaard et al. (2006) identify three main sources
81	of uncertainty in hydraulic modelling results:
82	- Uncertainties in the observations measurement. Some of them are:
83	– Accuracy of the flood marks (Wohl, 1998).
84	- Channel geometry and stream slope (Aronica et al. 1998; Jarret, 1987;
85	Merwade et al., 2008; Pappenberger et al. 2005).
86	- Viscosity of the fluid, affected by the amount of sediment load (Jarret,
87	1987).
88	- Changes in the river bed morphology, either during the flood or between
89	the flood and the date of the study due to erosion and sedimentation
90	(Jarret, 1987; Lang et al., 2010; Wohl, 1998).
91	- Representation of hydraulic structures such as bridges, culverts, and
92	embankments (Merwade et al., 2008), their hydraulic behaviour and their
93	being frequently blocked by debris and vegetation (Lang et al., 2010).
94	– Uncertainties in the parameters estimation, for example:
95	- Accuracy of the Manning's n roughness coefficients (Jarret, 1987; Wohl,
96	1998).
97	- Changes in the downstream boundary condition due to a back-water
98	effect or to a hydraulic jump (Lang et al., 2010).
99	– Expansion and contraction losses (Jarret, 1987).

100	- Uncertainty caused by end user's decisions, the model structure (equations,
101	hypotheses and assumptions), and the numerical methods used. Some of them
102	are:
103	- Number of cross sections, that is, spacing between cross sections (Jarret,
104	1987; Merwade et al., 2008).
105	– Steady or unsteady flow (Jarret, 1987).
106	- One-dimensional or two-dimensional modelling (Cea and Bladé, 2008).
107	
108	Montanari (2007) distinguishes four types of techniques for assessing the uncertainty of
109	hydrological modelling results; they can be also used in hydraulic modelling:
110	– Approximate analytical methods: e.g. first-order reliability method (FORM).
111	- Techniques based on the statistical analysis of model errors: e.g. Bayesian
112	Forecasting System (BFS).
113	– Approximate numerical methods, that is, sensitivity analyses: e.g. the
114	Generalised Likelihood Uncertainty Estimation (GLUE) methodology of (Beven
115	and Binley, 1992).
116	 Non-probabilistic methods: e.g. fuzzy set theory.
117	
118	In ungauged or scarcely gauged catchments (a frequent circumstance in historical
119	hydrology), sensitivity analysis provides good uncertainty estimations (Montanari,
120	2007). Sensitivity is defined as a measure of the influence of the input variables on the
121	result (McCuen, 1973). The existing types of sensitivity analysis have been reviewed by
122	Van Griensven et al. (2006): the simplest of them is the local sensitivity analysis, in
123	which each input variable of the model is separately modified at a time; another widely
124	used type is the aforementioned GLUE methodology (Beven and Binley, 1992).

126 In spite of this profusion of methods and techniques, there is no unified procedure to 127 guide hydrological and hydraulic modelling end users to easily quantify uncertainty 128 (Merwade et al, 2008; Montanari, 2007; Pappenberger and Beven, 2006). Beven (2006) 129 even wonders if these methods do not overestimate uncertainty. 130 131 The main objective of this article was to calculate the uncertainty of the resulting peak 132 flow of a typical historical flood reconstruction with a simple and quick procedure of 133 uncertainty estimation, one that an end user could easily apply. The secondary objective 134 was to identify the input variables that influenced the result the most and their 135 contribution to peak flow total error. The ultimate goal behind this secondary objective 136 was to formulate some recommendations as to the degree of accuracy that each input 137 variable should have in order to minimize results' uncertainty. 138 139 In order to achieve these objectives, the uncertainty of 1907 flood of the Ebro River in 140 the town of Xerta (NE Iberian Peninsula) was calculated with a series of local 141 sensitivity analyses of the main variables affecting the resulting peak flow; it must be 142 noted that uncertainties stemming from model structure or numerical resolution 143 methods were not analysed in this study. Besides, in order to see to what degree the 144 result depended on the chosen model, the HEC-RAS resulting peak flow was compared 145 to the ones obtained with the 2D model Iber and with Manning's equation. 146 147 148 149

150 **5.2. Study area and study flood**

151

152 The town of Xerta is located about 60 km upstream from the mouth of the Ebro River (Fig. 1). The Ebro River is one of the main rivers in the Iberian Peninsula. It drains into 153 the Mediterranean Sea an area of 85,000 km², including almost completely the southern 154 face of the Pyrenees. Its mean flow in Tortosa (13 km downstream Xerta) is 428 $\text{m}^3 \cdot \text{s}^{-1}$ 155 156 (Gallart and Llorens, 2004); since the average annual rainfall in the basin is 622 mm (period 1920–2000) and the basin area in Tortosa is 84.230 km^2 , the runoff coefficient 157 158 in that location is 25.8%. 159 160 [insert figure 1] 161 162 The climate within the basin is varied, ranging from wet Oceanic (Köppen Cfb) in some 163 Pyrenean valleys to dry Mediterranean (Köppen Csa) in the centre of the basin. Floods 164 in the Ebro River, with peak flows as high as ten times the mean flow in Tortosa, are 165 more frequent in autumn and are usually caused by the two main tributaries Cinca and 166 Segre, with headwaters in the Pyrenees. 167 168 Xerta (1250 inhabitants in 2014) is located on an ample floodplain by a meander of the Ebro River and opposite the town of Tivenys (Fig. 2); the Ebro basin in Xerta is 82,972 169 170 km^2 or 97.6% of its total area. The nearest gauging station is that of Tortosa (number 171 9027), which has been active since 1952; the highest instantaneous flow measured is 4580 m³·s⁻¹, in 1961 (MAGRAMA, 2015). Xerta is a remarkable town in historical 172 173 hydrology terms because it possesses a flood scale containing nine major floods since 174 1617 (Fig. 3), which have been hydraulically reconstructed by Sánchez (2007).

176 [insert figures 2 and 3]

178	
179	The second highest of these floods, that of 21–23 October 1907, was selected to
180	perform the uncertainty calculation for this article. This flood was caused by a rainfall
181	episode that lasted three days and affected mainly the central Pyrenean area. The
182	moderate rain depth fell on saturated soils, for only ten days before (12-13 October), an
183	almost equally destructive (albeit somewhat smaller) flood had occurred (Balasch et al.,
184	2007). The 21–23 October flood was the heaviest one in the Ebro basin in the 20^{th}
185	Century and ravaged many towns; some reconstructed peak flows and the destruction
186	that this flood caused are shown in Table 1.
187	
188	[insert table 1]
189	
190	This flood was selected because it is a good case study of a major flood in the Ebro
191	basin on which to explore different types of uncertainties associated to large floods
192	hydraulic modelling. Besides, within the historical period, 1907 is a relatively recent
193	year and, therefore, the input data required can be more accurately estimated. The 1907
194	flood is one of the floods with more flood marks along the Lower Ebro; because of that,
195	it has been hydraulically modelled in different locations by Abellà (2013), Balasch et al.
196	(2007), Mérida (2014), and Sánchez (2007). Besides, Pino et al. (2015) have included it
197	in a comprehensive hydrometeorological analysis of 23 floods.
198	

200 3. Methods

202	The process followed in this study had two parts (Fig. 4): On the one hand, the peak
203	flow of 1907 flood in Xerta was calculated with three procedures: HEC-RAS (USACE,
204	2010a), Iber (Bladé et al., 2012), and Manning's equation; the three resulting peak flows
205	were afterwards compared. On the other hand, the uncertainty of the peak flow obtained
206	with HEC-RAS was assessed with sensitivity analyses. These analyses allowed us to
207	determine the peak flow total error, the individual contribution of each tested input
208	variable on that error and their individual influence on peak flow.
209	
210	[insert figure 4]
211	
212	3.1. Peak flow reconstruction of 1907 flood
213	
214	3.1.1. HEC-RAS
215	
216	The peak flow of 1907 flood was reconstructed in Xerta from the historical information
217	available with the methodology of hydraulic modelling explained in Barriendos et al.
218	(2014) and summarised in Fig. 5. It is important to note that the actual output of the
219	hydraulic model used is water height, whereas the searched result was peak flow;
220	therefore, the model was run iteratively with tentative peak flows until the observed
221	water height was obtained. In any case, water height will be considered an input
222	variable hereinafter.

224	Nowadays, there is a variety of hydraulic modelling programmes that can operate under
225	different circumstances: either in steady or unsteady flow, and either in one dimension
226	(that is, all flow lines are supposed perpendicular to the cross sections) or in two
227	dimensions (flow lines are allowed to cross the cross section not perpendicularly). In
228	this study, for the sake of simplicity, all calculations were performed with the
229	widespread one-dimensional hydraulic modelling programme HEC-RAS, version 4.1
230	(USACE, 2010a). In steady, gradually varied flow, HEC-RAS uses the one-dimensional
231	energy equation.
232	
233	[insert figure 5]
234	
235	The data used to model 1907 flood peak flow are shown in Table 2. Water height was
236	obtained from the mark on the flood scale at 1, Major Square (Fig. 3); a secondary mark
237	of the same 1907 flood located at 1, Major Street (60 m away from the first one) was
238	used to assess the accuracy of the hydraulic modelling results.
239	
240	[insert table 2]
241	
242	The roughness coefficients (Manning's n hereinafter) of nine different soil uses were
243	calibrated with 1961 (4 January) flood, of which there are a flood mark in Xerta's flood
244	scale and a peak flow official measurement. This peak flow value was 4580 $\text{m}^3 \cdot \text{s}^{-1}$ in
245	Tortosa (MAGRAMA, 2015) and was accepted for Xerta due to the short distance
246	between both towns (13 km) and to the small difference in catchment area (1.5%). Soil
247	uses were determined from aerial photographs of 1957 (ICGC, 2015) and were
248	considered unchanged between 1907 and 1961 (Fig. 6). Indeed, an aerial photograph of

1927 (not used because of its low resolution) showed no changes between that date and1957.

251

252 [insert figure 6]

253

254 The modelled reach consisted of 45 cross sections along 7690 m, that is, with an 255 average distance between cross sections of 170 m. However, this distance was much 256 smaller in the vicinity of the flood scale cross section, in order to obtain more accurate 257 results (Fig. 7). The geometry of the channel and the floodplain was obtained from a 258 Digital Elevation Model (DEM) with a horizontal resolution of 5x5 developed from 259 LiDAR information of 2009 (IGN, 2015). This geometry, thus, was that of 2009; it was 260 not modified to represent those of 1907 and 1961 because it was deemed stable and, 261 therefore, with minimal changes throughout the period.

262

263 Indeed, the geometry can be considered stable both in the plan and cross section views. 264 Aerial photographs since 1924 (the oldest ones from that area; aerial orthophotos since 265 1946 available at http://www.icc.cat/vissir3/) and the rocky bank upon which stands 266 Tivenys (Figure 2) support the hypothesis of plan stability, whereas the conclusions of 267 Vericat & Batalla (2006) support the hypothesis of the cross section stability. These 268 authors claim that, since the construction of the dams upstream in the first half of the 20th century, the river bed in this area is subject to armouring due to high-frequency, 269 270 low-magnitude floods, a fact that results in limited erosion.

271

In any case, we considered that, even if minimal changes in the cross sections geometryactually occurred, they did not imply a modification of the geometry variables used in

274 the hydraulic modelling: longitudinal slope, wetted area and wetted perimeter. Indeed, 275 in low-gradient reaches of large rivers very close to the sea such as Ebro River at Xerta, 276 longitudinal slope is not controlled by local changes in cross section shape but by 277 processes of much larger time- and space-scale, such as the base level, which has been 278 stable in the last millennia; moreover, any relevant modification of longitudinal slope in 279 such a low-gradient reach would have to affect a very long river stretch (about 100 km) 280 in order to reach the equilibrium, which would imply the displacement of large 281 quantities of sediment, an event that has not occurred between 1907 and 2009. 282 Similarly, the wetted area and wetted perimeter of a given cross section may remain 283 constant even if the cross section shape varies; indeed, along large cross sections such 284 as the ones used in this model (from several hundred metres to more than one 285 kilometre), changes of opposite sense (erosion and accretion) may occur 286 simultaneously, thus cancelling each other out when the total wetted area or perimeter 287 are calculated. And even if that were the case, its consequences over the modelled peak 288 flow would be minimal: for example, if the river channel (150 m in length) suffered an incision of 1 m in the flood scale cross section (5060 m^2 in area), that would result in an 289 increase of 150 m^2 . When compared to the whole cross section, this area increase is 3%, 290 291 which, even if we consider that water velocity in the channel doubles that on the 292 floodplain, would translate into only a 6% increase in peak flow. This value is a very 293 small error compared to the expected errors in historical floods' peak flow 294 reconstruction (about 20-40%). Taking all these facts into account, we consider that the 295 hypothesis of geometry stability since 1907 in the modelled reach is well supported. 296 [insert figure 7] 297

298

300

301 **3.1.2. Iber**

302

303	In a one-dimensional model such as HEC-RAS, the flow is always assumed to be
304	perpendicular to each cross section. However, in floods over large floodplains, this
305	assumption is no longer true: eddies, lateral and upstream flows, and backwater areas
306	are common. One way to take this into account is to draw the cross sections with
307	angulated segments (Fig. 8) instead of with a single straight line, in order that they be as
308	perpendicular to the flow in each segment as possible. However, this does not
309	completely solve the problem of modelling floodplain flow with one-dimensional
310	models.

311

Thus, in the reconstruction of large floods that inundate wide floodplains with many obstacles such as buildings, 2D models, which allow for the horizontal component of the velocity vector, should provide a better estimation of the flow than 1D models (Cea and Bladé, 2008; Paquier and Mignot, 2003).

316

The 2D model Iber version 2.3.1 (Bladé et al., 2012) was used to obtain an alternative peak flow value, so as to quantify the difference and improvement obtained over a 1D model such as HEC-RAS. In order to enable the comparison between the results, the input data used were the same as for the modelling with HEC-RAS, including the Manning's n calibrated with HEC-RAS on 1961 flood, but excluding the specific parameters required in the 1D model (Table 2), and including others specific to Iber,

323	such as the hydrograph shown in Table 3. Iber solves the 2D Saint Venant equations
324	with the finite-volume method in unsteady flow.
325	
326	[insert table 3]
327	
328	
329	3.1.3. Manning's equation
330	
331	Hydraulic models, one- or two-dimensional, require some training and many data
332	(namely, a Digital Elevation Model). Conversely, Manning's equation is a much
333	simpler method to obtain the peak flow from a water height value. Thus, it was
334	considered interesting to compare the results of the two previously presented computer-
335	based hydraulic models with the result of the Manning's equation (Eq. 1) applied at the
336	flood scale cross section.
337	
338	$Q = A \cdot \frac{1}{n} \cdot R^{2/3} \cdot s^{1/2} \tag{1}$
339	
340	Where $Q(m^3 \cdot s^{-1})$: peak flow
341	A (m^2) : wet area of the cross section at the moment of the peak flow
342	n (s·m ^{-1/3}): Manning's coefficient, related to the roughness of the cross section
343	R (m): hydraulic ratio of the cross section (wet area divided by wet perimeter)
344	at the moment of the peak flow
345	S $(m \cdot m^{-1})$: longitudinal slope of the channel at the cross section
346	

347	Actually, the flood scale cross section was divided in three different ways and
348	Manning's equation was individually applied to each sector of each of the three
349	methods of division; then, the peak flows of the individual sectors were added up. The
350	three different resulting peak flows were averaged and compared to the ones obtained
351	with HEC-RAS and Iber. The three ways in which the cross section was divided were:
352	- Division according to hydraulically homogeneous sectors: this resulted in five
353	sectors (Fig. 9). Their characteristics, required to calculate Manning's equation,
354	are shown in Table 4.
355	- Division according to soil use, using the same soil use map as in HEC-RAS and
356	Iber modelling: this resulted in 17 sectors (Fig. 8). Their individual hydraulic
357	characteristics are not showed.
358	– Division according to HEC-Geo-RAS, a programme that links a Geographical
359	Information System (GIS) programme with HEC-RAS. HEC-Geo-RAS
360	described the cross section with the coordinates of 277 points, resulting in 276
361	sectors (Fig. 8); their individual hydraulic characteristics are not showed.
362	
363	[insert table 4 and figure 8]
364	
365	
366	3.2. Uncertainty assessment of HEC-RAS results
367	
368	The uncertainty assessment of the peak flow obtained with HEC-RAS was done with a
369	set of sensitivity analyses, technically called local sensitivity analyses, because they
370	were performed separately on each selected input variable. In these analyses each input
371	variable was varied within a range that was chosen either because it was considered

372 adequate or because it was found in the literature. In any case, with the objective to 373 obtain an upper boundary of peak flow uncertainty, the ranges of variation were chosen 374 rather large. The hydraulic model was then run with the modified value of the input 375 variable in order to obtain a new peak flow output. This new peak flow value was used 376 to calculate the individual uncertainty of that input variable, that is, the variation of the 377 peak flow caused by the individually modified input variable with Eq. (2a) when the 378 variation was one-sided (i.e. only x+a or x-a) and with Eq. (2b) when the variation was 379 symmetrical (i.e. $x \pm a$). Then, these individual uncertainties were added with a quadratic 380 sum in order to obtain the peak flow total error (Eq. 3). The relative contribution of each 381 variable to the peak flow total error was quantified with Eq. (4).

382

$$\delta_x = F_1 - F$$
 If variation of the (2a)
variable is one-sided
(only x+a or x-a)

$$\delta_{\chi} = \pm \left| \frac{(F_1 - F) + (F - F_2)}{2} \right| = \pm \left| \frac{F_1 - F_2}{2} \right|$$
 If variation of the (2b) variable is

symmetrical (x±a)

$$\delta_{total} = \pm \sqrt{\sum_{x=1}^{n} [(\delta_x)^2]}$$
(3)

$$C_x = \frac{\delta_x}{\sum \delta_x} \cdot 100 \tag{4}$$

383

384 Where x: modified input variable in each individual sensitivity analysis

385 n: number of modified input variables (or total sensitivity analyses) δ_x (m³·s⁻¹): individual uncertainty: variation of the peak flow caused by a 386 387 variation in input variable x δ_{total} (m³·s⁻¹): total uncertainty of the peak flow 388 F ($m^3 \cdot s^{-1}$): peak flow obtained with the initial values of the input variable x 389 390 $F_1(m^3 \cdot s^{-1})$: peak flow obtained with the modified value of the input variable x: 391 x+a $F_2(m^3 \cdot s^{-1})$: peak flow obtained with the opposite modified value of the input 392 393 variable x, when a symmetrical variation $(x \pm a)$ was done: x-a C_x (%): contribution of variable x to the total uncertainty of the peak flow 394 395 396 Besides, the results of the sensitivity analyses were also used to calculate a sensitivity 397 index I_x for each varied input variable in order to determine to what degree each one 398 affected the resulting peak flow (Eq. (5); adapted from Lenhart et al. 2002). This 399 dimensionless parameter allows the identification of the most influential variables, 400 regardless of the range within they are varied (Lenhart et al. 2002). According to the 401 value of I_x , Lenhart et al. (2002) arbitrarily classify the influence of the input variable 402 over the results as small or negligible ($|I_x| < 0.05$), medium ($0.05 \le |I_x| < 0.02$), high (0.02) 403 $< |I_x| < 1$) or very high ($|I_x| > 1$).

404

$$I_x = \frac{\frac{F_1 - F_2}{F_{12}}}{\frac{x_1 - x_2}{x_{12}}}$$
(5)

405

406 Where I_x : sensitivity index of input variable x (dimensionless)

407 $F_1(m^3 \cdot s^{-1})$: resulting peak flow when input variable x equals $x_1(x+a)$

408	$F_2(m^3 \cdot s^{-1})$: resulting peak flow when input variable x equals $x_2(x-a)$
409	F_{12} (m ³ ·s ⁻¹): resulting peak flow when input variable x equals x_{12}
410	x_{12} : mean of x_1 and x_2
411	Note: when the opposite modification of the input variable was not done (i.e.
412	only x+a, instead of x±a), then $F_2=0$, $x_2=0$ and x_{12} is the initial value of
413	variable x
414	
415	The input variables upon which the sensitivity analyses were done were chosen from the
416	list of the main factors affecting the uncertainty of hydraulic modelling results given in
417	Sect. 1; these variables were: water height, Manning's n, downstream boundary
418	condition, number of cross sections, direction of the flow paths, and horizontal
419	resolution of the DEM. In total, 6 input variables were modified resulting in 14 different
420	sensitivity analyses. Details of these 14 analyses, along with their results, can be found
421	in the paragraphs below and in Table 8. Other variables that could have had an influence
422	on the peak flow results, such as variations of the channel's geometry, the model
423	structure or the numerical resolution methods, were not analysed, since the objective of
424	the study was to perform a quick, simple uncertainty assessment. It must be noted that,
425	Refsgaard et al. (2006) argue that model structure is the main source of uncertainty in
426	model predictions, especially when extrapolating.
427	

Flood marks signal the maximum height that the water reached during a flood. Many sources of error can contribute to the inaccuracy of the mark: the oscillating nature of the water surface of a flood, the time elapsed between the flood and the making of the mark, or even the capillary ascension of the water along the wall. In this study, water height was subject to three levels of symmetrical modification for the sensitivity

433 analyses: ± 10 cm, ± 30 cm, ± 100 cm, in order to represent three degrees of uncertainty. 434 Uncertainty of the maximum water height obtained from a flood mark can be 435 subdivided into two components: precision and reliability. Lang et al. (2010) estimate a 436 precision of ± 5 cm in water height measurements. Reliability, that is, the degree of truth 437 that the flood mark conveys, can be affected by trivial but not so uncommon events 438 such as inadvertently installing the flood mark plaque at a wrong height, either in a first 439 moment, either after some restoration works (Benito et al., 2015); therefore, reliability 440 must be assessed with historiographical methods that try to ascertain who, when, why and how marked the flood height (Barnolas and Llasat, 2007; Barriendos and Coeur, 441 442 2004; Bayliss and Reed, 2001). In other cases, the flood mark has no physical entity: it 443 is not a plaque or a nick on a wall, but a written reference of a water height given in 444 relation to a pre-existing object, such as a distinctive element in a bridge or a 445 windowsill on a building's façade; in these cases, it is precision that is affected, because 446 it is an indirect measurement and, thus, less accurate than the direct one given by a 447 physical flood mark. In this study, it was decided that uncertainties greater than ± 1 m 448 would be related to extremely unreliable or imprecise historical sources and, therefore, 449 not used in flood hydraulic reconstruction.

450

451 Marcus et al. (1992) found very high uncertainties for Manning's n: they found that 452 Chow's (Chow, 1959) and Cowan's (Cowan, 1956) visual methods underestimated 453 Manning's n from 28% up to 291% (141% in average) and from 21% up to 170% 454 (100% in average), respectively. However, they tested these methods in conditions of 455 extreme roughness: a steep glacier stream over coarse moraine sediment. Therefore, we 456 chose a smaller range of variation for Manning's n (\pm 30%), which is in the upper region 457 of the range of typical uncertainty estimated for this variable by Johnson (1996):

±8–35%, and similar to the sensitivity analyses performed by Wohl (1998) and Casas et
al. (2004): ±25%, Di Baldassarre and Montanari (2009): +33%, and higher than those of
De Roo et al. (1996) and Naulet et al. (2005): ±20%.

461

462 Besides this modification of Manning's $n (\pm 30\%)$, we also tested the accuracy of a 463 simpler, more straightforward estimation of the roughness coefficients versus the highly 464 elaborate and time consuming calibration done with 1961 flood and a detailed soil use 465 map. Thus, a sensitivity analysis was performed in which the Manning's n of the channel was 0.045 s·m^{-1/3} and that of the floodplain was 0.056 s·m^{-1/3} regardless of the 466 467 soil uses. These values were chosen because they are, in the case of the channel, the 468 half-way point of the range given by Chow (1959) for this kind of river channel. In the 469 case of the floodplain, Manning's n is the average of the half-way points of the ranges 470 of the two prevailing soil uses in Fig. 6: crops and orchards and vegetated floodplain 471 (shrubs), shown in Table 5. This average was not weighted by area, since it is supposed 472 to be obtained from a perfunctory soil use determination.

473

474 Lang et al. (2004) suggest testing the influence on the peak flow result of different 475 downstream boundary conditions and different hydrographs (under unsteady flow 476 conditions), but they give no further instructions. This study was conducted with the 477 normal depth chosen as the downstream boundary condition, because it is our usual 478 procedure when no water depth and no flow are known downstream the modelled reach. 479 When normal depth is selected, HEC-RAS asks the user a water surface slope. For the 480 sake of simplicity, we considered the water surface parallel to the channel's bottom; therefore, 0.905 m \cdot km⁻¹, the longitudinal slope of the channel downstream the modelled 481

482 reach, was introduced as the water surface slope (Table 2). The influence of the

483 downstream boundary condition was assessed by varying this slope $\pm 15\%$.

484

485	With regards to decisions that depend on the modeller's expertise, Paquier and Mignot
486	(2003) stress the importance of correctly choosing the flow paths direction. Therefore,
487	the influence of the drawing of the flow paths that HEC-RAS needs to operate, an
488	arbitrary decision that depends on the expertise of the model user, was assessed. An
489	initial, deemed more hydraulically correct, drawing located the flow paths over the
490	floodplain in a more or less straight trajectory (Fig. 9a). A second drawing located the
491	flow paths along the banks, following the meanders (Fig. 9b).
492	
493	[insert figure 9]
494	
495	The influence on peak flow of two more input variables was also assessed: the number
496	of cross section (also a decision that depends on the modeller's expertise) and the
497	horizontal resolution of the Digital Elevation Model (DEM). To do so, the model was
498	run, on the one hand, with half the initial number of cross sections (22) by simply
499	erasing every second cross section upstream and downstream the flood scale cross
500	section, and on the other hand, with a much coarser DEM: with an horizontal resolution
501	of 25x25 m (IGN, 2015) instead of 5x5 m.
502	
503	
504	4. Results and discussion
505	
506	4.1. Manning's n calibration with the 1961 flood

508	The initial values of Manning's n-which had been used in the modelling of 1907 flood
509	in Móra d'Ebre (40 km upstream) by Abellà (2013)- were calibrated using the known
510	peak flow of 1961 flood (4580 $\text{m}^3 \cdot \text{s}^{-1}$) and its associated observed water height
511	(recorded in the flood scale and shown in Table 2). Thus, the Manning's n were
512	modified until the difference between the observed and the modelled water heights was
513	only 1 mm. This calibration dramatically improved the model's accuracy because, if the
514	Manning's n values before the calibration (which were 2.3% higher in average, but 16%
515	smaller in the channel) had been used instead, the resulting peak flow for 1961 would
516	have been 5260 $\text{m}^3 \cdot \text{s}^{-1}$; that is, 13.8% higher than the actual measured peak flow. The
517	longitudinal water profile obtained with the calibrated model is shown, in Figure 10,
518	along with the flood mark used.

519

520 The calibrated Manning's n were within the ranges given by Chow (1959) and, except 521 for two soil uses (vegetated floodplains and urban area), they were quite similar to those 522 calibrated by Sánchez (2007) with the same flood in the same reach (Table 5). The 523 greater difference with Sánchez was in the urban area: the high value we used accounts 524 for the zigzagging trajectories that water has to follow when flowing through the town 525 streets, which slow it down. These discrepancies, although important, fall within the 526 range of uncertainties given by Marcus et al. (1992) for Manning's n determination with 527 Chow's visual method (28-291%). Nonetheless, they illustrate the difficulty to 528 objectively estimate the roughness coefficients, even when they can be calibrated with 529 the same known flow. In any case, the positive differences in individual soil uses 530 compensated almost completely the negative ones, as shown by the relative difference

531	in the Manning's n averaged by the area of each soil use within the flooded part of the
532	modelled reach: -20%.
533	
534	[insert table 5]
535	
536	The channel's Manning's n found is considerably higher than the ones calibrated in the
537	same Ebro River with the same 1961 flood by Mérida (2014) in Benifallet (12 km
538	upstream) and Abellà (2013) in Móra d'Ebre (40 km upstream Xerta): 0.024 and 0.028.
539	Our higher value, as well as the one found by Sánchez (2007), can be explained by the
540	extra roughness provided by the double meander on which Xerta lies (Fig. 9).
541	
542	
543	4.2. Peak flow reconstruction
544	
545	4.2.1. HEC-RAS
546	
547	Figure 10 shows the modelled longitudinal water profile of 1907 flood along the reach
548	and the two flood marks used. The reconstructed peak flow of 1907 flood in Xerta was
549	11500 $\text{m}^3 \cdot \text{s}^{-1}$, which gave a modelled water height only 0.5 cm below the mark in the
550	flood scale (Table 6). The goodness of this result is furthermore confirmed by the small
551	difference between modelled water height and observed water height at Major Street's
552	flood mark: 0.5 cm. Besides, the resulting peak flow is close to (and, thus, coherent
553	with) the ones calculated with HEC-RAS in Móra d'Ebre (40 km upstream) by Abellà
554	(2013) and in Benifallet (12 km upstream) by Mérida (2014): 11200 and 11500 $\text{m}^3 \cdot \text{s}^{-1}$,
555	and to the one estimated by López-Bustos (1972) in Tortosa (13 km downstream):

556 $12000 \text{ m}^3 \cdot \text{s}^{-1}$ (Table 1); relative differences with our result are less than 3%, 0% and 557 4%, respectively.

558

559 [insert table 6]

560

561 The difference with the peak flow calculated by Sánchez (2007) with HEC-RAS in Xerta (10500 $\text{m}^3 \cdot \text{s}^{-1}$) is a little bit greater: 9%. In any case, this amount of difference is 562 563 acceptable in historical hydrology and smaller than the peak flow total error presented 564 in Sect. 4.3 (\pm 31%). Probably, the different peak flows are due, on the one hand, to the 565 20% difference in Manning's n (Table 5) and, on the other hand, to the smaller cross 566 section that Sánchez used in the town, caused by his decision to consider the whole 567 urban area (not only the buildings, but also the streets) hydraulically ineffective, that is, 568 to consider that water did not flow across that part of the section. This decision results in his effective cross section at the flood scale being 16% smaller than ours (4675 m^2 569 and 5504 m², respectively). These differences illustrate the relative insensitivity of 570 571 hydraulic modelling results: the combined effect of a 20% increase in Manning's and a 572 16% reduction in cross section area was only a 9% reduction in peak flow. Most likely, 573 this insensitivity is caused by the fact that the reduction of cross section area affected a 574 section were the flow was low, due to the low water stage and the high friction. 575 576 [insert figure 10]

577

578

579 **4.2.2. Iber**

581 The value of the peak flow reconstructed with the two-dimensional hydraulic model Iber was $12000 \text{ m}^3 \cdot \text{s}^{-1}$, that is, 4% higher than the one reconstructed with the one-582 583 dimensional model HEC-RAS. This small difference, much smaller than the total error 584 presented in Sect. 4.3, confirms the validity of the reconstructed peak flow. 585 586 This coincidence of results contrasts with what Mérida (2014) finds in a similar comparison of the two models for the same 1907 flood in Benifallet (12 km upstream 587 Xerta): 11300 $\text{m}^3 \cdot \text{s}^{-1}$ with HEC-RAS and 10000 $\text{m}^3 \cdot \text{s}^{-1}$ with Iber, or a difference of 588 589 12%. He also finds that Iber is much less sensitive to Manning's n; however, he 590 suspects that the low sensitivity of Iber's results is due to the fact that the rating curve, 591 required as a boundary condition in Iber, is left unchanged. Our coinciding results also 592 contrast with the accepted fact that 2D are more accurate than 1D models, especially in 593 floods over large floodplains (Cea and Bladé, 2008; Paquier and Mignot, 2003;). 594 595 In any case, two-dimensional models will only yield more accurate results than one-596 dimensional ones if they are fed very detailed input data (Merwade et al., 2008). 597 Certainly, Lang et al. (2004) obtain a larger peak flow error (40%) with a 2D model 598 than with a 1D model in the Onyar River in Girona because parameter calibration is 599 more difficult. Moreover, under conditions of abundance of data to perform a complete 600 calibration, Horritt and Bates (2002) find that HEC-RAS results are as good as the 2D model TELEMAC-2D in a 60 km reach of the Severn River. Therefore, no clear 601 602 conclusions about the superiority of 2D models with respect to 1D ones can be drawn. 603

604

605 4.2.3. Manning's equation

607 The three resulting peak flows using Manning's equation in the three divisions on the flood scale cross section were: 11172, 11534 and 11759 $\text{m}^3 \cdot \text{s}^{-1}$ (Table 7). Their average 608 was 11488 $\text{m}^3 \cdot \text{s}^{-1}$ and their standard deviation, $\pm 296 \text{ m}^3 \cdot \text{s}^{-1} (\pm 3\%)$. This result coincides 609 610 with the peak flow we calculated with HEC-RAS: relative differences are, respectively 611 3%, 0% and 2%. 612 613 [insert table 7] 614 615 In conclusion, the calculation of the peak flow of 1907 flood in Xerta with Manning's 616 equation seems to produce acceptable results with an easier method than computer-617 based hydraulic models. However, the lack of a peak flow error makes it impossible to 618 compare the accuracy of the three methods used: HEC-RAS, Iber and Manning's 619 equation. Certainly, if the total error of the peak flow calculated with Manning's 620 equation were too large, there would be no advantage in using that method. 621 622 In any case, Harmel et al. (2006) report uncertainties in peak flow estimation with 623 Manning's equation from $\pm 15\%$, in stable, uniform channels with an accurately 624 estimated n, up to $\pm 35\%$, in unstable, irregular channels, with poorly estimated n; these 625 are totally acceptable peak flow errors. Herget et al. (2014) have reconstructed 15 peak 626 flows in six locations with Manning's equation, with results that underestimate the 627 referential gauged values from 4% to 9% in ten cases and from 16% to 28% in the other 628 five. This systematic underestimation of peak flow with Manning's equation with 629 respect to gauged values in large river floods contrasts with the frequent overestimation 630 that Lumbroso and Gaume (2012) observe, although, in their case, in flash floods; they

631	also find much larger peak flow errors in flash floods hydraulic reconstruction ($\pm 50\%$),
632	which they consider caused almost solely by errors in Manning's n estimation when
633	done by visual methods.
634	
635	Although a sensitivity analysis of Manning's equation was not done, the three slightly
636	different peak flows obtained with the three methods of dividing the cross section are a
637	sign of the sensitivity of the results using Manning's equation. For example, Herget and
638	Meurs (2010) and Herget et al. (2015) find sensitivity indexes of the roughness
639	coefficient between -0.9 and -1.1, slightly above the ones found with HEC-RAS in
640	other studies (Table 10).
641	
642	
643	4.3. Uncertainty assessment of HEC-RAS results
644	
645	Table 8 shows the results of the 14 sensitivity analyses performed. According to the
646	sensitivity indexes obtained, water height is the most influential input variable over
647	peak flow. Manning's n comes next, followed by the number of cross sections and the
648	downstream boundary condition; the other two variables (flow paths direction and DEM
649	resolution) have much less or no influence on peak flow results.
650	
651	[insert table 8]
652	
653	Peak flow total error was calculated with Eq. (3). Actually, it was calculated combining
654	different water height uncertainties with the fact of taking or not taking into account the
655	error caused by the reduction of the number of cross sections (Table 9). In fact, it is very

656	rare for a modeller to use too few cross sections, since there are clear recommendations
657	about that and the HEC-RAS model displays alerts when this occurs; therefore, and
658	considering that the flood scale is very precise and reliable, the total relative error of the
659	reconstructed peak flow of 1907 flood in Xerta was 31%. But even if the flood mark
660	were a lot less precise, the total error would not increase excessively: $\pm 39\%$.
661	
662	[insert table 9]
663	
664	These errors are comparable to that obtained for extreme floods by Naulet et al. (2005)
665	in the Ardèche River: +40%, and to those that we estimated in Ruiz-Bellet et al. (2015)
666	in six flash flood reconstructions: $\pm 5-44\%$, and totally acceptable in historical
667	hydrology. Indeed, Neppel et al. (2010) estimate that the uncertainty of the peak flows
668	of extreme floods calculated with rating curves lies in the range of 10–100% and Cong
669	and Xu (1987) consider that information about large floods is useful even with errors up
670	to 60%. For comparison, Pelletier (1988) estimates the error of a good flow
671	measurement at 5%.
672	
673	
674	4.3.1. Water height
675	
676	Water height uncertainty is the most influential input variable over peak flow results; in
677	fact, it is 3.6 times more influential than Manning's n (Table 8). This agrees with Lang
678	et al. (2010), who find that a variation of a few dozen centimetres in water stage in a
679	wide river (10-50 m) cause large uncertainties in the estimated flow.

In the case of 1907 flood in Xerta, the relationship between water height uncertainty and peak flow relative error is very lineal: each ± 10 cm of uncertainty in water height causes a relative error of $\pm 2.4\%$ in peak flow (Fig. 11). In Ruiz-Bellet et al. (2015), we found slightly higher relationships between peak flow errors and water height uncertainty: between $\pm 3\%$ and $\pm 14\%$ for each ± 10 cm, in six hydraulic reconstructions of flash floods in streams with small basins (between 56 and 314 km²).

687

688 [insert figure 11]

689

690 It must be noted that, although water height is the most influential input variable over 691 peak flow results, it is not the major contributor to peak flow total error: Manning's n 692 and, when included in the calculations, the number of cross sections contribute more to 693 the peak flow total error (Table 9). In fact, this contribution depends, on the one hand, 694 on the influence of the variable (measured by its sensitivity index) and, on the other 695 hand, on the magnitude of its own uncertainty. Manning's n, with its $\pm 30\%$ uncertainty, 696 is a much bigger contributor to total error in spite of being somewhat less influential. 697 This analysis permits to visualise the magnitude, of a $\pm 30\%$ uncertainty in Manning's n: 698 it is a great uncertainty, even greater than ± 100 cm in water height in terms of 699 contribution to peak flow total error. However, as explained in Sect. 3.2, this great 700 uncertainty is a reasonable value, due to the fact that it is a very difficult variable to 701 determine in absence of water height and flow measurements. The same reasoning can 702 be done with the number of cross sections: its sensitivity index (thus, its influence over 703 the result) is lower than that of water height, but its modification (that is, its uncertainty) 704 is greater: from 45 to 22 cross sections or a reduction of 50%; however, in the cross

705	section case, unlike in the Manning's n, this extreme variation seems less likely to occur
706	in the practical application of a model and was only tested for theoretical purposes.
707	
708	
709	
710	4.3.2. Manning's n
711	
712	Manning's n is the second most influential variable over peak flow results, with a
713	sensitivity index of -1.0, classified as very high by Lenhart et al. (2002); in any case, it
714	is similar or slightly higher than others found in the literature (Table 10). Manning's n
715	is, as said in Sect. 4.3.1., a major contributor to peak flow total error due to its high
716	uncertainty. Certainly, an error of $\pm 30\%$ in determining Manning's n, which is a
717	relatively high but not uncommon value (as specified in Sect. 3.2), caused an error of
718	±30.4% in 1907 flood's peak flow in Xerta.
719	
720	[insert table 10]
721	
722	Manning's n is a difficult variable to estimate, since it depends on many factors, such as
723	the channel and floodplain geometry, the roughness of their surfaces, the type and
724	abundance of riverine vegetation, or even the characteristics of the flow. Therefore, it is
725	somewhat subjective and very dependent on the experience of the technician in the
726	studied area. That is why we assigned a high error to it. More precisely, in our
727	sensitivity analysis, we modified the Manning's n of all the soil uses in all the cross
728	sections exactly in the same amount and sign: either $+30\%$ or -30% . This kind of
729	systematic error seems quite improbable. Rather, Manning's n would be underestimated

in some cross sections and overestimated in others within the modelled river reach, thus ones compensating others. Therefore, and taking also into account that $\pm 30\%$ is quite a relatively generous uncertainty for Manning's n, our estimation seems to be an upper boundary of the uncertainty in the resulting peak flow caused by that input variable.

Wohl (1998) concludes that the influence of Manning's n is greater in steep, narrow,

and highly rough channels, than in flatter, wider, smoother ones. Wohl's conclusion is

in contradiction with Dawdy and Motayed (1979) and O'Connor and Webb (1988), who

find that the Manning's n has a small influence on peak flow results when using HEC-2,

a precursor of HEC-RAS, in deep, narrow channels.

740

741 Similarly, Chow (1959) states that Manning's n influence is greater in low flows than in 742 high flows; this concurs with the findings of Naulet et al. (2005): in their modelled 743 reach of the Ardèche River, a change of $\pm 20\%$ in Manning's n results in a change of 744 $\pm 20\%$ in the peak flow of medium floods and of $\pm 10\%$ in large floods, this being 745 explained by the reduced effect of roughness in flows with high depths. This conclusion 746 also agrees with what we found in Balasch et al. (2011): for low flows, a decrease of 747 50% in Manning's n causes no variation in peak flow, but a 10% increase in n causes a 748 7% decrease in peak flow, which is larger than the 1.5% caused by the same variation of 749 n in high flows.

750

751

Hall et al. (2005) find that the channel Manning's n is the factor that influences the mostthe model's results in a reach of the River Thames in the United Kingdom, but that

754 floodplain Manning's n gains importance in the wider parts of their modelled reach,

755 where there is more out-of-bank flow. Similarly, Alemseged and Rientjes (2007) find 756 that channel's Manning's n values affect more the resulting peak flow than floodplain 757 values and Schumann et al. (2008) find that floodplain Manning's n has no influence on hydraulic modelling results when varied between 0.04 and 0.1 s \cdot m^{-1/3} in their modelled 758 759 flood. In this study, the separate effects on the peak flow of the roughness of the 760 channel and the floodplain were not assessed. However, when calibrating the Manning's 761 n with 1961 flood, channel's roughness coefficient seemed to be more influential than 762 those of the floodplain. Nevertheless, there was much less overbank flow in 1961 than 763 in 1907 and, therefore, no conclusion can be drawn about which segment's roughness 764 (channel or floodplain) affects the most the peak flow of an extreme flood such as that 765 of 1907.

766

Casas et al. (2004) find that Manning's n has a greater influence on the modelling
results as the resolution of the DEM increases; in other words, a hydraulic model run on
a coarse DEM is less sensible to uncertainties in Manning's n than when run on a finer
one. This kind of interaction between input variables over peak flow results was not
analysed in this study.

772

In this study, Manning's n were determined, as explained in Sect. 3, with a lengthy procedure involving soil use mapping from old aerial photographs and a calibration with 1961 flood. However, in spite of its complexity, it gave, for some soil uses, very different estimations than the same method applied by Sánchez (2007) to the same reach and calibrated with the same flood (Table 5). It was therefore thought interesting to test the accuracy of a more straightforward determination of the roughness coefficients. In this determination, the channel was assigned a Manning's n of 0.045 s·m^{-1/3} and the rest

of the flooded area, $0.056 \text{ s} \cdot \text{m}^{-1/3}$. This resulted in a Manning's n, averaged by area, of 0.053 s $\cdot \text{m}^{-1/3}$, that is, an increase of 8% with respect the initial average Manning's n: 0.049 s $\cdot \text{m}^{-1/3}$. This reduction is contained within the previous ±30% variation; therefore, the individual error on peak flow that it caused was not included in the calculation of the total error (Table 9).

785

This increase of 8% in the average Manning's n produced a decrease of 11% in the peak flow (10225 m³·s⁻¹) and, thus, a sensitivity index of -1.4 (sensitivity analysis 9 in Table 8), only slightly higher than the one found with the variation of ±30% (sensitivity analyses 7 and 8 in Table 8).

790

791 In any case, a perfunctory determination of Manning's n resulted in an average value 792 only 8% larger than the one obtained after a long, detailed procedure. This error in 793 Manning's n is smaller than the one considered in the uncertainty assessment $(\pm 30\%)$. 794 Therefore, it seems, at least in this case, that an extremely accurate determination of 795 Manning's n is not cost-effective. This conclusion is in contradiction with the previous 796 statement that Manning's n is the second most influential variable over the results: if it 797 is so influential, it should be accurately determined. Actually, if in a peak flow 798 uncertainty assessment, the assigned uncertainty to Manning's n is large (as it is 799 advisable to do due to the difficulty in determining it), there is no need to accurately 800 estimate it. A parallel with water height can help to explain this idea: to measure an 801 unreliable flood mark to the µm would be a loss of time, because its uncertainty can be 802 up to ± 100 cm.

803

804	This conclusion of the minited influence of the estimation method on Manning's n
805	accuracy is in disagreement with the findings of Ghani et al. (2007). Indeed, they report
806	a reduction in discharge error from +200% to $\pm 10\%$ when the method for estimating
807	Manning's n is changed from a ready-to-use one to a custom-made one. A possible
808	reason of this discrepancy with our findings may be the different magnitude and nature
809	of the discharges: a peak flow of 11500 $\text{m}^3 \cdot \text{s}^{-1}$ during an extraordinary flood in the Ebro
810	River, against ordinary discharges of 3 to 88 $m^3 \cdot s^{-1}$ in the three small Malaysian rivers.
811	
812	
813	4.3.3. Downstream boundary condition
814	
815	Peak flow results are moderately sensitive to variations of the boundary condition set

This conclusion of the limited influence of the estimation method on Monning's n

816 2700 m downstream (sensitivity index of +0.3; Table 8). This contrasts with Alemseged

and Rientjes (2007), who conclude that the effects of the boundary conditions are

818 significant only near the downstream end of the river reach. However, Naulet et al.

819 (2005) find, in a reach of the Ardèche River with a slope of less than 2.5 m \cdot km⁻¹

820 modelled with the MAGE hydraulic model, that a variation of ± 1 m in the downstream

821 condition has effects in the peak flow as far as 12 km upstream.

822

001

823

824 **4.3.4.** Number of cross sections

825

826 When running the model with half the initial number of cross sections (22), the resulting

peak flow was 25% higher than with all 45 cross sections. This variable has a relatively

high sensitivity index (0.5) and, due to the wide range of variation of its local sensitivity

829	analysis (-50%), it has a high contribution to the peak flow total error (between 29%
830	and 40%) if included in the calculation (which, as said in Sect. 4.3, does not seem
831	necessary because the HEC-RAS model has an automatic warning system that alerts
832	when too few cross sections are being used), ,.
833	
834	Alemseged and Rientjes (2007) find that different cross section spacing (2 to 20 m)
835	results in different water surface profiles, only near the downstream end of the modelled
836	river stretch. Cea and Bladé (2008) suggest placing the cross sections in representative
837	spots within the modelled reach, spaced between 1 and 5 times the reach's width. They
838	warn against an excessive number of cross sections, since this could cause errors in the
839	model's iterative calculation process. The effect of an excessive number of cross
840	sections and of their exact location along the reach has not been analysed in this study.
841	
842	
843	4.3.5. Flow paths
844	
845	The results show that, in the case of 1907 flood in Xerta, the direction and location of
846	the flow paths has no influence on the peak flow results.
847	
848	
849	4.3.6. DEM horizontal resolution
850	
	To use a lower resolution DEM (25x25 m instead of 5x5 m) resulted in a practically no
850 851 852	To use a lower resolution DEM ($25x25$ m instead of $5x5$ m) resulted in a practically no change of the initially modelled peak flow: a reduction of 0.2%. Certainly, the influence

854 contribution to total peak flow error is also reduced: less than 1%. These results seem to 855 agree with Horritt and Bates (2001), who find that, when modelling a flood of the River 856 Severn with the 1D model LISFLOOD-FP and its NCFS version, a resolution of 857 500x500 m is adequate enough and resolutions finer than 100x100 m do not further 858 improve the results. However, our results are in contradiction with various studies, 859 which have shown that small errors in the topography can have significant effects on 860 model results (Bates et al., 1997; Nicholas and Walling, 1998; Wilson, 2004) and with 861 other studies that even conclude that the representation of the channel geometry seems 862 to be the most influencing aspect of hydraulic modelling (Aronica et al. 1998; Merwade 863 et al., 2008; Pappenberger et al. 2005). Similarly, Casas et al. (2004) conclude that a 864 HEC-RAS model run on coarse-resolution DEM produces lower peak flows than when 865 run on finer DEM, and that this difference is greater for low flows than for high flows. 866 Alemseged and Rientjes (2007) also find, although in a two-dimensional model, that 867 reducing the DEM resolution causes a reduction of water velocity (and, therefore, of 868 peak flow).

870

869

871 **4.3.7. Input variables not analysed**

872

The peak flow total errors shown in Table 9 include variables the error of which can be easily reduced, such as the drawing of flow paths, the number of cross sections and the resolution of the DEM. One could think that this gives an upper bound of the total uncertainty of the modelled peak flow. However, the set of sensitivity analyses performed is far from being exhaustive and other input variables not taken into account could increase that total error.

The influence of those input variables was not quantified in this study because their analyses were deemed too difficult to be included in a basic uncertainty assessment intended for an end user, which was the main objective of this article. In any case, a short discussion of other studies' findings is provided below.

884

885 4.3.7.1. Channel's erosion and accretion

modelling results.

886

The erosion and accretion of the channel, either during the reconstructed flood or
between the date of the flood and that of its reconstruction, can cause significant
changes in the geometry than can ultimately translate into errors in the hydraulic

890

891

According to Kirby (1987), erosion is of extreme importance in modelling. Actually,

893 Sauer and Meyer (1992) find that a mobile, unstable bed can cause an error of 10% in

894 water stage measurement. Similarly, Naulet et al. (2005) find, in a modelled reach of the

Ardèche River, that variations of -4/+2 m in the river bed height result in a variation of

896 $\pm 7\%$ in peak flow for medium floods and of $\pm 10\%$ for extreme floods. However,

897 Balasch et al. (2011) obtained the same peak flow when modelling a flash flood with

two different channel geometries.

899

900

901 4.3.7.2. Sediment transport

902

903	Sediment transport, a factor rarely taken into account, can alter the hydraulic modelling
904	results. In fact, according to Quick (1991), in floods with an important sediment
905	transport, one third of the hydraulic energy is consumed in conveying the sediment and
906	the other two thirds in moving the water. Therefore, not taking into account sediment
907	load tends to overestimate peak flow.
908	
909	But this overestimation can be even greater when hyper-concentrated flows occur,
910	because then the fluid ceases to be Newtonian and the equations used by the model no
911	longer apply. Although this is an infrequent circumstance in river flows such as 1907 in
912	Xerta, it is not uncommon in flash floods in scarcely vegetated catchments: for example,
913	Balasch et al. (2010a), report a sediment volume of 12% in one historical flood, which
914	would qualify as a hyper-concentrated flow.
915	
710	
916	
	4.3.7.3. Steady and unsteady flow
916	4.3.7.3. Steady and unsteady flow
916 917	4.3.7.3. Steady and unsteady flow One of these non-analysed input variables is the choice between steady and unsteady
916 917 918	
916 917 918 919	One of these non-analysed input variables is the choice between steady and unsteady
916 917 918 919 920	One of these non-analysed input variables is the choice between steady and unsteady flow. In this study, the steady flow was used because it needs less information or, in the
916 917 918 919 920 921	One of these non-analysed input variables is the choice between steady and unsteady flow. In this study, the steady flow was used because it needs less information or, in the lack of it, less assumptions. However, steady flow is thought to overestimate the peak
916 917 918 919 920 921 922	One of these non-analysed input variables is the choice between steady and unsteady flow. In this study, the steady flow was used because it needs less information or, in the lack of it, less assumptions. However, steady flow is thought to overestimate the peak flow, since it does not allow for water storage over the floodplain. Actually, Naulet et
 916 917 918 919 920 921 922 923 	One of these non-analysed input variables is the choice between steady and unsteady flow. In this study, the steady flow was used because it needs less information or, in the lack of it, less assumptions. However, steady flow is thought to overestimate the peak flow, since it does not allow for water storage over the floodplain. Actually, Naulet et al. (2005) find that the steady flow condition overestimates extreme floods' peak flows
 916 917 918 919 920 921 922 923 924 	One of these non-analysed input variables is the choice between steady and unsteady flow. In this study, the steady flow was used because it needs less information or, in the lack of it, less assumptions. However, steady flow is thought to overestimate the peak flow, since it does not allow for water storage over the floodplain. Actually, Naulet et al. (2005) find that the steady flow condition overestimates extreme floods' peak flows by 2%, in a modelled reach of the Ardèche River; similarly, Tuset (2011) finds an

floodplain is greater. Nevertheless, this effect is diminished in floods with a prolonged,
stable peak flow (that it, with a flat-summited hydrograph), virtually equivalent to a
steady flow.

931

In any case, choosing the unsteady flow option in the HEC-RAS model does not
automatically reduce the uncertainty of the results. Indeed, the unsteady flow choice
requires a hydrograph and Alemseged and Rientjes (2007) claim that the shape of that

935 hydrograph affects the hydraulic modelling results, although not significantly.

936

937

938 **5.** Conclusions

939

The peak flow of 1907 flood in the Ebro River in Xerta, reconstructed with HEC-RAS, was $11500 \text{ m}^3 \cdot \text{s}^{-1}$ and its total error was $\pm 31\%$. However, actual total error could be greater because the uncertainty assessment did not include other possible sources of error, such as geometry modifications of the channel due to erosion and sedimentation or model structure. Anyway, the assessment procedure used proved to be a quick, simple one that obtained a rough but reliable estimate of peak flow error, similar to the values found in the literature.

947

The most influential input variable over peak flow results was water height; however, the one that contributed the most to peak flow error was Manning's n, because its uncertainty was far greater than water height's. The drastic reduction of the number of cross sections resulted in a great variation of peak flow; however, since there are clear recommendations regarding the minimal number of cross sections needed in a modelled

reach, such an extreme scenario seems improbable to occur. The other three analysed
variables (downstream boundary condition, flow paths direction, DEM resolution) had
far less influence on both the peak flow and its uncertainty.

956

957 A simple, straightforward method of determining Manning's n provided roughness

958 coefficients similar to the ones obtained with a more convoluted method that included a

959 detailed soil uses mapping and a calibration with a known peak flow.

960

961 In view of all this, it would be advisable, when attempting the hydraulic reconstruction 962 of a historical flood, to soundly verify the reliability of the flood marks and, afterwards, 963 to precisely measure them, since water height is the input variable that most influences 964 the results. Conversely, Manning's n estimation does not need to be extremely accurate, 965 since the methods to do so are often subject to strong uncertainties; in other words, 966 thorough estimations are not necessarily closer to the actual roughness coefficients 967 values than more cursory ones. The quantification of the other tested variables does not 968 need to be extremely precise either, since they have even less influence over the 969 modelling results. 970

971 In order to reduce the inherent uncertainty of a hydraulic reconstruction, several972 sensible steps should also be taken when possible:

973

974 1) To use more than one flood mark along the modelled river reach in order to975 obtain a more accurate water profile.

976

977 2) To assess the evolution of the river's channel and flood plain morphology, in978 order to reduce the uncertainty contributed by this factor.

979

980 3) To calibrate the hydraulic model with measured flows of more modern extreme981 floods.

982

4) To reconstruct the flood in several locations throughout the basin in order tovalidate the results reciprocally through discharge continuity along the river.

985

986 As said above, the uncertainty assessment did not include all the variables that could 987 affect the peak flow error. An improved uncertainty assessment with the objective of 988 calculating the upper bound of the actual peak flow total error should include all the 989 possible sources of error, as well as interactions between them (that is, the influence of 990 simultaneous modifications of different variables). These interactions need to be 991 analysed with a global sensitivity analysis instead of with a collection of local ones. In 992 order to do so, and also in order to apply other uncertainty assessment procedures such 993 as the GLUE (Beven and Binley, 1992), the introduction of input variables into the 994 model should be automated, due to the high number of simulations needed.

995

996 Nonetheless, a totally complete quantification of peak flow uncertainty seems very 997 difficult. Indeed, the use of a hydraulic model implies a great number of small decisions 998 that depend on the modeller's expertise or, in other words, that convey a small amount 999 of subjectivity. These decisions cannot be all taken into account in an uncertainty 1000 assessment, but can cause great differences between the results of two different 1001 modellers.

1003	Furthermore, a thorough comparison between 1D and 2D models could be done in order
1004	to determine if the more complex to operate two-dimensional programmes are actually
1005	more accurate while still being cost-effective when calculating peak flow in wide
1006	floodplains with many obstacles to the flow. Besides, more research is needed to
1007	ascertain if the channel's Manning's n is more influential on peak flow than the
1008	floodplain's.
1009	
1010	The simple method of applying Manning's equation at a single cross section seems to
1011	yield acceptable results, very similar to the one obtained with the HEC-RAS model.
1012	However, an uncertainty assessment is needed in order to compare its accuracy to that
1013	of computer-based methods.
1014	
1015	This study was limited to peak flow uncertainties; however, the uncertainties of other
1016	hydraulic modelling results relevant to in flood risk management, such as the flooded
1017	surface or the flood wave travel time, could also be assessed.
1018	
1019	The method of error assessment for historical floods reconstruction used in this paper
1020	can be convenient for end users because it is extremely simple, which has two
1021	consequences: it provides a quick but sound estimation of the modelled peak flow error
1022	-a critical piece of information often absent in technical reports- and it does not require
1023	a great command of complex statistical techniques as other methods, more oriented to
1024	specialised scientists, do. Moreover, this method quantifies the weight of each input
1025	variable in the peak flow total error, thus allowing the end user to decide which need to
1026	be more precisely determined to reduce that error.

1027	
1028	Acknowledgements
1029	
1030	Damià Vericat drew the map in Fig. 1c. Alberto Sánchez measured the heights of the
1031	three flood marks used in this study (Table 2) and took the photo in Fig. 3.
1032	
1033	We thank Ramon J. Batalla (RIUS-UdL), Andras Bardossy (editor of Journal of
1034	Hydrology), Gerardo Benito (CSIC), Michel Lang (IRSTEA), Ralf Merz (editor of
1035	Journal of Hydrology) and the two anonymous reviewers, whose comments improved
1036	the original text.
1037	
1038	This study was funded by Project CGL2012-35071 of the Spanish Ministry of
1039	Economy. One of the authors (JLRB) has a pre-doctoral grant from the University of
1040	Lleida.
1041	
1042	Contribution of each author
1043	
1044	Josep Lluís Ruiz-Bellet: definition of hypotheses, objectives and methodology;
1045	sensitivity analysis; calculations with Manning's equation; writing; figures 1-11;
1046	bibliographical research
1047	
1048	Xavier Castelltort: definition of objectives and methodology; hydraulic modelling with
1049	HEC-RAS and Iber; figures 6-9
1050	
1051	J. Carles Balasch: definition of objectives and methodology; document revision

1052	
1053	Jordi Tuset: definition of objectives and methodology; hydraulic modelling supervision;
1054	document revision
1055	
1056	All authors have approved the final article.
1057	
1058	
1059	References
1060	
1061	Abellà, A.: Reconstrucció de les riuades més importants del riu Ebre al seu pas per
1062	Móra d'Ebre. Master thesis. University of Lleida, 100 pp, 2013.
1063	
1064	Alemseged, T.H. and Rientjes, T.H.M.: Uncertainty issues in hydrodynamic flood
1065	modelling. In: Proceedings of the 5th international symposium on spatial data quality
1066	SDQ, 2007.
1067	
1068	Aronica, G., Hankin, B., and Beven, K.J.: Uncertainty and equifinality in calibrating
1069	distributed roughness coefficients in a floods propagation model with limited data. Adv.
1070	Water. Resour., 22(4), 349-365, 1998.
1071	
1072	Balasch, J.C., Remacha, R., Eritja, X., and Sánchez, A.: 1907. La riuada del Segre a
1073	Lleida. Relat històric i interpretació actual. Col·lecció La Banqueta, 36. Pagès Editors,
1074	Lleida, 229 pp, 2007.
1075	

1076	Balasch, J.C., Ruiz-Bellet, J.L., Tuset, J., and Martín de Oliva, J.: Reconstruction of the
1077	1874 Santa Tecla's rainstorm in Western Catalonia (NE Spain) from flood marks and
1078	historical accounts. Nat. Hazards Earth Sys. Sci., 10, 2317-2325, 2010.
1079	
1080	Balasch, J.C., Ruiz-Bellet, J.L., and Tuset, J.: Historical flash floods retromodelling in

the Ondara River in Tàrrega (NE Iberian Peninsula). Nat. Hazards Earth Sys. Sci., 11,

1082 3359-3371, 2011.

1083

1081

1084 Bales, J.D. and Wagner, C.R.: Sources of uncertainty in flood inundation maps. Journal

1085 of Flood Risk Management, 2(2), 139-147, 2009.

1086

1087 Barnolas, M. and Llasat, M.C.: Metodología para el estudio de inundaciones históricas

1088 en España e implementación de un SIG en las cuencas del Ter, Segre y Llobregat.

1089 CEDEX, Ministerio de Fomento, Monografías M-90, Madrid, 264 pp, 2007.

1090

- 1091 Barriendos, M. and Coeur, D.: data reconstruction in historical times from non-
- 1092 instrumental sources in Spain and France. In: Benito, G. and Thorndycraft, V.R. (eds.):
- 1093 Systematic, paleoflood and historical data for the improvement of flood risk estimation:

1094 Methodological guidelines. CSIC, Madrid, 29-42, 2004.

- 1096 Barriendos, M., Ruiz-Bellet, J.L., Tuset, J., Mazon, J., Balasch, J.C., Pino, D., and
- 1097 Ayala, J.L.: The Prediflood database of historical floods in Catalonia (NE Iberian
- 1098 Peninsula) AD 1035–2013, and its potential applications in flood analysis. Hydrol.
- 1099 Earth Syst. Sci. 18, 4807-4823, 2014.
- 1100

- 1101 Bates, P.D., Anderson, M.G., Hervouet, J.M., and Hawkes, J.C.: Investigating the
- 1102 behavior of two-dimensional finite element models of compound channel flow. Earth
- 1103 Surface Processes and Landforms, 22(1), 3-17, 1997.
- 1104
- 1105 Bayliss, A.C. and Reed, D.W.: The Use of Historical Data in Flood Frequency
- 1106 Estimation. Technical Report Report to MAFF, Centre for Ecology and Hydrology,
- 1107 NERC, Wallingford, UK, 2001.
- 1108
- 1109 Benito, G., Lang, M., Barriendos, M., Llasat, M.C., Francés, F., Ouarda, T.,
- 1110 Thorndycraft, V.R., Enzel, Y., Bardossy, A., Coeur, D., and Bobée, B.: Use of
- systematic, palaeoflood and historical data for the improvement of flood risk estimation.
- 1112 Review of scientific methods. Nat. Hazards 31, 623-643, 2004.
- 1113
- 1114 Benito, G., Brázdil, R., Herget, J., and Machado, M.J.: Quantitative historical hydrology
- 1115 in Europe. Hydrol. Earth Syst. Sci., 19, 3517-3539, 2015.
- 1116
- Beven, K.J.: On undermining the science? Hydrol. Process. (HPToday), 20, 3141-3146,2006.
- 1119
- 1120 Beven, K.J. and Binley, A.M.: The future of distributed models: Model calibration and
- 1121 uncertainty in prediction. Hydrol. Process. 6, 279-298, 1992.
- 1122
- 1123 Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz,
- 1124 J., and Coll, A.: Iber: herramienta de simulación numérica del flujo en ríos. Revista

1125 Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(1), 1-10,

1126 2012.

- Brázdil, R., Kundzewicz, Z.W., and Benito, G.: Historical hydrology for studying flood
 risk in Europe. Hydrol. Sci. J. 51, 739-764, 2006.
- 1130
- 1131 Bürger, K., Dostal, P., Seidel, J., Imbery, F., Barriendos, M., Mayer, H., and Glaser, R.:
- 1132 Hydrometeorological reconstruction of the 1824 flood event in the Neckar River basin
- 1133 (southwest Germany). Hydrol. Sci. J., 51, 864-877, 2006.
- 1134
- 1135 Casas, A., Benito, G., Thorndycraft, V.R, and Rico, M.: La importancia del modelo
- 1136 digital del terreno en modelos hidráulicos de crecidas. In: Benito, G. and Díez-Herrero,
- 1137 A. (eds.): Riesgos naturales y antrópicos en Geomorfología. (Actas de la VIII Reunión
- 1138 Nacional de Geomorfología, Toledo, 22-25 de septiembre de 2004). SEG y CSIC,
- 1139 Madrid, 47-57, 2004.
- 1140
- 1141 Cea, L. and Bladé, E.: Modelización matemática en lecho fijo del flujo en ríos. Modelos
- 1142 1D y 2D en régimen permanente y variable. Jornadas Técnicas sobre Hidráulica Fluvial.
- 1143 Madrid, 3-7 March, 2008.
- 1144
- 1145 Chow, V.T.: Open-channel hydraulics. McGraw-Hill, New York, 680 pp, 1959.
- 1146
- 1147 Cong, A. and Xu, Y.: Effect of discharge measurement errors on flood frequency
- analysis. In: Singh, V.P. (ed.): Application of Frequency and Risk in Water Resources.
- 1149 Reidel Publishing Company, 175-190, 1987.
 - 47

- 1151 Cowan, W.L.: Estimating hydraulic roughness coefficients. Agricultural Engineering,1152 37, 473-475, 1956.
- 1153
- 1154 Curto, A.: La riuada de 1907. La riuada, 29, 4-8, 2007.
- 1155
- 1156 Dawdy, D.R. and Motayed, A.K.: Uncertainties in determination of flood profiles. In:
- 1157 McBean, E.A, Hipel, K.W., Unny, T.E. (eds.): Inputs for risk analysis in water systems.
- 1158 Water Resources Publications, Ft. Collins (USA), 193-208, 1979.
- 1159
- 1160 De Roo, A.P.J., Offermans, R.J.E, and Cremers, N.H.D.T.: LISEM: A single-event,
- 1161 physically based hydrological and soil erosion model for drainage basins. II: Sensitivity
- analysis, validation and application. Hydrol. Process., 10, 1119-1126, 1996.
- 1163
- 1164 Di Baldassarre, G. and Montanari, A.: Uncertainty in river discharge observations: a
- 1165 quantitative analysis. Hydrol. Earth Syst. Sci., 13, 913-921, 2009.
- 1166
- 1167 Elleder, L.: Reconstruction of the 1784 flood hydrograph for the Vltava River in
- 1168 Prague, Czech Republic. Global Planet. Change 70, 117-124, 2010.
- 1169
- 1170 Francés, F.: Flood frequency analysis using systematic and non-systematic information.
- 1171 In: Benito, G. and Thorndycraft, V.R. (eds.): Systematic, paleoflood and historical data
- 1172 for the improvement of flood risk estimation: Methodological guidelines. CSIC,
- 1173 Madrid, 55-70, 2004.
- 1174

1175	Gallart, F. and Llorens, P.: Observation on land cover changes and water resources in
1176	the headwaters of the Ebro catchment, Iberian Peninsula. Phys. Chem. Earth, 29, 769-
1177	773, 2004.

- 1179 Gaume, E., Livet, M., Desbordes, M., and Villeneuve, J.P.: Hydrological analysis of the
- river Aude, France, flash flood on 12 and 13 November 1999. J. Hydrol. 286, 135-154,
- 1181 2004.

1182

- 1183 Ghani A.A.B., Zakaria N.A., Kiat C.C, Ariffin J., Hasan, Z.A., and Ghaffar, A.B.A:
- 1184 Revised equations for Manning's coefficient for Sand-Bed Rivers. International Journal
- 1185 of River Basin Management, 5:4, 329-346, 2007.
- 1186
- 1187 Götzinger, J. and Bárdossy, A.: Generic error model for calibration and uncertainty

1188 estimation of hydrological models. Water Resour. Res., 44, W00B07, 2008.

- 1189
- 1190 Hall, J.W., Tarantola, S., Bates, P.D., and Horritt, M.S.: Distributed sensitivity analysis
- 1191 of flood inundation model calibration. J. Hydraul. Eng., 131(2), 117-126, 2005.
- 1192
- 1193 Harmel, R.D., Cooper, R.J., Slade, R.M., Haney, R.L., and Arnold J.G.: Cumulative
- 1194 uncertainty in measured streamflow and water quality data for small watersheds. Trans.
- 1195 Am. Soc. Agric. Biol. Eng., 49(3), 689-701, 2006.

- 1197 Herget, J. and Meurs, H.: Reconstructing peak discharges for historic flood levels in the
- city of Cologne, Germany. Global and Planetary Change, 70, 108-116, 2010.
- 1199

- 1200 Herget J., Roggenkamp T. and Krelll M., Estimation of peak discharges of historical
- 1201 floods, Hydrol. Earth Sys. Sc. 18 (10), 4029-4037
- 1202
- 1203 Herget, J., Kapala, A., Krell, M., Rustemeier, E., Simmer, C., and Wyss, A.: The
- millennium flood of July 1342 revisited. Catena, 130, 82-94, 2015.
- 1205
- 1206 Horritt, M.S. and Bates, P.D.: Effects of spatial resolution on a raster based model of
- 1207 flood flow. J. Hydrol., 223, 239-249, 2001.
- 1208
- 1209 Horritt, M.S. and Bates, P.D.: Evaluation of 1D and 2D numerical models for predicting
- 1210 river flood inundation. J. Hydrol., 268, 87-99, 2002.
- 1211
- 1212 ICGC, Institut Cartogràfic i Geològic de Catalunya: Aerial Photograph. Available at
- 1213 http://www.icc.cat/vissir3/. Last accessed: 27/10/2015.
- 1214
- 1215 IGN, Instituto Geográfico Nacional: MDT05/MDT05-LiDAR and MDT25.
- 1216 http://www.ign.es/ign/main/index.do. Last accessed: 12/11/2015.
- 1217
- 1218 Jarrett, R.D.: Errors in slope-area computations of peak discharges in mountain streams.
- 1219 J. Hydrol., 96, 53-67, 1987.
- 1220
- 1221 Johnson, P.: Uncertainty of hydraulic parameters. J. Hydraul. Eng., 122(2), 112-114,
- 1222 1996.
- 1223

- 1224 Kirby, W.H.: Linear error analysis of slope-area discharge determinations. J. Hydrol.,1225 96, 125-138, 1987.
- 1226
- 1227 Lang, M., Fernández-Bono, J.F., Recking, A., Naulet, R., and Grau-Gimeno, P.:
- 1228 Methodological guide for palaeoflood and historical peak discharge estimation. In:
- 1229 Benito, G. and Thorndycraft, V.R. (eds.): Systematic, paleoflood and historical data for
- the improvement of flood risk estimation: Methodological guidelines. CSIC, Madrid,43-53, 2004.
- 1232
- 1233 Lang, M., Pobanz, K., Renard, B., Renouf, E., and Sauquet, E.: Extrapolation of rating
- 1234 curves by hydraulic modelling, with application to flood frequency analysis. Hydrol.

1235 Sci. J., 55(6), 883-898, 2010.

1236

1237 Lenhart, T., Eckhardt, K., Fohrer, N., and Frede, H.-G.: Comparison of two different

approaches of sensitivity analysis. Phys. Chem. Earth, 27, 645-654, 2002.

1239

- 1240 Léonard, J., Mietton, M., Najib, H., and Gourbesville, P.: Rating curve modelling with
- 1241 Manning's equation to manage instability and improve extrapolation. Hydrol. Sci. J.,
- 1242 45(5), 739-750, 2000.
- 1243
- 1244 López-Bustos, A.: Antecedentes para una historia de avenidas del río Ebro. Revista de
- 1245 Obras Públicas, 3083, 191-204, 1972.
- 1246
- 1247 Lumbroso, D. and Gaume E.: Reducing the uncertainty in indirect estimates of extreme
- 1248 flash flood discharges. J. Hydrol., 414, 16-30, 2012.

1250	Machado, M.J., Botero, B.A., López, J., Francés, F., Díez-Herrero, A., and Benito, G.:
1251	Flood frequency analysis of historical flood data under stationary and non-stationary
1252	modelling. Hydrol. Earth Syst. Sci., 19, 2561-2576, 2015.
1253	
1254	MAGRAMA, Ministerio de Agricultura, Alimentacion y Medio Ambiente: Anuario de
1255	aforos. Available at http://sig.magrama.es/aforos/visor.html. Last accessed: 18/11/2015.
1256	
1257	Marcus, W.A., Roberts, K., Harvey, L., and Tackman, G.: An evaluation of methods for
1258	estimating Manning's n in small mountain streams. Mountain Research and
1259	Development, 12(3), 227-239, 1992.
1260	
1261	Martín-Vide, J.P.: Ingeniería de ríos. Edicions UPC, Barcelona, 404 pp, 2002.
1262	
1263	McCuen, R.H.: The role of sensitivity analysis in hydrologic modelling. J. Hydrol., 18,
1264	37-53, 1973.
1265	
1266	Mérida, D.: Estudi comparatiu del model Iber amb el model HEC-RAS per a l'avinguda
1267	histórica de 1907 al riu Ebre en Benifallet (Baix Ebre). Master's degree thesis,
1268	University of Lleida, 87 pp, 2014.
1269	
1270	Merwade, V., Olivera, F., Arabi, M., and Edleman, S.: Uncertainty in Flood Inundation
1271	Mapping: Current Issues and Future Directions. J. Hydrol. Eng., 13(7), 608-620, 2008.
1272	

- 1273 Miravall, R.: Flagells naturals sobre Tortosa. Riuades, gelades, aiguats i sequeres,
- 1274 ventades i terratrèmols. Columna, Barcelona, 191 pp, 1997.
- 1275
- 1276 Montanari, A.: What do we mean by "uncertainty"? The need for a consistent wording
- about uncertainty assessment in hydrology. Hydrol. Proc., 21, 841-845, 2007.
- 1278
- 1279 Naulet, R., Lang, M., Ouarda, T.B., Coeur, D., Bobée, B., Recking, A., and Moussay,
- 1280 D.: Flood frequency analysis on the Ardèche river using French documentary sources
- 1281 from the last two centuries. J. Hydrol. 313, 58-78, 2005.
- 1282
- 1283 Neppel, L., Renard, B., Lang, M., Ayral, P.A., Coeur, D., Gaume, E., Jacob, N.,
- 1284 Payrastre, O., Pobanz, K., and Vinet, F.: Flood frequency analysis using historical data:
- accounting for random and systematic errors. Hydrol. Sci. J., 55, 192-208, 2010.
- 1286
- 1287 Nicholas, A.P. and Walling, D.E.: Numerical modelling of floodplain hydraulics and
- suspended sediment transport and deposition. Hydrol. Process., 12(8), 1339-1355, 1998.
- 1289
- 1290 O'Connor, J.E. and Webb, R.H.: Hydraulic modelling for paleoflood analysis. In:
- 1291 Baker, V.R. and Patton, P.C. (eds.): Flood geomorphology. John Miley & Sons, New
- 1292 York, 393-402, 1988.
- 1293
- 1294 Pappenberger, F. and Beven, K.J.: Ignorance is bliss: Or seven reasons not to use
- 1295 uncertainty analysis. Water Resour. Res., 42, W05302, 2006.
- 1296

- 1297 Pappenberger, F., Beven, K.J., Horritt, M., and Blazkova, S.: Uncertainty in the
- 1298 calibration of effective parameters in HEC-RAS using inundation and downstream level
- 1299 observations. J. Hydrol., 302, 46-69, 2005.
- 1300
- 1301 Pappenberger, F., Matgen, P., Beven, K.J., Henry, J.B., Pfister, L., and de Fraipont, P.:
- 1302 Influence of uncertain boundary conditions and model structure on flood inudation
- 1303 predictions. Adv. Water Resour., 29, 1430-1449, 2006.
- 1304
- 1305 Paquier, A. and Mignot, E.: Use of 2D models to calculate flood water levels:
- 1306 calibration and sensitivity analysis. In: Ganoulis, J. and Prinos, P. (eds.): XXX IAHR
- 1307 Congress, Thessaloniki, 24-29, 2003.
- 1308
- 1309 Payrastre, O., Gaume, E., and Andrieu, H.: Usefulness of historical information for
- 1310 flood frequency analyses: Developments based on a case study. Water Resour. Res. 47,
- 1311 W08511, 2011.
- 1312
- 1313 Pelletier, M.P.: Uncertainties in the determination of river discharge: a literature review.
- 1314 Can. J. Civ. Eng., 15, 834-850, 1988.
- 1315
- 1316 Pino, D., Ruiz-Bellet, J.L., Balasch, J.C., Romero-León, L., Tuset, J., Barriendos, M.,
- 1317 Mazón, J., and Castelltort, X.: Meteorological and hydrological analysis of major floods
- 1318 in NE Iberian Peninsula. Journal of Hydrology, 541 (A), 63-89, 2016.
- 1319
- 1320 Quick, M.C.: Reliability of flood discharge estimates. Can. J. Civ. Eng., 18(4), 624-630,
- 1321 1991.

1323	Refsgaard, J.C., van der Sluijs, J.P., Brown, J., and van der Keur, P.: A framework for
1324	dealing with uncertainty due to model structure error. Adv. Water Resour., 29, 1586-
1325	1597, 2006.
1326	
1327	Remo, J.W.F. and Pinter, N.: Retro-modeling the middle Mississippi River. J. Hydrol.,
1328	337, 421-435, 2007.
1329	
1330	Ruiz-Bellet, J.L., Balasch, J.C., Tuset, J., Barriendos, M., Mazón, J., and Pino, D.:
1331	Historical, hydraulic, hydrological and meteorological reconstruction of 1874 Santa
1332	Tecla flash floods in Catalonia (NE Iberia Peninsula). J. Hydrol., 524, 279-295, 2015a.
1333	
1334	Ruiz-Villanueva, V., Díez-Herrero, A., Stoffel, M., Bollschweiler, M., Bodoque, J.M.,
1335	and Ballesteros, J.A.: Dendrogeomorphic analysis of flash floods in a small ungauged
1336	mountain catchment (Central Spain). Geomorphol., 118, 383-392, 2010.
1337	
1338	Sánchez, A.: Modelización hidráulica y análisis de magnitud-frecuencia de avenidas
1339	históricas en el curso bajo del Rio Ebro. Master's degree thesis, University of Lleida, 77
1340	pp., 2007.
1341	
1342	Sauer, V.B. and Meyer, R.W. (1992): Determination of error in individual discharge
1343	measurements. USGS Open File Report 92-144. Washington, D.C.
1344	
1345	Schmidt, A.R.: Analysis of stage-discharge relations for open channel flow and their

1346 associated uncertainties. PhD thesis. University of Illinois, Urbana, 328 pp., 2002.

1348

1349

1350 remotely sensed water stages. International Journal of River Basin Management, 6(3), 1351 187-199, 2008. 1352 Tuset, J.: Reconstrucció de l'aiguat de Santa Tecla (23 de setembre de 1874) en el riu 1353 1354 Sió a Mont-Roig a partir de documentació histórica. Master's degree thesis, University 1355 of Lleida, 40 pp., 2011. 1356 1357 USACE, US Army Corps of Engineers (ed.): HEC-RAS River Analysis System Version 1358 4.1. User's Manual. US Army Corps of Engineers Hydrologic Engineering Center,

Schumann, G., Cutler, M., Black, A., Matgen, P., Pfister, L., Hoffmann, L., and

Pappenberger, F.: Evaluating uncertain flood inundation predictions with uncertain

- 1359 Davis, 790 pp., 2010.
- 1360
- 1361 Van Griensven, A., Meixner, T., Grunwald, S., Bishop, T., Diluzio, M., and Srinivasan,
- 1362 R.: A global sensitivity analysis tool for the parameters of multi-variable catchment
- 1363 models. J. Hydrol., 324, 10-23, 2006.

- 1365 Vericat, D. and Batalla, R.J.: Sediment transport in a large impounded river: the lower
- 1366 Ebro River (NE Iberian Peninsula). Geomorphology, 79, 72-92, 2006.
- 1367
- 1368 Wilson, M.D.: Evaluating the Effect of Data and Data Uncertainty on Predictions of
- 1369 Flood Inundation. University of Southampton, Southampton, 276 pp., 2004.
- 1370

- 1371 Wohl, E.E.: Uncertainty in flood estimates associated with roughness coefficient. J.
- 1372 Hydraulic Eng., 124(2), 219-223, 1998.
- 1373
- 1374 Zadeh, L.A.: Toward a generalized theory of uncertainty (GTU)—an outline. Inform.
- 1375 Sciences, 172, 1-40, 2005.

1376 1377

		Reconstructed peak flow		Deaths and damages		
Town	River	Value $(m^3 \cdot s^{-1})$	Source	Count	Source	
Lleida	Segre	5250 ^(a)	Balasch et al., 2007	Bridge, embankment and 300–400 dwellings destroyed	Balasch et al., 2007	
Móra d'Ebre	Ebro	11200 ^(a)	Abellà, 2013	More than 50 buildings destroyed	Curto, 2007	
Benifallet	Ebro	11500 ^(a) 10000 ^(b)	Mérida, 2014	5 buildings destroyed	Curto, 2007	
Xerta Tivenys	Ebro Ebro	10500 ^(a,c)	Sánchez, 2007	2 buildings destroyed 23 buildings destroyed	Curto, 2007	
•		12000 ^(d)	López-Bustos, 1972	3 deaths and 7 buildings destroyed	Miravall, 1997 Curto, 2007	

Table 1. Previous estimates of peak flows of 1907 flood and survey of the damages that it caused in different locations (see Fig. 1).

1378 ^(a) Calculated with the HEC-RAS model (one-dimensional).

1379 ^(b) Calculated with the Iber model (two-dimensional).

1380 ^(c) Recalculated in Sect. 4.1.

1381 ^(d) Estimated with unspecified methods.

	Input variable	Value		
1007 fle - 1	moult from flood apple at 1 Main	$\mathbf{X}^{(a)}$	288,655	
1907 11000	mark from flood scale at 1, Major	Y ^(a)	4,531,394	
	Square, Xerta	z (m a.s.l.)	15.175	
		X ^(a)	288,714	
1907 floc	od mark at 1, Major Street, Xerta	Y ^(a)	4,531,407	
		z (m a.s.l.)	15.325	
10(1 (11		X ^(a)	288,655	
1961 11000	mark from flood scale at 1, Major	Y ^(a)	4,531,394	
	Square, Xerta	z (m a.s.l.)	12.171	
1961 p	eak flow (m ³ ·s ⁻¹); source MAGRAM	4580		
	Mannin a'a n	Calibrated with 1961 flood		
	Manning's n		(See Table 5)	
	Length of the modelled reach (m)	7690		
	Number of cross secti	45		
	DEM resolution (m); source I	5x5		
HEC-RAS		Upstream	Critical depth	
specific	Boundary conditions	Downstream	Normal depth ^(b) : 0.905 m·km ⁻	
parameters	Contraction/expansion coef	Contraction/expansion coefficients ^(c)		
	Type of flow	Steady mixed		

1383Table 2. Values of the input variables used in the peak flow reconstruction of 1907 flood with HEC-RAS

1385 ^(b) When "Normal depth" is chosen as the downstream boundary condition in the HEC-RAS, a water

1386 surface slope is asked; for the sake of simplicity, we considered the water surface parallel to the 1387 channel's bottom: $0.0905 \text{ m} \cdot \text{m}^{-1}$ is the slope of the channel.

1388 ^(c) Default values used by HEC-RAS.

1389

Time (s)	Flow $(m^3 \cdot s^{-1})$
0	2000
7200	12500
14400	8000
28800	6000

1393 Table 4. The five hydraulically homogeneous sectors into which the flood scale cross section was divided

in one of the three methods of division in order to apply the Manning's equation, with their

characteristics.

		Position in the	Wetted	Wetted	Average	Longitudinal
Sector		x axis in Fig.	area	perimeter	Manning's n ^(a)	Longitudinal
		8 (m)	(m ²)	(m)	$(s \cdot m^{-1/3})$	slope (m·km ⁻¹
Left floodplain		4-412	2059	413	0.051	1
Chanr	nel	412–545	1386	135	0.041	1
	Not	545-707	736	132	0.047	1
Right	urban		750	152	0.017	1
floodplain	Urban	707-1003	913	287	0.092	1
	Not	1003-1232	410	218	0.058	1
	urban		410	218	0.058	1
Total		4-1232	5504	1212	0.060	

1396

1397 Manning's n values calibrated with 1961 flood (Table 5).

1399 Table 5. Manning's n values calibrated with 1961 flood for the soil uses identified in Fig. 6, compared to

1400 those calibrated by Sánchez (2007) with the same flood and to the general values given by Chow (1959)

1401

and Martín-Vide (2002)

	Area within the	Manning's n	Manning	's n values in	Sánchez (2007)		
Soil use	flooded part of the flood scale cross section ^(a) (km ²)	general values (Chow, 1959) $(s \cdot m^{-1/3})$	Initial values (s·m ^{-1/3})	Values calibrated with 1961 flood $(s \cdot m^{-1/3})$	Relative differ- ence ^(b) (%)	Manning's n values calibrated with 1961 flood $(s \cdot m^{-1/3})$	Relative differ- ence ^(c) (%)
Channel	1.28	0.031-0.100	0.035	0.041	+16	0.038, 0.040	+2, +8
Canals	0.18	0.030	0.030	0.030	0	No data	
Bare floodplain	0.30	0.030-0.050	0.050	0.048	-4	No data	
Vegetated floodplain (shrubs)	0.46	0.045-0.100	0.060	0.060	0	0.100	-50
Riparian forest	0.01	0.080-0.160	0.085	0.085	0	0.100	-16
Crops and orchards	2.60	0.030-0.050	0.050– 0.060	0.050	0, -10	No data	
Olive and almond trees	0.05	0.050-0.080	0.065	0.065	0	0.060	+8
Roads	0.06	0.016	0.050	0.050	0	No data	
Urban area	0.12	$0.100^{(d)}$	0.100	0.100	0	0.030	+108
Total	5.06		0.050 ^(e)	0.049 ^(e)	-2.3	0.060 ^(f)	-20

1402 ^(a) Major Square's flood scale cross section

1403 ^(b) Relative difference (Rd) calculated as: $Rd = \frac{n_1 - n_2}{\frac{n_1 + n_2}{2}} \cdot 100$, where n₁ is the calibrated Manning's n used

 $1404 \qquad \qquad \text{in this study and } n_2 \text{ is the initial one.}$

1405 ^(c) Relative difference (Rd) calculated as: $Rd = \frac{n_1 - n_2}{\frac{n_1 + n_2}{2}} \cdot 100$, where n₁ is the calibrated Manning's n used

1406 in this study and n_2 is the one used by Sánchez (2007).

1407 ^(d) Martín-Vide (2002); Chow (1959) provided no value for urban areas

1408 ^(e) Average Manning's n weighted by area of each soil use within the flooded part of the modelled reach.

1409 ^(f) Urban area (streets) not taken into account because considered hydraulically ineffective.

1410

1411

1412

1413

$\frac{11500 \text{ m}^3 \cdot \text{s}^{-1}}{\text{Water height at Major Square's}}$ $\frac{15.175}{\text{flood scale (m)}} \frac{15.175}{15.33} +0.5$		Modelled with a		
Image: state of the state o	Variable	Observed	-	Difference (cm)
15.325 15.33 +0.5		15.175	15.17	-0.5
	Water height at Major Street's flood mark (m)	15.325	15.33	+0.5

Table 6. Results of the hydraulic reconstruction of 1907 flood in Xerta

1418 Table 7. Results of the use of Manning's equation at the flood scale cross section, depending on the

number of sectors into which the cross section was divided

Method (Number of sectors into which the cross section was divided)	Sec	Peak flow $(m^3 \cdot s^{-1})$	
	Left flo	3744	
	Cha	5056	
5	Right	Not urban	1353
5		Urban	677
	floodplain	Not urban	342
	То	11172	
17			11534
276			11759

	Sensitiv	Influence on the peak flow					
Number	Modified input variable	Initial value	Modification of the initial value	Resulting peak flow $(m^3 \cdot s^{-1})$	Absolute individual error (m ³ ·s ⁻¹)	Relative individual error (%)	Sensi- tivity index (I _x)
1			+10 cm	11750	. 275	±2.4	+3.6
2	-	15.175 m a.s.l.	-10 cm	11200	±275		
3	- Water height at		+30 cm	12325	1020	±7.3 ±24.4	+3.7
4	 the flood scale cross section 		-30 cm	10650	- ±838		
5			+100 cm	14430	±2803		
6	_		-100 cm	8825	- ±2803		
7			+30%	8925	±3500	±30.4	-1.0
8	_	A different one	-30%	15925	- ±3300	±30.4	
9	– Manning's n	for each cross section, according to soil uses (see Table 5)	Channel: 0.045 (+9%) Floodplain: 0.056 (+7%) Average ^(b) : 0.055 (+8%)	10225	-1275	-11	-1.4
10	Downstream boundary	0.905	+15%	11880	_ ±455	±4.0	+0.3
11	condition: normal height ^(c)	m·km ⁻¹	-15%	10970	- 1433	±4.0	+0.3
12	Number of cross sections	45	22	14330	+2830	+25	+0.5
13	Flow paths direction (Fig. 8)	Straight	Meandering	11500	0	0	NA ^{(d}
14	DEM resolution	5x5	25x25	11475	-25	-0.2	+0.01
⁾ Average	Square's flood scal e Manning's n we "Normal height" e slope is asked;	ighted by area of is chosen as the	downstream bou	ndary condi	tion in the H	HEC-RAS, a	water

Table 8. The 14 sensitivity analyses performed and their results

channel's bottom: 0.0905 $m \cdot m^{-1}$ is the slope of the channel downstream the modelled reach.

^(d) NA: not applicable, because "straight" and "meandering" cannot be expressed in numbers to calculate Eq. (5).

- 1432 Table 9. Peak flow total error (relative and absolute) and the relative contribution to it of the five
- 1433 variables with a sensitivity index above zero, depending on the water height uncertainty considered and
- 1434 on the inclusion in the calculation or not of the error caused by the reduction of the number of cross

sections

1435

Error caused	Water height	Peak flow	Peak flow	Relative	e contribution	to the peak (%)	flow total e	error ^(a)
by the	C	total	total					
reduction of	uncer-	absolute	relative			Down-	Number	DEM
the number of	tainty	error (a)	error (a)	Water	Manning's	stream	of cross	reso-
cross sections	considered	$(m^3 \cdot s^{-1})$	(%)	height	n	boundary	sections	lution
cross sections	(cm)	(111 • \$)	(70)			condition	sections	iution
	±10	±3540	±31	6	82	11	NA ^(b)	<1
Not included	±30	±3627	±32	17	73	9	NA ^(b)	<1
	±100	±4507	±39	41	52	7	NA ^(b)	<1
	±10	±4532	±39	4	49	6	40	<1
Included	±30	±4601	±40	11	46	6	37	<1
	±100	±5322	±46	29	36	5	29	<1

^(a) Calculations do not take into account the error found in sensitivity analysis 9, because it is included in
 the error found in sensitivity analysis 8 (see Sect. 4.3.2).

^(b) NA: Not applicable, because the error caused by the reduction of the number of cross section is not
 taken into account

1440

Source	Δ _n Manning n variation (%)	δ _n Peak flow relative error (%)	Sensitivity index $(I_x=\delta_n/\Delta_n)$	Model used	Observations
De Roo et al. (1996)	±20	±15	-0.8	LISEM	Erosion model
Wohl (1998)	±25	±20	-0.8	HEC-2	In canyon rivers with a longitudinal slope smaller than 0.01 m·m ⁻¹
Naulet et al. (2005)	±20	±10	-0.5	MAGE	In large floods in the Ardèche River
Di Baldassarre and Montanari (2009)	+33	-7	-0.2	HEC-RAS	In a range of high flows between 10000 and 12000 m ³ ·s ⁻¹ in the Po River in Pontelagoscuro
Herget and Meurs, 2010	±25	±21	-0.9	Manning's equation	In 1374 flood in the Rive Rhine in Collogne
Herget et al. (2015)	± 9 and ± 26	±9 and ±27	-1.0 and -1.1	Manning's equation	In 1342 flood in the Main River in Würzburg (2 hydraulic scenarios)
Ruiz-Bellet et al. (2015a)	±30	±5 to ±11	-0.2 to -0.4	HEC-RAS	In four hydraulic reconstructions in stream with small catchments (150–314 km ²)
This study	±30	±30	-1.0	HEC-RAS	In 1907 flood in Ebro River in Xerta

Table 10. Comparison of Manning's n sensitivity indexes from different studies

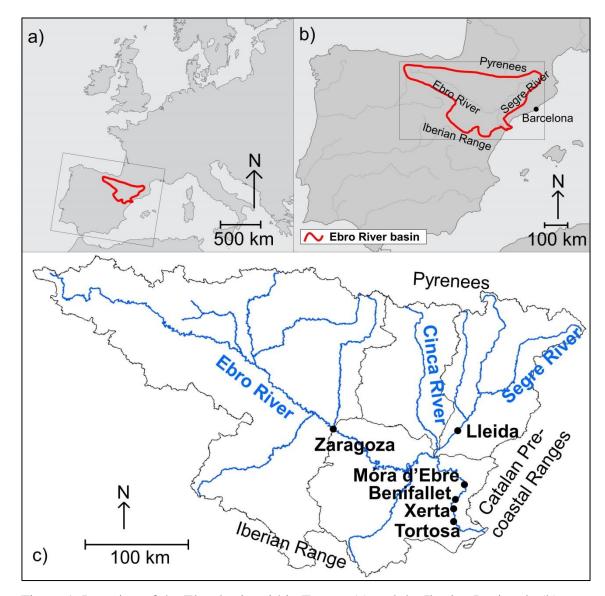
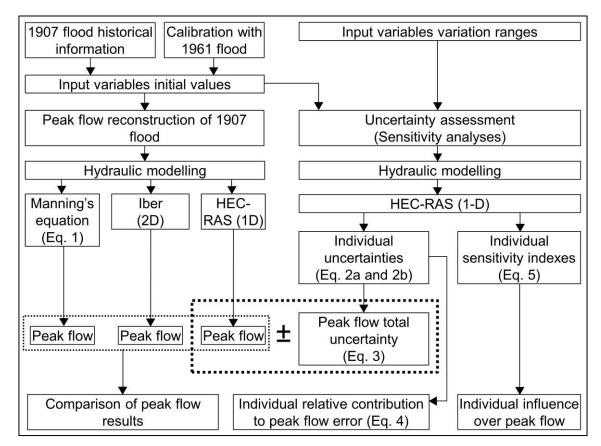
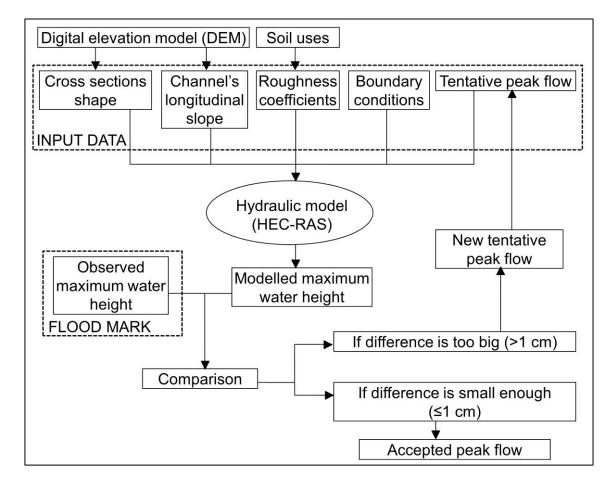


Figure 1. Location of the Ebro basin within Europe (a) and the Iberian Peninsula (b),
and of the town of Xerta within the Ebro basin (c). Maps (a) and (b) modified from a
map Copyright © 2009 National Geographic Society, Washington, D.C.; map (c) drawn

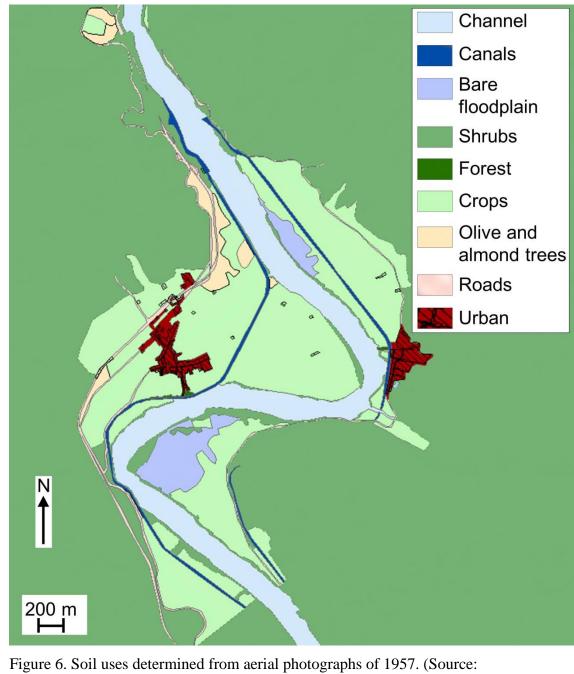
- 1449 by Damià Vericat (RIUS-University of Lleida).
- 1450

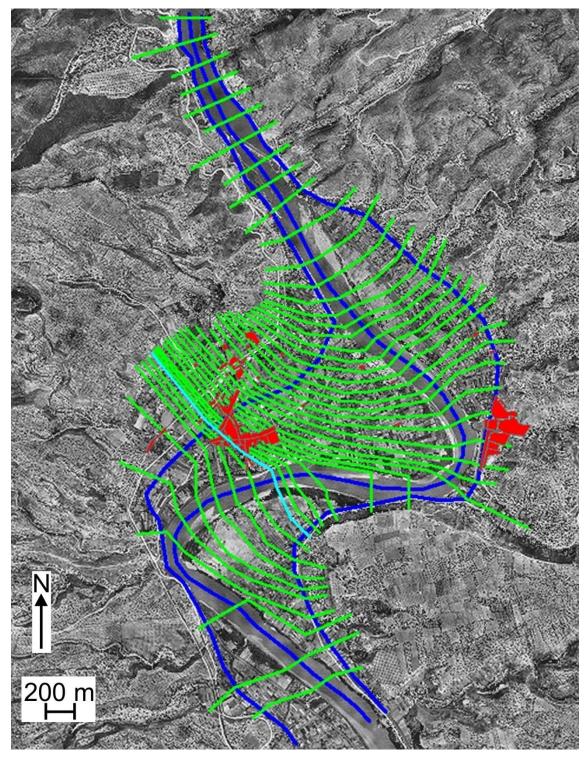


1452 Figure 2. The towns of Xerta and Tivenys on either sides of a meander of the Ebro

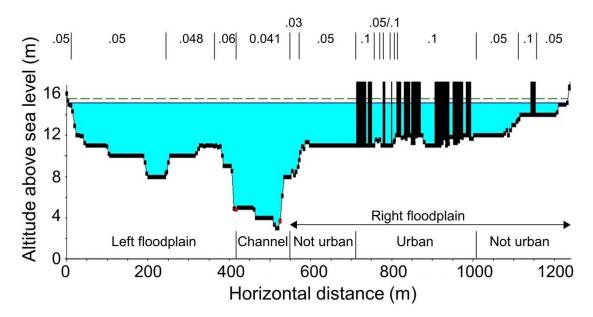

1453 River. Adapted from an aerial photograph of June 2014 (ICGC, 2015).

- 1455
- 1456 Figure 3. Flood scale on the façade of the Assumption Church at 1, Major Square in
- 1457 Xerta (Photo by Alberto Sánchez)
- 1458


1460 Figure 4. Overview of the methodological procedure


1462

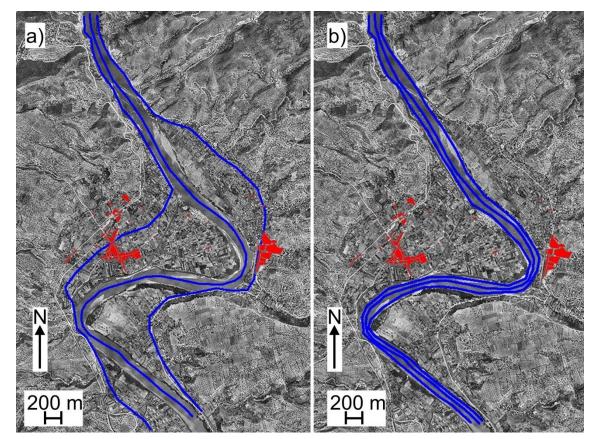
1463 Figure 5. Peak flow reconstruction procedure with the hydraulic model HEC-RAS


1464 (Adapted from Balasch et al., 2010)

- ICGC, 2015)

- 1470 Figure 7. Modelled reach with the cross sections (green lines), flow paths (blue
- 1471 lines) and the towns (red areas) of Xerta (left) and Tivenys (right), superimposed
- 1472 over an orthophotograph of ICGC (2015).

1473


1474 Figure 8. The flood scale cross section, with the three methods of dividing it: the five

1475 hydraulically homogeneous sectors (labelled near the horizontal axis); the 17 sectors

1476 into which it was divided according to the soil use, each one with its Manning's n value

1477 (above the cross section); the 276 sectors into which HEC-Geo-RAS divided the cross

- section (limited by the 277 black rectangular dots over the line that outlines the crosssection).
- 1480

1483 Figure 9. Two ways of drawing the flow path lines required in the HEC-RAS

- 1484 programme: (a) straight and (b) meandering

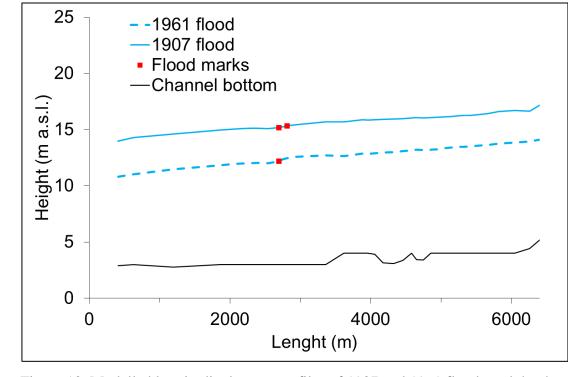
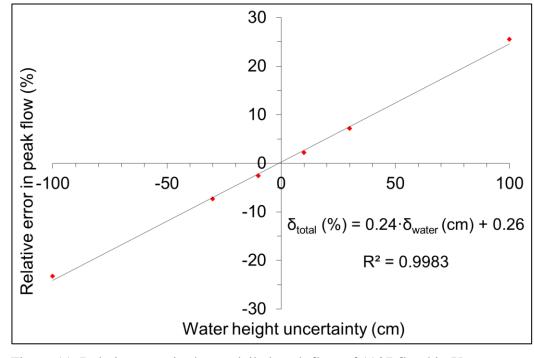



Figure 10. Modelled longitudinal water profiles of 1907 and 1961 floods and the threeflood marks used

1492 Figure 11. Relative error in the modelled peak flow of 1907 flood in Xerta, caused by

- 1493 the six water height uncertainties tested
- 1494