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Abstract

Forest fire devastate every year thousand of hectares of forest around the world. Fire behavior
prediction is a useful tool to aid coordination and management of human and mitigation re-
sources when fighting against these kind of hazards. Any fire spread forecast system requires to
be fitted with different kind of data with a high degree of uncertainty, such as for example, me-
teorological data and vegetation map among others. The dynamics of this kind of phenomena
requires to develop a forecast system with the ability to adapt to changing conditions. In this
work two different fire spread forecast systems based on the Dynamic Data Driven Application
paradigm are applied and an alternative approach based on the combination of both predictions
is presented. This new method uses the computational power provided by high performance
computing systems to deliver the predictions under strict real time constraints.
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1 Introduction

Computer simulations have been widely used for studying and predicting wildfire spread [1][2][3].
The accuracy of these simulations depends on many factors, including GIS data, fuel data
(burnable items), weather data, and high fidelity wildfire behavior models. Due to the dynamic
and stochastic nature of wildfire, it is impossible to obtain all these data with no error. For
example, the weather data used in simulation is typically obtained from local weather stations
in a time-based manner. Before the next data arrives, the weather is considered unchanged
in the simulation model. This is different from the reality where the real weather constantly
changes (e.g., due to the interactions between wildfires and the weather). In addition, a major
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issue that should not be dismissed is the landscape features. The terrain characteristics that
are involved in wildland fire spread comprise the alignment toward the sun, which influences
the amount of energy received from the sun, and the steepness of the mountain slopes that
directly affects wind behaviour [4][5]. Besides data errors, the wildfire behavior model also
introduces errors because of its computational abstraction. Due to these errors, the predictions
from the simulation model will almost certainly be different from what is in a real wildfire.
Without dynamically adjusting the simulation model, the difference between the simulation
and the real wildfire will continuously grow. The goal of dynamic data driven simulation is to
establish a feedback connection from a real wildfire to the simulation model by utilizing the
real time data collected from the wildfire. By assimilating these data from the real wildfire,
the simulation system continuously adjusts itself, e.g., estimating the continuously evolving fire
front and tuning the model parameters, in order to achieve more accurate predictions of wildfire
spread. There exist two different ways of approaching the design of DDDAS for forest fire spread
forecast. On the one hand, we can find those schemes where the aim is to couple the fire model
with the atmospheric model by taking into account physics modifications in both models in a
feedback scheme [6]. These works are oriented to physically model the atmosphere behaviour
variation close to the fire event caused by the forest fire itself. The complexity of this approach
is described in [7] because of the unstability of the atmospheric model when the state of the
system is updated on the fly. For that reason, alternative dynamic data driven approaches
for forest fire spread prediction arises whose aim is to drive the model forecast using control
variables. That is, to enhance basic forest fire spread simulations with the knowledge obtained
from a calibration/adjustment stage. This calibration stage consists of executing a large set of
simulations with different configurations of the selected control variables (input parameters of
the simulator). Afterwards, evaluate all obtained simulations in order to weight them according
to some fitness function, which determines the similitude to the observed real fire propagation.
Once the best scored simulation is selected, the configuration of the control variables associated
to that winner, is applied for prediction purposes in the near future [8][3]. As in the case
of numerical weather forecast, relying on a single solution, could lead to non feasible forecast
results. For that reason, weather prediction typically is obtained from the analysis of more than
one model output. In this paper, we propose to a Dynamic Data Driven Application System
for forest fire spread prediction based on overlapping the results of two DDDAS schemes.

In the next section, the Cardona fire characteristics are described. This study case has
been used to analyze the advantages of considering more than one DDDAS forecast. Section
3 deals with the description of the two Dynamic Data Driven Applications Systems applied to
the Cardona fire. The analysis of taking into account the forecast results of both strategies is
described in section 4 and, finally, the main conclusions are reported in section 5.

2 Study case: 2005 Cardona Fire

The forest fire used as a test case in this work, took place in Catalonia (northeast of Spain)
(lat. 4154 N, long. 1 40 E) during the summer season in 2005, in particular on 8th July. The
2005 Cardona Fire burned a total surface of 1439 ha. and it lasted 5 hours. The fire started
at 14:45 and it keeps burning during 5 hours, until 19:45 approximately. At that time, the
fire was considered to be controlled by the firefighters because the perimeter remained stable.
A relevant characteristic of Cardona Fire was the sudden change on the rate of spread that
happened after, approximately, two hours from its ignition. During the initial fire evolution,
the measured rate of spread in terms of meters per minute (m/min) was around 10 m/min.
After this initial "meal” evolution, around 16:40, the rate of spread increased to values closer to
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100 m/min. However, during the fire spread no drastic changes in the meteorological conditions
were observed, taking into account wind speed and wind direction. After analyzing the data
collected by the meteorological weather station closer to the fire ignition, we ontained that
during the interval time when the fire spread reached its maximum rate of spread, the registered
wind speed range varied from 4.8m/s to 2.2m/s and the wind direction ranged from 185 degrees
east of north to 190 degrees. This fact rises the hypothesis of analyzing the influence of the
topography and the influence of the fire itself in the micro-meteorological conditions. Figure
1 shows the elevation map of the affected zone. Darker zones denote low elevation, meanwhile
light colored zones indicate high elevation areas. Figure 1 also includes the final burn area
once the fire was extinguished and, with arrows, the principal fire runs showing the path of the
maximum rate of spread.

Figure 1: Digital Elevation map of the Cardona’s fire area including the final burnt area and
the principal fire runs

As can be observed, the main fire runs were located in the valley zone and, in particular, in
the south face of the mountain slope. It is well known that wind and slope are critical factors
in fire rate of spread and all existing fire propagation models take into account the effect of
combining these two parameters. However, few efforts have been done in modeling the influence
on the fire itself in the local meteorological conditions [6][9]. That is one of the reasons why, in
events like the one we are describing, current models denote problems in delivering reasonable
predictions. A way to overcome this problem consists of helping models by using dynamic
data driven strategies. These schemes have the capability to modify the model behaviour
according to real observations obtained during the event. Eventually, these on-line observed
and collected data could be used to reduce the input data uncertainty by injecting it into the
model. Furthermore, this data could also be used to guide the simulation process. Under this
scheme, the detection of drastic changes in environmental conditions could lead the simulation
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system to ask for more frequent data to produce more accurate results. This feedback approach
is known as Dynamic Data Driven Application System (DDDAS) [10]. In the following section,
two DDDAS approaches to enhance forest fire spread prediction shall be described and, later
on, the results obtained when applying both schemes to the above described study case will be
analyzed.

3 DDDAS forecast approaches

As we have previously mentioned, part of the predictions mismatches in forest fire spread
predictions come out from the lack of accuracy of existing fire spread simulators to consider the
effect of the fire itself into the environmental conditions where the fire take place. The micro-
clima generated by the fire directly affects the local meteorological state and, consequently,
the information that should be fitted into the system. In order to overcome the uncertainty
due to this situations, we analyze two DDDAS approaches based on two different forest fire
spread simulators FARSITE [1] and WildFire Analyst (WFA) [3]. Despite implementing both
simulators the Rothermel’s equation [11], the way to obtain the global prediction evolution
differs and, therefore, the final predicted perimeter is not identical. This fact is shown in
Figure 2. In this Figure, both forest fire simulators provide a forest fire spread prediction
considering as initial fire point the first recorder perimeter at 14:38 and a fire simulation time
of 5 hours. The data related to the meteorological conditions have been set up to the one
gathered at the ignition time and have been kept constant during the simulation time.

Figure 2: Basic fire spread prediction obtained by applying FARSITE (a) and WFA (b) in the
case of Cardona Fire.

As we can observe, none of these two basic prediction approaches are able to match the real
observed propagation. The propagation obtained when using FARSITE (Figure 2(a)) under-
estimates the real fire propagation, as well as the propagation generated by WFA (see Figures
2(b)). For that reason, Dynamic Data Driven strategies have been applied to overcome this lim-
itations. The scheme used is based on extracting relevant information about the real observed
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Figure 3: DDDAS approach for forest fire spread forecast.

Figure 4: Real fire evolution of the Cardona Fire at three different time instants

fire spread to dynamically adjust certain parameters of the simulation process. Afterwards,
those calibrated/adjusted values will be dynamically fitted into the simulation system to drive
the forecast of the near future evolution. The way of dynamically extracting knowledge from
the observed fire evolution to be used in the dynamic data driven strategy could be performed
in different ways, but the general scheme is shown in Figure 3. As it can be observed, in or-
der to launch an adjustment stage, it is necessary to have access to two consecutive real fire
perimeters or, at least, to certain georeferenced points from the real fire spread perimeter. Each
time the system could be fed with a new observed fire behaviour, the calibration/adjust process
could be initiated again. The goal is to have the system working in a continuous fashion, to
provide fire evolution forecasts on continuous preset times horizons. So, the input data set used
for the prediction is calibrated in the corresponding adjustment stage. This methodology is
simulator independent and it is flexible enough to change the simulator in a plug & play way.
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In the next section, two DDDAS approaches to forecast forest fire spread evolution shall be
described: DDDAS-GA and DDDAS-ROS. Both schemes use information obtained during the
fire propagation interval time that goes from 14:38 to 17:13 to adjust/calibrate certain input
data. Then, this data is used to dynamically drive the fire evolution forecast until 19:40. Figure
4 shows the initial, intermediate and final perimeters involved in the DDDAS forecast.

3.1 DDDAS applying Genetic Algorithm

DDDAS-GA is a dynamic data-driven prediction scheme that uses as a calibration strategy
a Genetic Algorithm (GA) [12]. The forest fire spread simulator used in this approach is
FARSITE [1], however, the system has been designed to be simulator independent so, the
underlying simulator could be changed. The GA starts from an initial random population of
individuals, each one representing a scenario to be simulated. A scenario/individual is composed
of a number of different genes that represent input variables such as dead fuel moisture, live
fuel moisture, wind speed and direction, among others. Each individual is simulated and all
prediction results are compared to the recent pas observed propagation. Since fire spread is
expressed using a cell map description where it is shown whether a cell has been burnt or not
at a certain time (time of arrival), this comparison is performed by evaluating the symmetric
difference between predicted and real burned areas (equation (1)).

UnionCells — IntersectionCells

Dif ference = RealCells — InitCells W

In equation 1, UnionCells is the number of cells describing the surface burned considering
predicted fire and the real fire. IntersectionCells is the number of cells burned in the real map
and also in the predicted map, and RealCells are the cells burned in the real map. InitCells is
the number of cells burned at the starting time. This difference takes into account the wrong
burned cells and the mistaken for burned cells. According to this fitness function the whole
population is ranked and the genetic operators selection, elitism, mutation and crossover are
performed over the population, producing an evolved population which will have, at least, the
best individual of the last generation (elitism). The new population is then evaluated in the same
way. This iterative process allows us to find a good input parameter set, but it involves high
computational cost due to the large amount of simulations required. Therefore, it is essential
to speed up the execution keeping the accuracy of the prediction. For this reason, a parallel
implementation of this two-stage methodology has been developed using the Master/Worker
paradigm, and a MPI implementation has been developed [13]. At the first stage, the master
node generates an initial random population which is distributed among the workers. Then, the
workers simulate each individual and evaluate the fitness function. The errors generated by the
workers are sent back to the master, which sorts the corresponding individuals by their error
before applying the genetic operators and producing a new population. This iterative process
is repeated a fixed number of times. The last iteration (generation) contains a population from
which the best individual is taken as the best solution, and then it is used in the prediction
stage.

3.2 DDDAS applying Maximum-ROS-path adjustment

Wildfire Analyst (WFA) is a component of the Tecnosylva Incident Management software suite
designed to directly support multi-agency wildfire incident management [3]. It provides real
time analysis of wildfire spread and behavior and evacuation and impact analysis during an
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incident. Wildfire Analyst includes a data assimilation technique which tunes simulations to
actual observed fire behavior. The method is based on seeking the best ROS(Rate of Spread)
adjustment factors [14][1] minimizing the error between the simulated fire and the real data.
These factors are fuel model specific and are multiplied by the rate of spread of the fire to
achieve the specified adjustment.

The strengths of the method is that it is not recursive and therefore may be solved almost
instantaneously, that it provides very clear and easy to interpret adjustments for fire managers
at an operational level, and that it requires very few input data. Unlike other methods however,
the adjustment does not try to analyze the final cause of the observed errors (weather inputs,
fuel properties, etc) and simply focuses on providing estimations of future fire behavior no
matter the source of error. Adjustments may be used on their own as a calibration technique,
but could also be used as a search space guiding method in more general recursive optimization
problems or data assimilation schemes aiming to provide the actual causes of the observed error.
The algorithm is presently implemented as an operational adjustment module since it lacks the
automated data feeding mechanism required for an operational data driven application. The
module does not only provide the best ROS factors fitting a fire, but it also allows the user
to manually fix them and instantly see the expected behavior without the need of redoing a
simulation. The user may also select a tunning strengh in the adjustment in order to balance the
need of minimizing the simulation errors, and the need of using adjustments that do not differ
too much from (1) (are not too severe). Mathematically, the method is based on the assumption
that simulated fire paths reaching the known fire location do not change significantly before
and after the adjustment process. This assumption is usually fulfilled as long as adjustments
are not too severe, but a small recursive algorithm may be used otherwise.

4 Overlapping DDDAS forecasts

In the previous section, we have described two Dynamic Data Driven Applications Systems
applied to forecast wildfire spread. Both schemes relies on the analysis of the observed real
fire evolution to adjust/calibrate unknown environmental data needed to perform fire spread
simulations. Figures 5(a) and 5(b) show the obtained prediction spread for the Cardona Fire
when applying DDDAS-GA and DDDAS-ROS respectively. As it was expected, the predicted
results obtained for both approaches denoted slight differences compared to the real final fire
spread.Both DDDAS predictions clearly match the main fire run direction despite of generating
a non exact shape match. In the case of DDDAS-GA, the forecast fire evolution underestimates
the real fire spread, meanwhile, in the case of DDDAS-ROS, the prediction overestimates the
final burnt area. Therefore, an alternative proposal to consider the goodness of both systems
could be to generate an overlapped DDDAS forecast in order to take into account both pre-
diction results. Figure 6 shows the prediction fire spread areas of both schemes and the final
real burnt area. The first conclusion that arises from analyzing this figure is that using data to
drive the simulation system, has a direct impact in the direction of the fire spread. In partic-
ular, the overlapped DDDAS forecast is able to find the maximum rate of spread path, which
clearly depends on the underlying topography and fuel characteristics. Using the overlapped
DDDAS forecast as a prediction approach, the area that is predicted to be burnt in all cases,
was destroyed by the fire, except the left flank where the overlapped DDDAS forecast overes-
timates the area affected by the fire. However, the advantage of using the overlapped scheme
is that these false alarms are reduced because of the compensating effect of using two DDDAS
approaches. The same phenomena could be observed in the back propagation.
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(b)

Figure 5: Forest fire spread prediction applying both the DDDAS-GA scheme (a) the DDDAS-
ROS approach (b) (blue shapes) compared to the real fire burnt area (red shape).

5 Conclusions

Forest fire is a natural hazard that every year devastates hundreds of thousands of hectacres of
forest area around the world. Computer simulation has become a very useful tool to enhance
propagation information provided to decision support systems when taking decisions about how
to mitigate an ongoing fire. However, existing forest fire simulators have not the capacity of
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Real Fire

_ DDDAS-ROS
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Figure 6: Map overlap including the final fire predictions applying both DDDAS schemes and
the real fire spread

modify model behaviour according to the variation on environmental conditions due to the fire
itself. In order to deal with this necessity, dynamic data driven approaches have been developed
with the ability of updating the model behaviour according to the observed real fire spread. In
this paper, two different DDDAS approaches are described: one based on Genetic Algorithms
and, another one, based on the maximum ROS path. Both approaches have denoted a high
ability in adapting to drastic chances in fire rate of spread due to the micro-clima generated
by the fire under certain topographic characteristics. This fact has been proven using as a a
test case the Cardona Fire, which took place in 2005 in the northeast of Spain. Since both
approaches stem from complementary advantages, an overlapping DDDAS forecast is proposed
to provide a high fidelity forest fire spread prediction.
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