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Abstract 

Tillage and N fertilization strategies including mineral and organic sources need to be 

studied in combination given their importance on the production cost that farmers face 

and their potential interaction on crop performance. A four-year (2010-2014) 

experiment based on barley monocropping was carried out in NE Spain in a typical 

rainfed Mediterranean area. Two tillage treatments (CT, conventional tillage; NT, no-

tillage) and three rates of N fertilization (0; 75 kg N ha
-1

, applied at top-dressing; 150 kg 

N ha
-1

, applied at pre-sowing and at top-dressing at equal rate), with two types of 

fertilizers (ammonium-based mineral fertilizer and organic fertilizer with pig slurry), 

were compared in a randomized block design with three replications. Different soil 

(water and nitrate contents) and crop (above-ground biomass, grain yield, yield 

components and N concentration in biomass and grain) measurements were performed. 

Water- and nitrogen use efficiencies (WUE and NUE) as well as other N-related 

indexes (grain and above-ground biomass N uptake; NHI, nitrogen harvest index; NAR, 

apparent nitrogen recovery efficiency) were calculated. Barley above-ground biomass 

and grain yield were highly variable and depended on the rainfall received on each 

cropping season (ranging between 280 mm and 537 mm). Tillage and N fertilization 

treatments affected barley grain yields. No-tillage showed 1.0, 1.7 and 6.3 times greater 

grain yield than CT in three of the four cropping seasons as a result of the greater soil 

water storage until tillering. Water scarcity during the definition of the number of spikes 

per m
2
 under CT would have compromised the compensation mechanism of the other 

two yield components. Pig slurry application led to the same (3 of 4 years) or higher (1 

of 4 years) grain yield than an equivalent rate of mineral N fertilizer. Regardless the N 

origin, barley yield did not respond to the application of 150 kg N ha
-1

 split between 

pre-sowing and top-dressing compared to the 75 kg N ha
-1

 rate applied as top-dressing. 

A significant nitrate accumulation in the soil over the experimental period was observed 

under CT. Greater barley water use efficiency for yield (WUEy), N uptake and grain N 

content were found under NT than CT in three of the four cropping seasons studied. 

Moreover, for a given N rate, the use of organic fertilization increased significantly the 

WUEy as an average of CT and NT. When CT was used, a greater NHI was observed 

when using pig slurry compared with mineral N as an average of the four years studied. 

However, the use of different N fertilization treatments (rates or types) under CT or NT 

did not increase the NUE compared with the control. Our study demonstrates that the 

use of NT and the application of agronomic rates of N as pig slurry leads to greater 
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barley yield and water- and nitrogen-use efficiencies than the traditional management 

based on CT and mineral N fertilization.   

 

 

Abbreviations 

CT, conventional tillage; HI, harvest index; NAR, apparent N recovery efficiency; NHI, 

nitrogen harvest index; NT, no-tillage; NUE, nitrogen use efficiency; WUEb, water-use 

efficiency for biomass; WUEy, water-use efficiency for yield.  
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1. Introduction  

Rainfed Mediterranean cropping systems face a series of challenges related to 

different agronomic, environmental and socio-economic aspects. Crop productivity 

under Mediterranean conditions is highly dependent on the variable amount of 

precipitation received during the cropping season and the capacity of the soil to store 

water, leading to low yield potentials in many areas (Austin et al. 1998). Cropping 

intensity and crop diversification in the rainfed Mediterranean areas depends on the 

amount of water available. In the driest locations (i.e. < 350 mm of annual rainfall), the 

traditional cropping system is the winter cereal-fallow rotation. In wetter semiarid areas 

(i.e. 350-450 mm) cropping systems are mainly based on winter cereals, namely barley 

and wheat, usually grown in monoculture. Finally, under sub-humid conditions (i.e. > 

450 mm and/or deeper soils) other crops such as grain legumes (e.g. vetch, peas, etc.) or 

canola are incorporated into the rotations.  

Soil management and nitrogen (N) fertilization practices account for a great 

proportion of the production costs that farmers face (Cantero-Martínez et al. 1995) and 

have a wide margin for their improvement in semiarid areas such as the Mediterranean 

region (Carmona et al. 2015). Traditionally, soil management in the Mediterranean has 

been based on conventional tillage (CT) with soil inversion (i.e. based on moldboard 

plowing). Although inversion systems are still used in many areas, a significant 

proportion of farmers have turned to reduced tillage systems based on vertical 

implements (e.g. chisel-type plows) or less intensive inversion systems (e.g. disk 

plows). No-tillage (NT), which began to be experienced more than three decades ago, 

continues to be increasingly adopted, even though many farmers are still reluctant to 

make the switch (Cantero-Martínez and Gabiña, 2004; Kassam et al. 2012). However, 

different studies have shown the benefits of NT compared to CT in rainfed semiarid 

areas regarding different agronomic (e.g. higher and more stable yields, Hernanz and 

Sánchez-Girón, 1988; Mrabet, 2000), environmental (e.g. improving soil physical 

quality, Fernández-Ugalde et al. 2009) and economic aspects (e.g. Sánchez-Girón et al. 

2004).  

Low profitability of rainfed cropping systems drives the farmers towards the 

diversification of revenues. In the dryland Mediterranean systems of NE Spain that 

process has led to the establishment of intensive livestock production, mainly pig (Sus 

scrofa) farming (Clar and Pinilla, 2011; Yagüe and Quílez, 2013). Recent statistics 
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show that pig herd in NE Spain accounts for more than 13 million animals 

(MAGRAMA, 2013). The presence of that large swine production has led to a great 

availability of slurries that farmers spread on agricultural soils not always with the best 

synchronization with crop needs (Bosch-Serra et al. 2015). Furthermore, the need to 

empty the farm storage pits regularly and the costs of transporting large volumes of 

slurries with rather low N concentration per unit of volume have led to the 

contamination of groundwater with nitrates (Menció et al. 2016; Rebolledo et al. 2016). 

Traditionally, farmers of the area have tended to overdose the applications of N with 

mineral and/or organic fertilizers as a means to secure crop yields. This decision would 

be partly justified by the unpredictability of rainfall and water availability for the crops 

in rainfed Mediterranean areas. As a consequence, significant areas in NE Spain have 

been declared nitrate vulnerable zones according to the Nitrates Directive (91/676/EC) 

(European Union, 1991).  

Previous works have evaluated the combined impact of tillage and mineral N 

fertilization on crop yields under rainfed Mediterranean conditions (López-Bellido et al. 

1996; López-Bellido and López-Bellido, 2001; Angás et al. 2006; Lestingi et al. 2010; 

Cantero-Martínez et al. 2016; Seddaiu et al. 2016). Regarding to this point, Angás et al. 

(2006) stressed the need to reduce N applications due to their negative economic and 

environmental consequences independently of the type of tillage. In turn, Cantero-

Martínez et al. (2016) pointed out the greater crop response to mineral N fertilizer under 

NT compared with CT. However, tillage x nitrogen fertilization experiments including 

the impact of organic fertilization are scanty since most have focused only on mineral N 

fertilizer.  

Then, the aim of this experiment was to elucidate the impact of tillage and 

different sources and rates of nitrogen fertilization on cereal production and water and 

nitrogen use efficiencies under Mediterranean conditions. Our hypothesis was that the 

use of NT and medium rates of N fertilizer would led to greater productivities and 

resource use efficiencies.  
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2. Materials and Methods 

2.1 Experimental site and treatments 

A field experiment was established in 2010 in Senés de Alcubierre (NE Spain, 

41º 54’ 12’’ N, 0º 30’ 15’’ W) in a rainfed area with a temperate continental 

Mediterranean climate. Soil and climatic characteristics of the site are shown in Table 1 

and Fig. 1, respectively.  

The experimental design consisted of the combination of two tillage practices (CT, 

conventional tillage; NT, no-tillage) and three N fertilization rates (0, 75 and 150 kg N 

ha
-1

) based on two different types of fertilizer (mineral N and organic N with pig slurry) 

in a randomized block design with three replications. Since the 1970s soil management 

at the site was based on the use of a subsoiler and a chisel. Four years before the 

establishment of the experiment (i.e. 2006) soil management was switched to NT. The 

cropping system during the experiment consisted of a barley (Hordeum vulgare L., cv. 

Meseta) monoculture. The CT treatment consisted of one pass of disk plow (15 cm 

depth) followed by a cultivator. However, due to the dry conditions of soil in 2011 two 

passes of chisel were used. A non-selective herbicide (1.5 L 36% glyphosate per 

hectare) was applied before sowing in the NT treatment. Sowing was carried out with a 

no-till seeder equipped with disk type furrow openers set to 2-4 cm depth. The 

combination of fertilizer types and N rates led to five fertilization treatments: 0, control, 

75 Min and 75 Org, 75 kg N ha
-1

 with mineral and organic N at the beginning of 

tillering, respectively, and 150 Min and 150 Org, 150 kg N ha
-1

 with mineral and 

organic N applied at equal rates before sowing and at the beginning of tillering. For the 

mineral N treatments ammonium sulphate (21% N) and ammonium nitrate (33.5% N) 

were used before sowing and at the beginning of tillering, respectively. Mineral N 

applications were performed manually. The organic fertilization treatment consisted on 

the application of slurry from fattening pigs of a commercial farm close to the site. The 

application was carried out spreading the slurry with a commercial vacuum tanker fitted 

with a splashplate (Beguer mod. 12500, Barbastro, Spain) as it is common in the area. 

Previously to each application pig slurry was analyzed for its N content and the tanker 

was calibrated accordingly to apply the precise N rate. Composition of the pig slurry 

applied in the organic fertilization treatments is shown in Table 2. Harvest of the plots 

was carried out with a commercial medium-sized combine which chopped and spread 

over the soil surface the crop residues. Plot size was 40 m x 12 m in the organic 
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fertilization treatments and 40 m x 6 m in the mineral N fertilization and control 

treatments. Daily air temperature and rainfall data were recorded with the use of an 

automated weather station located in the site and equipped with a datalogger. This study 

focuses on the first four cropping seasons after the establishment of the experiment 

(2010-2011, 2011-2012, 2012-2013 and 2013-2014). 

 

2.2 Soil and crop samplings and analyses 

Within each plot, two sampling areas were defined. In each season, soil water 

and nitrate contents for the entire profile were quantified at two depth intervals (0-30 

and 30-60 cm depth) at four stages: before sowing (i.e. mid-October), at the barley 

tillering stage (i.e. end of January-beginning of February), at anthesis, and after harvest 

(i.e. mid-June to beginning of July). A composite sample of a minimum of 3-4 

subsamples per sampling area and depth was obtained. Once in the laboratory, water 

and nitrate contents were determined. Gravimetric water content was quantified by 

drying the samples at 50º C during 48 h to avoid the dehydration of the significant 

content of gypsum in the soil of the experiment (Porta, 1988). Soil nitrate was 

determined by extracting 50 g of fresh soil with 100 mL of 1M KCl. Soil ammonium 

was considered negligible, given the high oxidative conditions of this dryland area, 

where NH4
+
 concentrations are usually very low (i.e. < 2% of total soil mineral N) 

(Angás et al. 2006). The extracts were analyzed by hydrazine reduction with the use of a 

continuous flow analyzer (Seal Autoanalyzer 3, Seal Analytical, Norderstedt, 

Germany). Concentration values were transformed to mass-based values using soil bulk 

densities determined by the soil core method (Grossman and Reinsch, 2002). 

Right before grain harvest a biomass sampling was carried out by cutting a 

variable number of plants at the soil surface level along 0.5 m of the seeding line at 

three locations per plot. Once in the laboratory, ears were separated from the rest of the 

above-ground biomass of the plant. Both fractions were oven-dried at 65 ºC during 48 h. 

Afterwards, the ears were counted, threshed and the grain counted and weighed. The 

rest of above-ground biomass (i.e. leaves and stems) was also weighed. These 

determinations allowed calculating the total above-ground biomass and the harvest 

index (HI) as well as barley yield components: number of spikes per square meter, 

number of grains per spike and thousand kernels weight (TKW). Grain yield was 

quantified by harvesting each plot with a commercial combine and weighing the grain. 
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Yield values are reported at a grain moisture content of 10%. Nitrogen concentration of 

the grain and of the rest of above-ground biomass (i.e. stems and leaves) was 

determined by dry combustion (Dumas method) with a LECO-2000 analyzer (LECO, St 

Joseph, MI, US). Then, N content of the grain and the rest of the plant was calculated by 

multiplying the biomass of each fraction by its N concentration. Total N uptake was 

calculated by the sum of N content in both fractions. Barley grain protein concentration 

was calculated by multiplying the grain N concentration by 5.83 (Merrill and Watt, 

1973). 

 

2.3 Calculations and data analysis 

2.3.1 Water and nitrogen-related indicators  

Water-use efficiency for above-ground biomass (WUEb) and yield (WUEy) was 

calculated as follows: 

 

      
                   

  
 

 

      
           

  
 

 

where WU is the water use calculated as the difference in soil water content (SWC) 

between sowing and harvest plus the rainfall received between both dates. In this 

simplified water balance runoff and deep drainage were considered negligible due to the 

(i) low slope gradient of the site (<1%) and the (ii) highly unusual rainfall conditions for 

leaching of the area, which occurs once every 7-10 years (Angás et al. 2006). 

 

For each fertilizer treatment the apparent N recovery efficiency (NAR) was 

calculated as: 

 

     
                     

            
 

 

where N uptake is the above-ground biomass N of the crop for a given fertilizer 

treatment and N uptake0N is the above-ground biomass N of the control. 
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The N harvest index (NHI) was calculated as:  

 

     
       

        
 

 

where N grain is the content of N in barley grain and N uptake is the above-ground N 

uptake. 

 

Soil nitrogen mineralization was estimated using data from the control treatment of each 

tillage system as: 

 

                      

   
                          

                                          

 

   

     

 

where SMNi+1 and SMNi is the soil mineral nitrogen content (0-60 cm depth) at sowing 

of year i+1 and i, respectively.  

 

Barley nitrogen use efficiency (NUE) was calculated as: 

 

     
           

     
 

 

where N use is the sum of the amount of mineral N (0-60 cm depth) available at sowing, 

the N fertilizer applied and the N mineralized.  

 

2.3.2 Data analysis  

Data were checked for normality by plotting a normal quantile plot. Log-

transformation was used to normalize soil nitrate and NUE data. Analyses of variance 

were performed for SWC, soil nitrate, above-ground biomass, yield and yield 

components with tillage, N fertilization, year or sampling date and their interaction as 

sources of variation. When significant, differences among treatments were identified at 
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0.05 probability level of significance using a Tukey HSD test. Least squares linear 

regression was used to evaluate relationships between grain yield and yield components 

and between grain yield and grain protein concentration. The slopes of the regressions 

were tested for differences between tillage and N fertilization treatments. Entire data 

analysis was performed with the JMP 12 statistical package (SAS institute, Inc, 2015). 
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3. Results  

3.1 Weather characteristics of the study period  

During the experiment duration, air temperature showed the typical 

Mediterranean pattern of cold winters (7 ºC) and hot summers (23 ºC) with intermediate 

values during spring (16 ºC) and autumn (11 ºC) (Fig. 1). All the cropping seasons 

showed similar temperatures except the spring of 2012-2013 which presented lower 

values than the spring of the other three cropping seasons (14 ºC vs 16 ºC). In the 

different seasons most of the rain occurred during the autumn and spring months as it is 

common in the Mediterranean climate. However, rainfall was highly variable between 

cropping seasons. Total July to June rainfall ranged between 280 mm and 537 mm (Fig. 

1). Growing season (i.e. sowing to harvest) precipitation was 243 mm, 219 mm, 336 

mm and 278 mm for the 2010-2011, 2011-2012, 2012-2013 and 2013-2014 seasons, 

respectively. The 2010-2011 cropping season presented a great peak in rainfall in March 

during the stem elongation of the crop. The 2011-2012 cropping season was 

characterized by a long drought which affected the entire autumn soil water recharge 

period. Contrarily, the 2012-2013 cropping season was characterized by a much greater 

annual rainfall (i.e. 537 mm), which represents receiving about 60% more rainfall than 

the average. However, the rainfall was not well distributed throughout the growing 

season, since most of it (i.e. 212 mm) occurred in October, with 108 mm registered in a 

single event (i.e. on October 20, 2012). Finally, the 2013-2014 cropping season showed 

the closest distribution of rainfall to the 30-yr average, with autumn and spring periods 

slightly wetter than the historical average for the site.  

 

3.2 Tillage and N fertilization treatment effects on soil water and nitrate 

content dynamics 

The use of different tillage systems led to significant differences in SWC and 

soil nitrate content dynamics, as shown by the tillage x sampling date interaction in 

Table 3. Soil water content dynamics followed a similar pattern in the 2010-2011, 2012-

2013 and 2013-2014 cropping seasons, with a soil water recharge during the autumn-

winter period and a soil water depletion during the period of greater water consumption 

by the crop (i.e. from start of February to end of May) (Fig. 2A). In contrast, the 2011-

2012 season showed low SWC values in the four sampling dates. The NT treatment 

presented greater SWC at tillering in the last three out of the four cropping seasons 
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studied, with 36, 45 and 37 mm of water more than CT in 2011-2012, 2012-2013 and 

2013-2014, respectively (Fig. 2A). Similarly, greater SWC was also found under NT 

compared with CT before sowing in 2012-2013 and after harvest in 2013-2014.  

Soil nitrate content (0-60 cm depth) ranged between 43 and 547 kg N ha
-1

 under 

CT and between 49 and 202 kg N ha
-1

 under NT (Fig. 2b). A significant nitrate 

accumulation in the soil over the study period was observed under CT. Contrarily, the 

NT treatment showed similar values during the entire duration of the experiment. 

Despite the expected differences in magnitude, the high variability found in soil nitrate 

content values only led to significant differences between tillage systems in four 

sampling dates, with CT showing greater values than NT in all the cases (Fig. 2b). 

Significant differences on soil nitrate content were also found between N fertilization 

treatments and the interaction between N fertilization and tillage systems (Table 3). The 

use of increasing rates of mineral fertilizer under CT led to greater soil nitrate content as 

an average of the different sampling dates covered by the experiment (i.e. 168, 215 and 

433 kg N ha
-1

 for the 0, 75 Min and 150 Min treatments, respectively). Contrarily, the 

application of pig slurry under CT or NT did not led to significant differences with the 

control treatment, as an average of the different sampling dates (Table 3).  

 

3.3 Tillage and N fertilization treatment effects on barley grain yield, biomass, 

yield components and grain protein concentration  

Barley grain yield was significantly affected by tillage and N fertilization and by 

their interaction with the year (Table 4). Significant differences between CT and NT 

occurred in 2010-2011, 2012-2013 and 2013-2014, with NT showing 1.0, 1.7 and 6.3 

times greater yield than CT, respectively (Fig. 3). In 2012-2013 and 2013-2014 

significant differences between N fertilization treatments were found. In 2012-2013 the 

organic N treatments led to the greater yields than the mineral N and control treatments. 

In 2013-2014, no significant differences were found between N fertilization types for a 

given N rate. (Fig. 3)  

Barley above-ground biomass was significantly affected by tillage and nitrogen 

and their interaction, by year and by the interaction between tillage and year (Table 4). 

Greater above-ground biomass was observed under NT than CT in the 2010-2011, 

2012-2013 and 2013-2014 seasons (Fig. 3). No response to the application of fertilizer 

on barley above-ground biomass was observed when CT was used. Differently, the 
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application of 150 kg organic N ha
-1

 under NT led to greater above-ground biomass 

production than the control as an average of the four cropping seasons studied (Table 4). 

Of the three yield components studied (spikes m
-2

, grains spike
-1

 and TKW), 

only TKW was affected significantly by the interaction between tillage and N 

fertilization (Table 4). When using CT, the 150 Org treatment showed greater TKW 

than the control (Table 4), with 35 g and 27 g, respectively, as an average of the four 

cropping seasons studied. The tillage x year interaction affected significantly the three 

yield components studied (Table 4). Regarding to this point, greater number of spikes 

m
-2

, grains spike
-1

 and TKW was observed under NT than CT in the 2013-2014 season 

(Fig. 3). The N fertilization x year interaction only affected significantly the TKW 

(Table 4 and Fig. 3) with greater values under the 150 Org treatments compared to the 

mineral N and control treatments in the 2013-2014 cropping season. Furthermore, the 

three yield components studied showed a significant linear relationship with barley 

grain yield (Fig. 4). However, in the cases of number of grains per spike and TKW, the 

slope of the relationship was significantly greater under NT than CT (Fig. 4b and Fig. 

4c).  

The interaction between tillage and N fertilization treatments led to significant 

differences in barley HI (Table 4). When NT was used, no differences between N 

fertilization treatments were observed in HI. Contrarily, when CT was used, the 150 

Org treatment showed greater HI than the control and the 75 Min (0.44 vs. 0.31 and 

0.30) and the 75 Org treatment showed greater HI than its counterpart with mineral N 

(i.e. 75 Min) (0.40 vs. 0.30). The HI was also affected by the interaction of year with 

tillage and N fertilization treatments (Table 4). As shown in Fig. 3, in the 2013-2014 

season the use of NT led to greater HI than CT. Moreover, in the same season the use of 

75 and 150 kg of organic N led to greater HI compared with the application of 75 kg 

mineral N ha
-1

.  

The concentration of protein in the grain was significantly affected by tillage and 

N fertilization simple effects on this variable, and by the interaction between tillage and 

year of sampling (Table 4). In this regard, greater grain protein concentration was found 

under CT compared with NT in the 2010-2011, 2012-2013 and 2013-2014 seasons (Fig. 

3). As an average of the four cropping seasons studied, the application of mineral N at 

75 and 150 kg N ha
-1

 led to greater grain protein concentration compared with the use of 

pig slurry at the same rate (Table 4). The concentration of protein decreased 1.4 units 

per each Mg of increase in grain yield (R
2
 = 0.50, P < 0.001). 
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3.4 Tillage and N fertilization treatment effects on barley water and nitrogen 

use efficiency indexes  

Water use (WU) was similar between tillage systems with slight differences in 

2010-2011 and 2012-2013 (Fig. 5). The analysis of variance revealed significant effects 

of tillage, N fertilization treatments, year, tillage x year and nitrogen fertilization x year 

interactions on WUEb and WUEy (Table 5). NT showed larger WUEb and WUEy than 

CT in two and three cropping seasons, respectively (Fig. 5). The tillage x N fertilization 

interaction only affected significantly WUEb with significant differences between N 

fertilization treatments under NT. Regarding N fertilization, the use of 150 kg mineral N 

ha
-1

 and the two rates of pig slurry (75 Org and 150 Org) led to greater WUEy than the 

control treatment. Moreover, for a given N rate, the use of organic fertilization 

increased significantly the WUEy of barley (Table 5). 

Barley above-ground N uptake and grain N content were significantly affected 

by tillage, N fertilization, year and the interaction between tillage and year. Barley grain 

N content was also affected by the interaction between N fertilization and year (Table 

5). Greater above-ground N uptake and grain N content was observed under NT than 

CT in 2010-2011, 2012-2013 and 2013-2014, with a mean 85% increase for the above-

ground N uptake and 168% for the grain N content. 

Soil N mineralization was estimated at 67 and 41 kg N ha
-1

 yr
-1

 for the CT and 

NT treatments, respectively. The NHI and NUE were affected by tillage, N fertilization, 

year, and by the tillage x N fertilization and the tillage x year interactions (Table 5).  

Greater NHI and NUE were observed under NT than CT as an average of the four 

seasons studied (Table 5). When CT was used, for a given N rate (75 or 150 kg N ha
-1

) 

greater NHI was observed when using pig slurry compared with mineral N as an 

average of the four years studied. With the exception of 150 Org under CT, the use of 

different N fertilization treatments did not increase the NUE compared with the control 

(Table 5). Under CT, the use of pig slurry at 150 kg N ha
-1

 led to greater NUE than the 

application of the same rate with mineral N. Finally, the apparent N recovery efficiency 

(NAR) was significantly affected by tillage and the interaction between tillage and N 

fertilization (Table 5). The use of NT led to a 62% increase in NAR, as an average of 

the four cropping seasons (Table 5).  
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4. Discussion 

4.1  Tillage effects on barley production and water and nitrogen use efficiency  

The results of our study showed an important reduction in the yield of barley 

when using CT under the harsh conditions of the experimental area, which is 

characterized by very low water availability for the crop. The positive response of 

barley to NT under the semiarid rainfed conditions of our experiment is of a greater 

magnitude than the upper threshold of crop yield response to NT reported in the recent 

meta-analysis of Pittelkow et al. (2015). Under dryland Mediterranean conditions, the 

use of NT leads to a greater soil water storage than CT during the water recharge period 

as observed in our experiment and elsewhere (Lampurlanés et al. 2016). The soil water 

recharge takes place between the previous crop harvest (i.e. July) and the tillering stage 

of the subsequent cropping season (i.e. February), being more accused during the 

beginning of autumn-to-tillering sub-period (i.e. October-January) (Cantero-Martínez et 

al. 2007). In the Mediterranean climate this period is characterized by low water needs 

by the crop (low ETc) and major rainfall events (Turner and Asseng, 2005). Then, the 

greater availability of water under NT would explain the increase in crop above-ground 

biomass and grain yield under this treatment.  

According to the results of the regressions tested between barley yield 

components and grain yield, it could be hypothesized that the great differences between 

tillage systems on the production of spikes m
-2 

could have played a major role when 

defining the potential yield under each system. In this regard, Blum and Pnuel (1990) 

pointed out the major importance of the number of spikes when defining the potential 

yield of cereals in Mediterranean environments. The difference in the number of spikes 

m
-2

 between tillage systems (i.e. 51% greater under NT than CT as an average of N 

fertilization treatments and years) would be related to the differences in the soil water 

recharge explained above which would have influenced the water available for the crop 

in relatively early growth stages affecting tiller survival. Tiller production may have a 

direct influence on all other following traits of cereal development (García del Moral et 

al. 2003). Despite the plasticity of winter cereals such as barley, the significantly lower 

number of spikes per surface unit found under CT would also have reduced the yield 

compensation capacity of the other two yield components. This explanation would be 

supported by the significantly lower slopes of the linear relationships between the 
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number of grains per spike and TKW and grain yield under CT compared with NT 

found in our experiment.  

The water stored in the soil was used more efficiently to produce above-ground 

biomass and grain yield and allowed a more efficient use of N (NUE) under NT than 

CT. That aspect also compromised both the accumulation of N in the grain and the NHI. 

The same finding has been reported for a range of field crops in other semi-arid 

environments (e.g. Hansen et al. 2012). Then, the similar values of WU between tillage 

systems seem to indicate that more water is lost (i.e. not used for crop transpiration) 

under CT than NT. Given the high PET of the area, soil water evaporation appears to be 

the most plausible process explaining these losses. It has been reported that in semiarid 

areas a significant amount of soil water is lost during tillage operations (Moret et al. 

2006; Schwartz et al. 2010). Moreover, the lack of crop residues covering the soil 

surface and the lower shading by barley leaves could have increased water loss by 

evaporation under CT as has been reported in other studies (e.g. Passioura, 2006; Unger 

et al. 1991).  

In the calculations performed in our work we considered negligible water 

drainage below 0.6 m, similarly to that done by Angás et al. (2006) in a similar rainfed 

Mediterranean environment. This assumption has implications in the calculation of N 

efficiency indexes since N losses as leaching are assumed to be nil/negligible. 

According to the soil characteristics of the experiment and using the soil water 

characteristic estimates of Saxton and Rawls (2006), the SWC at field capacity was 

estimated to be 221 mm. This last value is well above to all the SWC measurements 

taken along the experiment, thus supporting the hypothesis of a nil water drainage. 

Moreover, the fine texture of the soil, with around 60% of silt and less than 10% of sand 

in the 0-30 and 30-60 cm depths would suggest that other water loss processes such as 

water ponding (and concomitant evaporation) could be more important than drainage in 

our conditions when high intensity storms occur. 

Soil N mineralization was estimated at 67 and 41 kg N ha
-1

 yr
-1

 for CT and NT 

treatments, respectively. These results are in line with the 47 kg N ha
-1

 yr
-1

 reported by 

Cantero-Martínez et al. (2016) who used the CropSyst model to estimate N 

mineralization for the same area. Our results also showed a 62% improvement in NAR 

when using NT (0.42) compared with CT (0.26). Values under NT were in the low 

range of those reported from a long-term wheat experiment carried out under rainfed 

Mediterranean conditions in Australia by Dalal et al. (2011). Contrary results were 
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found on a wheat monocropping by López-Bellido and López-Bellido (2001) under 

Mediterranean conditions in southern Spain. This disagreement could be explained by 

the high values of rainfall received during their experimental period (ranging between 

833 and 1009 mm) and the soil type of their experiment (deep Vertisol), which could 

have counteracted the relative importance of the soil water conservation effect under 

NT. 

A lack of enough water for crop N uptake and further N remobilization during 

barley grain filling led to a significant accumulation of nitrates in the soil (0-60 cm) in 

the CT treatment over the whole experiment duration. Nitrate leaching risk in this 

rainfed area is rather low due to high evapotranspiration and low rainfall, although 

occasional rainfall events of great magnitude could lead to nitrate losses to groundwater 

(Angás et al. 2006; Salmerón et al. 2010). Then, the use of NT in these water-limited 

areas might represent an environmentally sound practice to limit the potential losses of 

nitrogen.  

Interestingly, the yield reduction associated to the CT treatment was already 

observed in the first year of the experiment when the plots were established in a site that 

had been managed with NT the previous four years. Currently, there is a great interest to 

analyze the impact of occasional tillage (termed strategic tillage) on NT farming-

systems, as a way to overcome some of the issues that could be posed by the use of NT. 

Dang et al. (2015) reviewed the impact of strategic tillage on crop yields, concluding 

that it was negligible in most of the studies analyzed, a finding different from our first 

year results. In our experiment, the loss of soil water associated with CT could have 

compromised the establishment of the crop under this treatment. However, the drivers 

for the adoption of strategic tillage use are broad and dependent on the specific 

conditions of each farm (e.g. herbicide resistance, soil compaction, etc.) (Kirkegaard et 

al. 2014).  

 

4.2 Fertilization strategy effects on barley production and water and nitrogen 

use efficiency  

Regardless the type of fertilizer used, barley yield did not respond to the 

application of 150 kg N ha
-1

 split between pre-sowing and top-dressing compared to the 

75 kg N ha
-1

 rate entirely applied as top-dressing. Two interesting aspects can be 

inferred from that result. First, it indicates that the application of N fertilizer before 
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sowing is not a sound agronomic practice in semiarid rainfed Mediterranean systems, 

given the low N needs during the first stages of cereal growth (Garabet et al. 1998). 

Second, in line with results of other studies in the same region, it demonstrates that N 

application rates can be reduced to half of the rate traditionally used by farmers without 

yield losses (Cantero-Martínez et al. 1995; Cantero-Martínez et al. 2016).  

The use of organic fertilizer as pig slurry did not decrease the yield of barley 

compared to the use of the same rate of N as mineral fertilizer. In the year with the 

greatest rainfall (2012-2013) barley production was higher when using pig slurry 

compared with mineral N. Furthermore, water use efficiency for yield (WUEy) was also 

higher for pig slurry than for mineral N fertilizer at a given N rate and as an average of 

the four years analyzed. Pig slurries usually show slightly lower N availability than 

mineral N fertilizers as a result of their organic N content and due to soil immobilization 

processes that can affect the short-term release of mineral N (Morvan et al. 1997; Jensen 

et al. 2000; Sørensen and Amato, 2002). Then, a lower N availability when applying 

slurries would represent a useful mechanism to satisfy crop needs at a better synchrony 

in years with enough water available at late crop growth stages. However, other organic 

products with a lower proportion of readily available N than slurries, such as manures or 

composts, can affect the performance of the subsequent crop (Montemurro, 2009). As a 

consequence, to reach the same yield levels the application of solid organic fertilizers 

must be compensated by long-term carry-over effects and/or additional mineral N 

applications at key stages. In our experiment, the improvement in water and N use 

efficiency for yield (WUEy and NUE) when using pig slurry could be explained by its 

diverse mineral composition (Maltas et al. 2013). Unfortunately, some farmers are 

reluctant to apply slurries as top-dressing adducing risk of leaf burn, which could be 

true in some situations such as overdosing these products under very dry conditions. 

However, our results do not point out any negative effect of slurry application on barley 

productivity when compared with the traditional application of mineral N at the tillering 

stage and regardless of the year.  

 

4.3 Tillage and N fertilization interaction effects on barley production and 

water and nitrogen use efficiency 

A significant interaction was found between tillage and N fertilization treatments 

on barley above-ground biomass and WUEb. As explained above, the lack of enough 
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available water under CT would partly explain the lack of significant response to any N 

fertilization treatment on above-ground biomass production and WUEb compared with 

the control. Another process explaining this finding would be the accumulation of 

nitrate N in the soil under CT (i.e. for a given N fertilization treatment, soil nitrate levels 

were always higher under CT than under NT) that would have restricted the response to 

further N application. Similar findings have been reported by Morell et al. (2011) when 

working in a slightly wetter area than our experimental site in the Ebro valley (NE 

Spain). The last authors did not observe any response to the application of increasing 

mineral N fertilizer rates even in a wet growing season (i.e. sowing to harvest 

precipitation of 380 mm) where CT based on moldboard plow was used. In our 

experiment, the application of 150 kg N ha
-1

 with pig slurry under NT was the unique 

treatment that showed greater above-ground biomass at harvest than the control, being 

also significantly different from the application of 75 kg N ha
-1

 of the same product. 

However, that increase in above-ground biomass did not result in greater grain yield or 

significant changes in the HI. That result would confirm the inadequacy of pre-sowing 

N fertilizer applications. The presence of nitrogen when water is available at the first 

crop stages often leads to an increase in vegetative growth at great expense of water 

used by transpiration. That overuse of water could compromise water availability for the 

crop at reproductive stages. It has been suggested that it is more efficient to partition 

growth directly into ears and grain than retranslocating assimilates to the grain from 

plant vegetative organs (Loss and Siddique, 1994).  
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5. Conclusions 

The greater accumulation of water in the soil during most of the experimental 

period led from the first year of the study to a significant crop yield response and 

greater water and N use efficiencies when using no-tillage (NT) compared with 

conventional tillage (CT). Contrarily, the lack of enough water available under CT 

reduced N uptake and led to a significant accumulation of nitrate in the soil, thus 

enhancing the potential losses of N to the environment. According to the results of the 

yield components, water scarcity during the first stages, when the number of spikes per 

unit of surface is defined, significantly compromised the potential yield under each 

tillage system, especially under CT. Our study confirmed the inadequacy of pre-sowing 

N applications under rainfed Mediterranean conditions regardless of the type of 

fertilizer and tillage system. Pig slurry application led to the same (3 of 4 years) or 

higher (1 of 4 years) production than an equivalent rate of mineral N fertilizer. The use 

of pig slurry also increased water use and nitrogen use efficiencies for yield on average 

for the four years analyzed. Our study demonstrates that in Mediterranean systems the 

use of NT and the application of agronomic rates of N as pig slurry leads to greater 

barley yield and water- and nitrogen-use efficiencies than the traditional management 

based on CT and mineral N fertilizers.   
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Figure captions 

 

Fig. 1 Monthly precipitation (bars) and air temperature (solid black line) at the 

experimental site: (A) historical (30-year) average and (B) 2010-2011, (C) 2011-2012, 

(D) 2012-2013 and (E) 2013-2014 cropping seasons. Total annual precipitation during 

the season is shown in italics. Note the break of the Y-axis in sub-figure D. 

 

Fig. 2 Soil water content (A) and nitrate content (B) (0-60 cm depth) dynamics as 

affected by tillage (CT, conventional tillage; NT, no-tillage) during the cropping 

seasons studied (2010-2011, 2011-2012, 2012-2013 and 2013-2014). *Indicates 

significant differences between tillage treatments for a given date at P < 0.05. Grey bars 

indicate standard deviation. 

 

Fig. 3 Barley grain yield, above-ground biomass, yield components (spikes m
-2

, grains 

spike
-1

, thousand kernels weight, TKW), harvest index (HI) and grain protein 

concentration as affected by tillage (CT, conventional tillage; NT, no-tillage) and N 

fertilization treatments (0, control; 75 Min and 150 Min, 75 kg N ha
-1

 and 150 kg N ha
-1

 

with mineral N fertilizer; 75 Org and 150 Org, 75 kg N ha
-1

 and 150 kg N ha
-1

 with 

organic fertilizer based on pig slurry) in the 2010-2011, 2011-2012, 2012-2013 and 

2013-2014 cropping seasons. *Indicates significant differences between tillage 

treatments for a given cropping season at P < 0.05. Different lower-case letters indicate 

significant differences between N fertilization treatments for a given cropping season at 

P < 0.05. Vertical bars indicate standard deviation.  

 

Fig. 4 Barley water use (WU), water-use efficiency for biomass (WUEb) and yield 

WUEy), N uptake, grain N content, nitrogen harvest index (NHI), nitrogen use 

efficiency (NUE) and apparent N recovery efficiency (NAR) as affected by tillage (CT, 

conventional tillage; NT, no-tillage) and N fertilization treatments (0, control; 75 Min 

and 150 Min, 75 kg Nha
-1

 and 150 kg N ha
-1

 with mineral N fertilizer; 75 Org and 150 

Org, 75 kg N ha
-1

 and 150 kg N ha
-1

 with organic fertilizer based on pig slurry) in the 

2010-2011, 2011-2012, 2012-2013 and 2013-2014 cropping seasons. *Indicates 

significant differences between tillage treatments for a given cropping season at P < 

0.05. Different lower-case letters indicate significant differences between N fertilization 
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treatments for a given cropping season at P < 0.05. Vertical bars indicate standard 

deviation.  

Fig. 5 Linear relationship between grain yield and spikes m
-2

 (a), grains spike
-1

 (b) and 

thousand kernel weight (TKW) (c) for the tillage treatments compared (CT, 

conventional tillage, in black circles and continuous regression line; NT, no-tillage, in 

white circles and short-dashed regression line). Data corresponds to the 2010-2011, 

2011-2012, 2012-2013 and 2013-2014 cropping seasons. * and *** indicate significant 

relationships at P<0.05 and P<0.001, respectively.  
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Table 1 General and soil (0-30 cm) characteristics of the field site. Soil properties were 

measured at the beginning of the experiment (October 2010). 

 

Site and soil characteristic  

Elevation (masl) 395 

Annual precipitation (mm) 327 

Mean annual air temperature (ºC)  13.4 

Annual PET (mm)  1197 

Soil classification¶ Typic calcixerept 

pH (H2O, 1:2.5) 8.0 

EC1.5 (dS m
-1

) 1.04 

Organic C (g kg
-1

) 15.6 

Organic N (g kg
-1

) 1.4 

Particle size distribution (%)  

Sand (2000-50 µm) 6.2 

Silt (50-2 µm) 63.3 

Clay (< 2 µm) 30.5 
PET, potential evapotranspiration.  

¶ According to the USDA classification (Soil Survey Staff, 2014).  
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Table 2 Pig slurry composition used in the 75 Org and 150 Org treatments in the four cropping seasons studied (2010-2011, 2011-2012, 2012-

2013 and 2013-2014).  

Cropping season   Time of application 
Pig slurry composition* 

Dry matter Kjeldahl N
¶
 Ammonium N P K 

2010-2011 Pre-sowing 45.0 34.2 44.5 18.7 22.6 

 Top-dressing 94.0 23.6 33.0 19.3 18.2 

2011-2012 Pre-sowing 19.0 29.8 104.9 16.9 77.4 

 Top-dressing 19.5 34.2 15.5 17.1 81.5 

2012-2013 Pre-sowing 56.0 24.2 36.4 16.8 27.9 

 Top-dressing 138.0 23.6 42.5 18.7 26.5 

2013-2014 Pre-sowing 54.4 23.7 36.4 22.5 29.6 

 Top-dressing 40.5 25.6 65.7 18.6 54.0 

 

* Dry matter is expressed in g kg
-1

 fresh weight and the rest of variables in g kg
-1

 dry weight.  

¶ 
Values of the dry residue. 
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Table 3 Analysis of variance of soil water content (SWC) (mm) and soil nitrate content 

(kg NO3
- 
-N ha

-1
) (0-60 cm depth) as affected by tillage (CT, conventional tillage; NT 

no-tillage), fertilization treatment (0, control; 75 Min and 150 Min, mineral N at 75 and 

150 kg N ha
-1

; 75 Org and 150 Org, organic N with pig slurry at 75 and 150 kg N ha
-1

) 

and sampling date and their interactions. Data between brackets correspond to standard 

deviation. 

Treatments SWC Soil nitrate 

CT 102 (24) b¶ 261 (231) a 

NT 119 (30) a 141 (130) b 

   

0 108 (29) 146 (121) cd 

75 Min 108 (29) 235 (223) b 

150 Min 112 (29) 306 (279) a 

75 Org 111 (29) 147 (138) d 

150 Org 112 (26) 171 (120) bc 

   

CT-0 98 (25) e 168 (120) cd 

CT-75 Min 99 (25) e 215 (254) ab 

CT-150 Min 111 (28) bcd 433 (323) a 

CT-75 Org 102 (22) cde 198 (139) bc 

CT-150 Org 100 (18) de 190 (130) bcd 

NT-0 118 (30) ab 122 (118) ef 

NT-75 Min 116 (30) ab 153 (150) def 

NT-150 Min 113 (31) bc 180 (142) bc 

NT-75 Org 120 (32) ab 95 (118) f 

NT-150 Org 125 (28) a 152 (107) cde 

   

ANOVA (p-values)   

Tillage (Till) <0.001 <0.001 

N fertilization (Fert) 0.086 <0.001 

Sampling date (Date) <0.001 <0.001 

Till x Fert <0.001 0.004 

Till x Date <0.001 <0.001 

Fert x Date 0.982 0.970 

Till x Fert x Date 0.999 0.988 

 

¶ Different lower-case letters indicate significant differences between treatments at P < 0.05. 
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Table 4 Analysis of variance of barley grain yield, above-ground biomass, yield components (spikes m
-2

, grains spike
-1

 and thousand-kernel 

weight, TKW), harvest index (HI) and grain protein concentration as affected by tillage (CT, conventional tillage; NT no-tillage), fertilization 

treatment (0, control; 75 Min and 150 Min, mineral N at 75 and 150 kg N ha
-1

; 75 Org and 150 Org, organic N with pig slurry at 75 and 150 kg N 

ha
-1

) and year and their interactions. Data corresponds to the mean of 2010-2011, 2011-2012, 2012-2013 and 2013-2014 seasons. Values between 

brackets correspond to standard deviation. 

 

Treatments 
Grain yield† 

(kg ha
-1

; 10% moisture) 

Above-ground 

biomass 

(Mg ha
-1

) 
Spikes m

-2
 Grains spike

-1
 

TKW 

(g) 
HI 

Grain protein 

(g 100 g
-1

) 

CT 1108 (953) b¶ 4.5 (3.2) b 308 (208) b 14 (9) b 30 (15) b 0.36 (0.19) b 14.8 (2.7) a 

NT 3126 (1520) a 8.2 (4.0) a 623 (243) a 17 (6) a 38 (8) a 0.47 (0.12) a 12.0 (2.8) b 

        

0 1389 (1184) d 4.4 (3.2) c 363 (287) 13 (9) b 33 (16) ab 0.41 (0.21) ab 11.7 (2.6) d 

75 Min 1818 (1522) cd 5.9 (3.8) bc 420 (268) 15 (10) ab 32 (15) b 0.38 (0.19) b 13.4 (3.0) ab 

150 Min 1972 (1506) bc 6.8 (4.1) ab 477 (280) 17 (8) ab 32 (13) b 0.39 (0.17) ab 15.4 (2.7) a 

75 Org 2528 (1862) ab 6.3 (3.8) b 477 (265) 16 (6) ab 37 (12) a 0.45 (0.15) a 12.5 (3.4) cd 

150 Org 2879 (1657) a 8.2 (4.8) a 591 (248) 18 (6) a 36 (8) ab 0.39 (0.17) a 13.2 (2.6) bc 

        

CT-0 506 (404) 3.1 (2.8) d 221 (191) 11 (9) 27 (19) cd 0.31 (0.24) de 13.4 (1.8) 

CT-75 Min 751 (831) 3.5 (2.8) d 207 (174) 13 (13) 26 (17) d 0.30 (0.21) e 15.0 (2.3) 

CT-150 Min 1009 (698) 5.1 (3.4) cd 314 (222) 14 (8) 29 (16) bcd 0.35 (0.20) cde 16.4 (2.8) 

CT-75 Org 1303 (953) 5.2 (4.0) cd 356 (249) 15 (7) 33 (14) abc 0.40 (0.16) bcd 14.5 (2.8) 

CT-150 Org 1972 (1128) 5.4 (2.7) cd 441 (126) 18 (6) 35 (9) ab 0.44 (0.10) abc 14.1 (2.8) 

NT-0 2272 (1032) 5.8 (3.0) bcd 505 (304) 15 (9) 39 (8) a 0.51 (0.12) a 10.5 (2.4) 

NT-75 Min 2886 (1291) 8.3 (3.0) ab 633 (143) 17 (5) 38 (9) a 0.46 (0.13) ab 12.3 (3.0) 

NT-150 Min 2935 (1497) 8.5 (4.2) ab 641 (239) 20 (6) 34 (8) abc 0.44 (0.14) abc 14.3 (2.2) 

NT-75 Org 3753 (1754) 7.5 (3.4) bc 597 (232) 16 (4) 41 (8) a 0.51 (0.11) ab 10.5 (2.7) 

NT-150 Org 3786 (1641) 11.0 (4.9) a 740 (254) 19 (6) 37 (7) ab 0.44 (0.12) abc 12.4 (2.3) 

        

ANOVA (p-values)        

Tillage (Till) <0.001 <0.001 <0.001 0.035 <0.001 <0.001 <0.001 

N fertilization (Fert) <0.001 <0.001 0.061 0.016 0.003 0.005 <0.001 

Year <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Till x Fert 0.190 0.027 0.492 0.462 0.001 <0.001 0.152 

Till x Year <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Fert x Year <0.001 0.062 0.524 0.096 0.002 0.026 0.218 

Till x Fert x Year 0.276 0.382 0.934 0.573 0.133 0.014 0.075 

¶ Different lower-case letters indicate significant differences between treatments at P < 0.05. 

† Grain yield was quantified with the use of a medium-sized combine. 
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Table 5 Analysis of variance of barley water use (WU), water-use efficiency for biomass (WUEb) and yield (WUEy), above-ground N uptake, 

grain N content, nitrogen harvest index (NHI), nitrogen use efficiency (NUE) and apparent N recovery efficiency (NAR) as affected by tillage 

(CT, conventional tillage; NT no-tillage), fertilization treatment (0, control; 75 Min and 150 Min, mineral N at 75 and 150 kg N ha
-1

; 75 Org and 

150 Org, organic N with pig slurry at 75 and 150 kg N ha
-1

) and year and their interactions. Data corresponds to the mean of 2010-2011, 2011-

2012, 2012-2013 and 2013-2014 seasons. Values between brackets correspond to standard deviation. 

 

Treatments 
WU 

(mm) 
WUEb 

(kg ha
-1

 mm
-1

) 
WUEy 

(kg ha
-1

 mm
-1

) 
N uptake 

(kg N ha
-1

) 
Grain N content 

(kg N ha
-1

) 
NHI 

NUE 

(kg kg N
-1

) 
NAR 

CT 333 13.0 (7.8) b¶ 3.3 (2.6) b 61 (37) b 26 (20) b 0.41 (0.14) b 3.1 (2.6) b 0.26 (0.25) b 

NT 328 25.7 (13.4) a 9.5 (3.7) a 104 (49) a 60 (25) a 0.58 (0.15) a 12.1 (7.2) a 0.42 (0.34) a 

         

0 331 13.3 (8.8) c 4.4 (3.9) d 50 (29) c 25 (19) c 0.48 (0.18) b 8.7 (8.4) ab - 

75 Min 327 18.9 (14.0) b 5.5 (4.2) cd 82 (50) ab 37 (26) b 0.45 (0.19) b 6.6 (6.4) b 0.37 (0.39) 

150 Min 332 20.4 (10.5) ab 5.8 (3.7) bc 99 (53) a 47 (31) b 0.45 (0.14) b 4.9 (4.1) b 0.33 (0.28) 

75 Org 333 19.2 (11.4) b 7.5 (5.1) ab 71 (31) bc 46 (28) b 0.57 (0.20) a 9.8 (8.7) a 0.27 (0.33) 

150 Org 328 24.6 (15.7) a 8.7 (4.4) a 107 (52) a 60 (27) a 0.54 (0.12) a 8.2 (5.1) a 0.38 (0.21) 

         

CT-0 330 8.7 (6.1) e 6.1 (1.7)  38 (24) 12 (10) 0.36 (0.15) cd 2.6 (2.0) e - 

CT-75 Min 327 10.5 (8.1) e 8.1 (2.4)  54 (42) 18 (20) 0.31 (0.14) d 2.4 (2.5) e 0.21 (0.35) c 

CT-150 Min 332 15.0 (7.4) de 7.4 (3.2)  77 (44) 27 (18) 0.38 (0.15) cd 2.1 (1.8) e 0.26 (0.24) bc 

CT-75 Org 340 14.1 (7.2) e 7.2 (3.6) 59 (30) 29 (17) 0.42 (0.13) bc 3.5 (2.4) de 0.29 (0.26) bc 

CT-150 Org 334 16.5 (8.7) de 8.7 (5.6) 78 (31) 44 (21) 0.53 (0.08) b 4.7 (3.3) cd 0.27 (0.11) bc 

NT-0 331 17.8 (9.0) cde 9.0 (7.1) 63 (30) 39 (16) 0.57 (0.14) ab 14.8 (7.9) ab - 

NT-75 Min 327 27.4 (13.8) ab 13.8 (8.7) 111 (42) 56 (15) 0.54 (0.17) ab 10.8 (6.4) ab 0.56 (0.38) a 

NT-150 Min 332 25.9 (10.6) bc 10.6 (8.4) 122 (53) 68 (27) 0.51 (0.09) b 7.7 (3.9) bc 0.40 (0.31) bc 

NT-75 Org 326 24.3 (12.8) bcd 12.8 (11.3) 85 (28) 63 (26) 0.73 (0.11) a 16.0 (8.3) a 0.25 (0.41) bc 

NT-150 Org 323 33.6 (17.1) a 17.1 (11.7) 136 (54) 75 (24) 0.55 (0.15) ab 11.6 (6.4) ab 0.49 (0.23) ab 

         

ANOVA (p-values)         

Tillage (Till) 0.091 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 

N fertilization (Fert) 0.741 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.261 

Year <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.098 

Till x Fert 0.297 0.019 0.065 0.087 0.237 <0.001 0.010 0.042 

Till x Year <0.001 <0.001 <0.001 0.047 <0.001 <0.001 <0.001 0.771 

Fert x Year 0.875 0.006 0.076 0.283 0.001 0.144 0.384 0.318 

Till x Fert x Year 0.199 0.335 0.084 0.338 0.088 0.193 0.464 0.087 

¶ Different lower-case letters indicate significant differences between treatments at P < 0.05.  
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 




