
LIGHTS

RAMON GILABERT LLOP

Electronic, Automatic and Industrial Engineering

2015 - 2016

Fernando Guirado as director

A thesis done by

This project is, without any doubt, the biggest side project I have ever had, so many

technologies and innovation are involved that I have to name some of the people that has

helped me go through the process of making it a reality; from the first time when I thought

that I could merge two worlds, up to the point in the reviewing and tinkering phase.

Fernando, Tim, Josep, Norman, Laia, Ramon and many many more; this goes to you and to

all the people that, as me, are ambitious enough to think they can, in a small way, change how

things normally work and truly make this world a bit of a better place.  

INDEX

1. Disclaimer 1...

1.1. The document 1...

1.2. Brief 1..

1.3. References 2..

2. Introduction 3..

2.1. History the internet of things 3..

2.2. References 6..

3. Market studies and comparison 7..

3.1. Hardware related products and flaws 7...

3.2. Software related products and flaws 8...

3.3. References 9..

4. Objectives and encompass 10...

4.1. Goals from Lights 10..

4.2. Encompass 11..

4.3. Planning 11..

4.3.1. Explanation 11...

4.3.2. Gantt diagram 14..

5. The making of 15..

5.1. Architecture 15...

5.1.1. The platform 16...

5.1.2. The product 17..

5.2. Development brief 18..

5.3. The generic platform into technical detail 20...

5.3.1. Lights Backend 20...

5.3.1.1. Introduction with database 20...

5.3.1.2. HTTP methods 21..

5.3.1.3. Web sockets 22..

5.3.2. Lights Berry 22...

5.3.2.1. Introduction with database 23...

5.3.2.2. Main functionality 24..

5.3.2.3. Sockets 25..

5.3.2.4. Bluetooth communication 25...

5.4. The product into technical detail 25..

5.4.1. Lights Backend adaptations 26..

5.4.1.1. Database 26...

5.4.1.2. HTTP methods 26..

5.4.1.3. Sockets 27..

5.4.2. Lights Berry adaptations 28...

5.4.2.1. Database 28...

5.4.2.2. Sockets 28..

5.4.2.3. Bluetooth communication 28...

5.4.3. Lights Duino 29...

5.4.3.1. Bluetooth in the Arduino 30...

5.4.3.2. Handling of the light 32..

5.4.4. Lights app 32..

5.4.4.1. Flow of the app 34...

5.4.4.2. Inner operations of the app 36...

5.4.5. Industrial design 37...

5.4.5.1. Design of the hub 37..

5.4.5.2. Design of the light 38...

5.5. References 40..

6. Tests and results 41...

6.1. Error prone situations 42...

6.1.1. Bluetooth tests and results 43..

6.1.2. Internet tests and results 46...

6.1.3. Stress tests 47...

6.2. Process test 49...

7. Budget and engineering 50...

7.1. General overview of Lights 51..

7.1.1. Creative and architectural phase 51...

7.1.2. Development, testing and engineering phase 52...

7.1.3. Design, prototype, tinkering 54..

7.2. Total cost estimations 54...

7.2.1. One time costs 54..

7.2.2. Per light cost 55...

7.2.3. Mass cost 57...

7.3. Market study and general public 58...

7.4. Final cost estimation 59...

7.5. References 59..

8. Motivation and conclusions 61..

8.1. Motivation 61..

8.2. Why Lights 61...

8.3. Conclusions 62..

9. General reference list 64..

9.1. Bibliography 64...

9.2. Webliography 64...

1. DISCLAIMER

1.1. THE DOCUMENT

As a full disclosure before starting the document, this thesis follows different

guidelines on how to make the document, how to structure it and how to make the

presentation out of it. Concretely, it conforms to the UNE 50135[1], the guidelines of

the University of Lleida and the guidelines of the University of North Caroline[2].

The font chosen to do this document is a serif font with a size of 12 points to ensure

readability in all the distributed copies.

1.2. BRIEF

There has been a lot of technologies involved in this project which makes it hard to

cover them all, to simplify the readability of the project, this section starts by

introducing some of its key components.

There are two main concepts within this project codenamed as Lights; a platform,

which is a forum for other devices to connect to, and a product, which represents the

final and central efforts within a visual gadget such as a smart bulb that is able to

perform multiple operations listening to commands coming from different places,

normally with a starting point in an iOS app although prepared, together with the

first platform, to be hooked into multiple solutions like web, Android, Windows

Phone etc.

Inside Lights there are multiple systems, services and components. The most

important ones, which create the structure of the platform are two servers, one

micro-controller and one app.

!1

The codenames of those systems are the following:

- Lights-Backend (for the cloud server)[3].

- Lights-Berry (for the Raspberry Pi server)[4].

- Lights-Duino (for the micro-controller (Arduino) code)[5].

- Lights (for the native iOS app)[6].

There are multiple other components, scripts and snippets of code created out of

Lights that are mentioned in section 2 of the annex II.

1.3. REFERENCES

[1]. UC3M. How to write a scientific document [2016, May 14]. Retrieved from:

http://docubib.uc3m.es/CURSOS/Documentos_cientificos/Normas%20y

%20directrices/UNE_50135=ISO%205966.pdf

[2]. UNC. Formatting guidelines in a thesis [2016, May 14]. Retrieved from: http://

gradschool.unc.edu/academics/thesis-diss/guide/format.html

[3]. GitHub. Lights Backend [2016, May 15]. Retrieved from: https://github.com/

RamonGilabert/Lights-Backend

[4]. GitHub. Lights Berry [2016, May 15]. Retrieved from: https://github.com/

RamonGilabert/Lights-Berry

[5]. GitHub. Lights Duino [2016, May 15]. Retrieved from: https://github.com/

RamonGilabert/Lights-Duino

[6]. GitHub. Lights [2016, May 15]. Retrieved from: https://github.com/

RamonGilabert/Lights 

!2

http://docubib.uc3m.es/CURSOS/Documentos_cientificos/Normas%20y%20directrices/UNE_50135=ISO%205966.pdf
http://gradschool.unc.edu/academics/thesis-diss/guide/format.html
https://github.com/RamonGilabert/Lights-Backend
https://github.com/RamonGilabert/Lights-Berry
https://github.com/RamonGilabert/Lights-Duino
https://github.com/RamonGilabert/Lights

2. INTRODUCTION

Lights comes and belongs to different industries and engineering fields, considered

itself as a component of the new era of the Internet of Things, it also is a

representation in the paradigm of advanced home automation.

2.1. HISTORY THE INTERNET OF THINGS

There is a starting point to every revolution and, with every iteration within

technology, innovation gets bigger and better. The starting point for this introduction

takes place in the XIX century in Switzerland with a well known concept nowadays,

home automation.

The union of the words home and automation gives meaning to the portmanteau as

the use of automatic or remote means to regulate, create or change technology

systems in homes, houses or places. There are various examples of home

automation, such as automatic curtains, smart thermostats, etc.

The concept per such begins in 1885 when the Swiss engineer Albert Butz[1] invented

a thermostat that would automatically regulate heating systems. Not too long after

that, automation devices started to become an expensive luxury gadget for society,

having a huge impact in the inventors and engineers at the end of the XIX century.

People like Mark Honeywell or Nikola Tesla patented multiple devices such as

remote controls or more advanced heating system regulators that could be controlled

remotely among others; the problem with that was the huge price of it, which made

it something not as transcendental as such inventors wanted it to be.

As a parallel story, the revolution of computers from the 1970s started making

technology cheaper and more accessible to a normal person life, while a computer

was a luxury in homes, some of the best schools around the countries had one of

those machines for its students to start evolving their curiosity around the industry.

!3

That fact, started to create a small tendency in young people to be interested in the

technology field and, those gadgets that once seemed inaccessible and were thought

only for collectivists and enthusiasts around the world, would soon become

something everybody would need.

Such revolution made software accessible for everybody to know and learn. At the

end of the 80s, geeks from the best houses started to buy computers and kits to start

installing components into it, development started to be a thing within normal

people and not something left to engineers, and parallel to this, the biggest

technology companies were created or entered in a huge bubble that would catapult

its fame, companies such as Apple, IBM, Microsoft or Dell among others started to

make the personal computer as a box that people would just carry around and not

something huge and expensive.

After about 30 years, in the 2000s, the web bubble started, the companies mentioned

before would be in top of its business and everybody would have a computer at

their homes. The problem was, a computer was still luxury and the problem still

remained, hardware was not that accessible to people as software started to be in the

70s.

It has not been until the second decade of the XXI century when, with the increasing

popularity of technology and research combined with the increasing amount of

engineers among others that home automation, and specially cheaper hardware has

gained track again. Smartphones, tablets, convertibles and computers are something

in a day to day life in everybody’s life; that fact opens a world for engineers that is

insanely huge; the capacity to get to a website or to discover a product in just one

click, control a car within a phone, open the doors 300 miles away from home within

your watch, connect to people around the world with milliseconds of delay, etc. is

something that was unimaginable just 15 years ago.

!4

The fact that the iPhone was introduced 9 years ago has made technology available

to everybody; 2016 is the year of artificial intelligence, smart-things, connected

devices, virtual reality, etc. and, putting a lot of attention into the smart part of the

sentence and going back to home automation and the ability or the seeking of

controlling gadgets at home, it can be said that there is a relation created out of the

abstraction of the Internet of Things. Such concept seeks for connected smart devices

that talk to each other in order to make our day to day easier; smart objects that

know and get to know every personal user by being used and are able to

communicate to them at the right time, in the right way.

The future is unknown but, the fact that an ABI research shows that only in 2012, 1.5

million[2] devices were installed across the United States that were considered home

automation devices, with a projection of 6.4 billion gadgets by 2020[3], presents a

huge revolution for engineers, showing that this revolution is in no peak, this is the

starting point of it, the beginning of the path. That also comes with more technology

companies in Silicon Valley and everywhere around the world pushing for those

devices, Nest[4], with its smart thermostat, Philips with its Hue smart bulb or in the

other hand Apple with HomeKit[5], a platform to easy connect everything around

home; lights, curtains, heating systems, etc. with a new application coming in iOS 10

within it, called Home[6].

In a world where time is one of the things that are most appreciated, smartness,

easiness and fast delivery of information within a fast deployment of it makes the

relevance of any platform that can deliver that to increase its value exponentially as

time gets more precious day after day.

In the next few years home automation will disappear letting the Internet of Things

take over it, this natural evolution will create and creates smart connected devices

that achieve the automation that the first one sought; having everything connected to

get that information as fast as it can be and whenever is best for us. Every day there

!5

are new products in the field, cheaper hardware means cheaper devices and more

evolved technology means easiness to use those devices with more users within it.

2.2. REFERENCES

[1]. Honeywell. Honeywell history and inventions [2016, May 15]. Retrieved from:

http://twincities.honeywell.com/honeywell-history-and-minnesota-heritage/

[2]. ABI research. 1.5 Million Home Automation Systems Installed in the US This

Year [2016, May 15]. Retrieved from: https://www.abiresearch.com/press/15-

million-home-automation-systems-installed-in-th/

[3]. Gartner. 6.4 Billion Connected "Things" Will Be in Use in 2016, Up 30 Percent

From 2015 [2016, May 17]. Retrieved from: http://www.gartner.com/newsroom/

id/3165317

[4]. Nest (Alphabet). A smart thermostat [2016, May 17]. Retrieved from: https://

nest.com

[5]. HomeKit (Apple). A platform for the Internet of Things [2016, May 17]. Retrieved

from: http://www.apple.com/ios/homekit/

[6]. Home (Apple). An app to interact with the internet of things devices [2016, June

19]. Retrieved from: http://www.apple.com/newsroom/2016/06/apple-previews-

ios-10-biggest-ios-release-ever.html  

!6

http://twincities.honeywell.com/honeywell-history-and-minnesota-heritage/
https://www.abiresearch.com/press/15-million-home-automation-systems-installed-in-th/
http://www.gartner.com/newsroom/id/3165317
https://nest.com
http://www.apple.com/ios/homekit/
http://www.apple.com/newsroom/2016/06/apple-previews-ios-10-biggest-ios-release-ever.html

3. MARKET STUDIES AND COMPARISON

Before starting the phase of development, there is a period of time searching for

alternatives in the market, projects already done, open sourced platforms, do it

yourself alternatives, etc. As stated in the introduction, one of the most famous smart

lamps and internet of things exponents that exist in the market nowadays is Hue by

Philips[1]. Said lamp has been a big inspiration while developing Lights as a product,

whereas Apple HomeKit, a smart framework that gives software to unify hardware

components, has been a huge mirror when developing Lights as a platform.

3.1. HARDWARE RELATED PRODUCTS AND FLAWS

Hue is a smart lamp that works more or less the same way Lights does, the only

difference is that, while the price of Hue is around 150$ a pack (3 bulbs and a hub),

the price of Lights, as stated in section 7, is much cheaper at around 80$ per pack (3

bulbs and a hub) in mass production.

Looking at the public market that Hue has as of 2016, the biggest challenge that

raises is that only a geek market buys those kind of gadgets, thus, it makes the public

of it smaller and tighter. In the particular case of Hue, the design of the lamp is very

futuristic, white and simple for people to think forward when having their product

and, while this is good for technology fans, Lights is intended to be something else.

The same occurs with Nest, a thermostat that is so futuristic and, probably ahead of

time that only geek people know about.

A part from Philips, no other major alternatives exist while looking the same market

space within the product, some crowdsourcing campaigns have raised but represent

just what the product of Lights is and not the platform and, while there are lots of

tutorials to do similar things with the technology; controlling an Arduino via

Bluetooth, etc.[2][3] There is nothing quite similar as the structure created for Lights

!7

and explained in the brief in section 1.2 where everything is thought for the end user

to be just simple.

One of the biggest problems with the do it your self alternatives or close to market

devices is that they talk about connecting a device via Bluetooth right away to the

micro controller without the need to talk to a hub or to a server first. That fact kills

the idea of scalability, easiness and platform creation; scalability for an obvious

reason since there is the need of a hub to control the end light separately, with a

server in the cloud to have basically control over all the devices around; easiness

because it needs special configuration regulated and different in every case having a

lot of error prone situations as what happens if it disconnects, the bluetooth fails, etc.

Even though the market is growing as of 2016 in terms of home automation or

internet of things; smart bulbs, lights, lamps and devices connected have not entered

yet into a bubble, making them something new for users to try still. Such fact creates

a really open market that is still let to interpretation with so many possibilities to

make it grow and the possibility to do lots of studies around it.

3.2. SOFTWARE RELATED PRODUCTS AND FLAWS

Apple HomeKit is the mirror when looking directly at Lights. While there is no such

thing as some platform that combines both hardware and software, this is the best

alternative in the software field. HomeKit is a framework that gives the ability for

people to control all the devices around their houses within the phone and with just

a couple of clicks. For that, Apple has created an API for other providers and

manufacturers of home automation devices to enter the internet of things era in an

easy way, unifying then the concept and making it generic for people to use.

While this cannot be topped because the boundaries of Lights are now within its

product, that does not mean that scalability is something that has not been in the

!8

mind of the project since day one. That is why, at this point, HomeKit is the mirror

Lights is looking at to.

Other than that, there is no big provider of an API that can solve what HomeKit

does. Every fabricant of home automated devices has a small client in order for the

user to control the light, the thermostat or the smart gadget in place, but no big

platform is out there other than Apples’.

3.3. REFERENCES

[1]. Hue (Philips). A smart lamp and bulb connected with an intermediary hub [2016,

May 17]. Retrieved from: http://www2.meethue.com/nn-no/

[2]. Instructables. NodeJS and web-sockets tutorial [2016, May 20]. Retrieved from:

http://www.instructables.com/id/Easy-NodeJS-WebSockets-LED-Controller-for-

Raspberr/

[3]. Servicelab. Control an Arduino with NodeJS over Bluetooth [2016, May 20].

Retrieved from: http://servicelab.org/2012/12/12/wirelessly-control-your-arduino-

with-nodejs-over-bluetooth/  

!9

http://www2.meethue.com/nn-no/
http://www.instructables.com/id/Easy-NodeJS-WebSockets-LED-Controller-for-Raspberr/
http://servicelab.org/2012/12/12/wirelessly-control-your-arduino-with-nodejs-over-bluetooth/

4. OBJECTIVES AND ENCOMPASS

This section provides the goals to achieve at the end of Lights as well as the

encompass of the project; such section serves as the introduction of the development

showing the planning of it.

4.1. GOALS FROM LIGHTS

The objectives appear in a list and later on are explained.

- Research in how to merge electronics and software with exceptional design.

- Accomplish a prototype that can be used anywhere and from anywhere in the

world.

- Add easiness in the installation as well as in the usage of the platform and the

product.

- Accomplish a great peer to peer connectivity in Bluetooth that is robust enough

to work with a maximum of 1% of error.

- Create a scalable system that can be ported into mass production involving

multiple hardware and “internet of things” solutions.

- Get a prototype of the product that can be ported to start a crowdsourcing

campaign.

The main objective, shown in the first line, is to merge the worlds of electronics and

computer science creating something that uses both, electronics to control a light,

change the color of it, etc. and a development open enough to build the skeleton of

the platform in which Lights is built upon, letting the possibility for other products

to enter into such environment too.

!10

As stated in the previous list, Lights pretends to be one of the first kind of home

automated devices that are for the general public even though it is technologically

advanced enough for only marketing geek people; with that, it has to be a product

that is robust enough to be scalable into mass production and easy enough for

people to use it right away. Even though this might seem like a small thing, one of

the biggest difficulties that appear while developing a platform, a product or

anything that is user based, is thinking on how the end user will make use of it;

covering all the cases is difficult and having no errors is pretty much impossible, that

is why making it easy enough to engage the end user with it is a huge objective in

the list.

4.2. ENCOMPASS

The encompass of the project consists in creating a platform with four different

layers of computing that include a product within them. Such platform can grow as

much as porting it to a crowdsourcing campaign, letting it ready enough for other

people to contribute to it, making it bigger and better overtime.

4.3. PLANNING

4.3.1. EXPLANATION

There is a lot to do in the process of making Lights, lots of technologies mean lots of

industries involved, thus, all the concepts are separated in different blocks that

represent different fields.

I. Creative phase

The creative phase is the one in which the process of pitching different ideas begins,

what do to, how to do it, etc. The process starts by making a brainstorm of ideas as

well as commenting such ideas with different people to get feedback on it. That

!11

phase takes place in October and lasts for a month. The process ends when, after

some research and questions, there is an agreement on what to do. The idea with

Lights is to make something that is fun, serious and meaningful enough to be able to

compete in the market of the internet of things.

II. Initial planning phase

The initial phase starts when, after comparing opinions and gathering feedback of

other people about the result of the creative phase, the idea is ready to be built; such

phase starts by planning what is needed for the project as well as what is the

definition of it. In this case there is the need of two backends written in JavaScript in

order for them to be fast enough, an app and a client. For that there is the need to put

some padding in the plan in order to learn the technologies, build the prototype, etc.

Such phase finishes talking with the coach of the project, deciding and writing down

in a more formal way what the project is supposed to be and how it is supposed to

be structured.

III. Learning phase

With the basic architecture already planned in point 2, there is the need to learn the

technologies required to build it, in this case different languages like JavaScript, the

Raspberry Pi fundamentals, 3D design, etc.

In a field like development and design where everything moves in a huge velocity,

the learning phase never ends, that is no different here since the learning process

goes through all the project even though the formal part ends around January;

starting after that the making of the project.

!12

IV. Maker phase

After the learning phase, it makes sense to do the parts of the platform that do not

require any design, those are the backends, the micro-controller code, etc. The

architecture is already prepared in point 2 and has more add ons and revisions in

this phase.

V. Design phase

With the development of the non designed parts done, there is the need to have the

look and feel for the app and for the hardware of the project. It is important to notice

the separation between developments; the reason for that is to put a bit of padding

in the concepts to solidify the first part of development, entering in a more stronger

way later on for the product. Such phase includes the first mocks of the app and the

industrial design of the lamp, as well as some design parts for the report, documents

and other files attached to the project.

VI. Final development

This phase includes the last part of the designed pieces of the platform and the

product. Implementing the app as per such and the prototype of the design into the

real components.

In this phase there is a going back and forth with phase IV, since there is a lot of non

intentional testing of the non designed product.

This phase takes place during 1 month and a half, without including tests rather

than the actual formal ones done in order for instance for the app to work.

!13

VII. Report, test, examples, finishing

This is the last part of the process, also called quality part. This includes

documenting the project, testing the prototype, building the examples, doing some

more design for the document, etc.

4.3.2. GANTT DIAGRAM

In a more technical way, a summarize of the different phases of the project seen in

the previous section can be represented as something like the following diagram:

Some of the tasks overlap as the learning and making phase since one helps and can

complement the other.  

!14

Table 1. Gantt diagram with the phases, the structure and the timing of Lights.

5. THE MAKING OF

This section presents Lights into technology detail; why and which are the decisions

that have been made and an in depth look into the software involved. This process is

separated into the parts in which the platform is divided, later on presenting the

product as per one simple client of the platform. In such last subsection, the parts

that need modification in order for the product to work are also shown.

To begin with the explanation of the project, the architecture shows the platform and

the product combined at first, deconstructing them into separate components later

on.

5.1. ARCHITECTURE

Lights consists in a generic platform and a product. Such product is hooked into a

tweaked version of such generic platform in order for it to function.

Figure 1 can be deconstructed into two parts as already stated. The best way to

understand such parts is by putting an example of a thermostat and comparing it

with the case that it is being covered in this section.

The splitting needs to be done in order for other products to enter or, in another way,

be part of a sharing trade between components. Continuing with the example of the

!15

Figure 1. General architecture showing every component.

thermostat, the concepts that could be easily shared are Lights Backend and Lights

Berry; tweaking the database in Lights Backend and changing some parameters in

Lights Berry, Lights becomes a completely different product by just adding another

micro-controller with bluetooth on it and changing a little bit the app.

The conclusion is then that the components Lights Backend and Berry create the

platform whereas the micro-controller and the iOS app, alongside the platform,

create the product.

5.1.1. THE PLATFORM

The platform is, as said, the generic part that can be extracted and is independent

enough to be able to hold different products. That contains:

- A server hosted in the cloud that incorporates all the information of all the

smart objects that are used around.

- A server running in a Raspberry Pi that is always on and listening to the

commands sent by the first backend. It performs basic operations like, parsing,

saving in the internal databases or connect to the actual products and clients

via Bluetooth.

Inside every component there are multiple scripts to automate concepts, builds and

processes.

!16

Figure 2. Diagram of the architecture of the platform.

The representation in figure 2 shows the connection between the backends of the

platform, displaying the way they talk to each other and the communication they

produce. Each component is explained separately and into detail in its

correspondent section.

5.1.2. THE PRODUCT

The structure of Lights as a product consists in:

- The tweaked platform explained in section 5.3 with its extended functionality.

- A micro-controller, in this case an Arduino, that contains a light and a

Bluetooth shield to be able to listen to the commands from the platform.

- A native iOS app that is able to send commands via web sockets.

Inside every component there are multiple scripts to automate concepts and

processes as the platform does too.

What the product achieves is basically to be as agnostic as possible from the

platform, displaying and sending information into a funnel that can just send said

information into the other end using what the platform is prepared to, sockets,

bluetooth and HTTP.

!17

Figure 3. Diagram of the architecture of the product that communicates to the platform.

Entering into more detail in terms of communication, the clients talk to the backend

via web sockets or via HTTP, whereas the Raspberry Pi talks exclusively to its

connected clients via Bluetooth, retrieving information from the other side of the

platform via HTTP.

5.2. DEVELOPMENT BRIEF

Before explaining into a technical detail the solutions and the challenges, some of the

questions that appear when thinking towards the architecture shall be answered.

The obvious first one is why the need of two backends.

When performing the creation of a platform or any product, one of the first

questions that raises is what to do with scalability. As porting the project to a mass

production is one of the end goals and converting it to a platform is the main, having

a solid fundament is necessary. There are then two possibilities to help solve this,

either one, do just one system that lives in a Raspberry Pi, the called (Lights Berry) or

do one that can hold multiple systems like the first one and can help controlling

from the top other small components.

Developing ways, it would had been easier to do just one service that lives in the

Raspberry Pi, however some problems would have had raised:

- The first one, the editing of the product when it is not connected since then,

there is no hub or database all time live to save those changes.

- The second one, and the most important, the communication to the phone that

could only be via Bluetooth and not internet, making it very limited and just

due to a range of less than 30 meters from the actual object.

Those problems combined within the matter of not being able to make it as generic

as possible for a platform, makes the this pattern not valuable to follow.

!18

Finally in that matter, there is a side note that is important enough to note,

displaying some of the first technical difficulties of Lights; while the connection from

the phone to the product in terms of editing works with sockets, the connection to

get all the lights or products, post them, etc. is done over HTTP. While sockets, as

explained in section 1 of the annex II, break a bit the system of the communication

over the internet, permitting the user to communicate to a port that is not opened,

HTTP does need to have the port open in order for another third party to try to

communicate with that server. That breaks one of the main rules when developing

Lights, easiness. If the user needs to open a port or something similar to that to

install the platform and use the product, it makes things really complicated and the

adoption and learning curves too big forn new users to get into it.

The way to solve such problems is to just make another backend, Lights Backend.

That one has control over all the products. Lights Backend sends all the information

of the lights to the clients over HTTP and is the hub for the sockets, emitting and

receiving them.

Another question that raises is, why the need of a Bluetooth communication from

the hub to the micro-controller, with a solution as easy as Lights Backend controlling

a light in Lights Berry. The answer is basically that there is the need to be able to

connect multiple products in one place, a light or multiple of them, a thermostat or

multiple of them, etc. A part from that, Lights Berry has the limitation that is running

in the Raspberry Pi, which needs PWM modulation to provide analog writing,

making it more difficult to develop upon.

The idea of Lights is to make something open enough for other systems to be able to

be plugged in into the backends to use, thus, there is the need to have Bluetooth and

other technologies involved to connect multiple different micro controllers into it.

!19

5.3. THE GENERIC PLATFORM INTO TECHNICAL DETAIL

5.3.1. LIGHTS BACKEND

Lights Backend is the first one of the components that are developed and conform to

the platform. Lights Backend lives in the cloud, concretely in the platform Heroku,

explained in section 1 of the annex II, and it is always accessible; that means that,

even if no hub is connected to the current, the user is still able to edit the product

status and see the effect the next time such product connects. That basically means

that, an editing of a thermostat would be accessible and visible the next time such

thermostat connects to the current.

Lights Backend consists in:

- Database written in PostgreSQL to store controllers and the products that such

controllers hold.

- RESTful API to deliver the content of the database to the clients requesting for

it.

- Socket emitter and receiver to handle the sockets from the different clients.

5.3.1.1. INTRODUCTION WITH DATABASE

The generic components of Lights Backend are basically the controllers. It also holds

products which are specific to every use case and go tight to every controller.

I. Controllers

A controller is basically what the Raspberry Pi is in the platform, a hub. Lights

Backend needs to have management over the controllers in order for it to create one

to many relations with the products.

!20

A part from that, there is a security reason why the controllers are stored in the

Lights Backend; that one is the token. When a controller is formed, the backend

creates a unique token that has to be sent in every request to modify a light; if that

token is not the same as the controller’s, the user is not able to edit the product. That

prevents from other third parties to edit from an outside client over HTTP or sockets.

II. Products

The fact that it saves products means that the database can hold multiple generic

values and can have multiple entities in them; an example of this is mentioned in

section 8.2. A product could be a light, a thermostat, or anything that fits within the

needs of the platform at that moment.

5.3.1.2. HTTP METHODS

As mentioned before, Lights Backend has two types of protocols to communicate to

the devices, the first one is the normal HTTP method. Lights Backend is created to

give a lean RESTful API that delivers JSON back to the different clients.

Although, for convenience, Lights Backend supports all the methods for an HTTP

request, such as GET, POST, PUT, PATCH and DELETE; for each of the two entities,

that is, Controllers and Products, that does not mean the end user or the Lights Berry

or the client iOS app uses them. That is done basically to create a convenience and a

protocol within all the API, making it leaner.

There is two headers required in Lights Backend; the convenience one called

Content-Type, that defaults to application/json, which lets the backend understand

what the return and the body type of the request should be, and the controller_id the

request is referring to. With that, the backend is able to process such request. With a

JSON response, the app is able to easily parse, store and edit all the key value

components of it.

!21

Finally, if the user wants to edit or delete a specific product, the request looks exactly

the same as the previous one, with a convenience showing which light it needs to

modify; that is done with the ID of that product and specified based on the

convenience of the RESTful pattern as: /products/:id.

5.3.1.3. WEB SOCKETS

The last form of communication to the backend is via web sockets. It is explained in

section 1 of the annex II how a general socket works and in this case there is no

difference. The backend is always able to connect to new sockets (clients); once a

connection is established such backend is able to listen to messages from that socket.

The messages are different depending on which client they are coming from.

The messages that the Lights Backend emits are basically for the client and the other

server to update something, either the UI in the first case or the database in the

second one.

Finally, it is important to note that the communication that the backend creates is a

broadcaster one. Such backend sends messages to all the socket listeners, whereas

the clients talking to the backend perform the same on a 1 on 1 communication.

5.3.2. LIGHTS BERRY

Lights Berry does not contain a RESTful API so it is not a typical HTTP backend even

though it does similar operations as one, like controlling sockets, communicating via

Bluetooth to its clients and controlling different products; the biggest difference with

Lights Backend is that Lights Berry controls products instead of all the array of

components that the first one manages.

!22

Lights Berry consists in:

- Database written in PostgreSQL to store itself (the controller) and the different

products it manages.

- A requester to the Lights Backend to get the last status of the products it is

controlling.

- A socket emitter and capturer.

- A Bluetooth configuration to perform operations as a central module,

connecting, sending and receiving information from others in a characteristic

way.

5.3.2.1. INTRODUCTION WITH DATABASE

The database of this backend is similar to the previous one; it stores itself (a

controller) with a limit of one row, and multiple products connected to the first one.

The only difference between this database and the one in Lights Backend is that the

products and controller entities have another key called address. For products, this is the

address of the bluetooth of the product that is controlling. For the controller, this is

the address to the most recent phone, this last one is just for convenience and to keep

a unified database across entities.

The purpose of this database is to store the current state of the controller and the

products that is managing. The controller because is a requirement for more

products to be created in the central database, and the products to store the status of

them just in case there was a problem in the connection via Bluetooth.

Finally, is necessary to note that the database can be morphed into different needs

and more entities can be added if needed for any specific product.

!23

5.3.2.2. MAIN FUNCTIONALITY

Once the Raspberry Pi is connected to the current, it runs a script[1] in order for the

internal server to start running. This script, written in shell, is an init script that

passes the appropriate parameters and starts a file with the logs of the server.

Once the server is on, it opens a green LED notifying the end user that the system is

already usable.

The first thing such server does is to check the database and specially look if the

Controller table is empty. If it is, it does a request to POST a new controller to the

Lights Backend and saves it into the database. When this process is completed, it

starts to search for a Bluetooth product and a Bluetooth phone indefinitely. Needs to

be said that the Bluetooth searching for a phone is not done until the controller, and

at least one product, are stored in the database. That is to always have, at least, one

item in the app and not show an empty state as the first thing the user sees in the UI.

I. If it finds a product

If the server finds a product, it checks the peripheral and tries to connect with it

retrying it until the connection is successful. This creates a connection that is not

bound to be broken unless there is a problem with the current or something similar

to it. The server tries to find other lights or products after the first connection is done.

Even if a problem raises, the server tries to reconnect until the light is connected

again.

II. If it finds a phone

If the server finds a phone it sends the information of all the products that are stored

in the local database to it, sending alongside the token of the controller in order for

!24

the app to be able to get the information from Lights Backend, having present the

security measures that the backends of the platform has.

5.3.2.3. SOCKETS

After a security check to see if the controller_id of the product corresponds to the one

stored in the database it then updates, if it is, such product and notifies all the clients

in order for them to update.

Inside such socket, information about the product is sent for a quick update of the

local database and the online one.

5.3.2.4. BLUETOOTH COMMUNICATION

This is the most important part of Lights Berry, the Bluetooth communication. Once

the peripherals are connected they can talk to each other via characteristics. The way

it works is that every time there is a change in a product, Lights Berry receives a

socket, creating from it characteristics to notify the clients connected to it.

Such characteristics can be configured in something the end product can need. In

case of a light it can be an RGB value, in terms of a thermostat in can be a

temperature. Such information needs to be as simple as possible since it is sent via

buffers, which use data primitives to be represented.

5.4. THE PRODUCT INTO TECHNICAL DETAIL

The platform is where the product resides in. Changing the word product from now

on for lights, this is the explanation of the making of the specifics.

Even though the platform is generic enough, it is configured to do what it needs to

do, control an app and basically clients connected to it. Extracting the abstraction of

the platform and its architecture and functionality, this section explains what is

!25

added and what is needed in order for it to control a light with the help of other

parts attached to it.

5.4.1. LIGHTS BACKEND ADAPTATIONS

This section inherits the explanations given in section 5.3.1 of this document and, as

stated in the introduction, explains the minor improvements and changes in order to

modify the platform to make it into a light connector.

5.4.1.1. DATABASE

I. Lights for Products

A light is the actual object and the crater of this explanation. In order for this identity

to be created, it needs to have a controller_id in which to create a one to many

relationship to. That means that, when a light is created a controller needs to have

been created before.

A part from that, the light identity has different variables natural from a color object,

those are, status, intensity, red, green and blue. As explained before, Lights uses the

RGB pattern in order for the bulb to change its color in the LED in a more pleasant

way.

5.4.1.2. HTTP METHODS

The main changes that the HTTP methods have is that they return lights instead of

products. The headers are still the same and the requests look the same as they do in

the platform.

As an example, when making a request to get the /lights from the platform, the

response is the one seen in the figure 4.

!26

With the following JSON response as an example, the app is able to easily parse,

store and edit all the key value components.

5.4.1.3. SOCKETS

The present is the part where the most changes are made; not in how it works,

because it does it in a generic way, but in the content of it. Web sockets work with

messages; a set of keys retrieve a set of messages that, in this case Lights Backend

can respond or do something about.

The messages that the backend supports for Lights as a product are 4: ios-light, server-

light, new-ios-light and delete-ios-light as far as the codenames concern. The first two

do the same thing, they create or edit a new light or an existing one depending on

the starting point, that is, the iOS app or the Raspberry Pi server. Once the light has

been edited, it notifies the other platform that there has been a change.

As an example, the server creates a light from the Raspberry Pi, then Lights Backend

notifies the iOS app to update the UI based on the new information. In the other way

around, when the iOS app updates a light, it notifies Lights Backend, which notifies

the Raspberry Pi with another message saying that there has been a change.

The messages that Lights Backend emits are basically for the client and the other

server to update something, either the UI in the first case or the database in the

!27

Figure 4. JSON response example from the endpoint /lights.

second one. As said before, a socket can have a message, said message is the light

itself in both cases.

To create a 1 on 1 communication with the client when the server broadcasts, the

backend sends special parameters in the messages. The codenames of those are:

light-:id and ios-light-:id. If the iOS app has the light’s id specified in the message, it is

able to parse it and use the content of such socket, always with a matching token.

5.4.2. LIGHTS BERRY ADAPTATIONS

Lights Berry inherits again the same configuration as it does Lights Backend from

the platform, the only change is that it adapts the sockets and the database to get and

represent what is needed in order for the light to change the color.

5.4.2.1. DATABASE

The product changes to confront the ability to save in the database the color, intensity

and status of a light instead of the generic values of it. A part from that, the address,

one to many relation, etc. remains the same.

5.4.2.2. SOCKETS

Lights Berry is listening to only one message from the backend for the light, that one

is, light-:id. This contains a light in the message. After a security check to see if the

controller_id of the light corresponds to the one stored in the database, it then updates

the stored light and notifies Lights Duino to change the color of said light.

5.4.2.3. BLUETOOTH COMMUNICATION

Every time there is a change in a light from the app, the platform sends a buffer in a

form of a characteristic with three values, the new RGB of the light.

!28

Those buffers are as simple and small as they can be, that is why the server sends

over just an array of integers between 0 and 255 to represent the color.

Finally, needs to be clarified that the intensity and the statuses vary the color number

that is sent; an intensity of 0.5 creates a different color than an intensity of 1; also a

status of off means that the number is 0. All the computation, is calculated in the

backend or in the app and not in the micro-controller in order to minimize the size of

the buffer and the computation of it making it faster and more reliable.

5.4.3. LIGHTS DUINO

This is the smallest components of all and consists of a small micro-controller. The

one used to do this project is the Arduino UNO.

Lights Duino consists in:

- A snippet of code controlling the Bluetooth shield that manages the RGB LED.

The electronic part involving the light is pretty simple; it is an RGB LED with a

Bluetooth shield that provides the BLE technologies required.

The RGB LED has a power supply of 5V with resistors around the pins in order to

not burn the small sub LEDs that form the main light. The connection between the

!29

Figure 5. Arduino schematics of the connection of an RGB LED.

shield and the pins is done, as seen in the figure 5, in the pins 9, 10 and 11. That

means that in the micro-controller code, there is the possibility to use the functions

analogRead or analogWrite, and not the digital ones. This is something needed to put a

value in the LED between 0 and 1, challenges found using the digital architecture are

shown in section 5 of the annex II.

5.4.3.1. BLUETOOTH IN THE ARDUINO

In order to use Bluetooth in the Arduino, there is a challenge. Looking at the specs[2]

of the Arduino UNO, there is no bluetooth available that can produce BLE. There has

been two attempts in this project in order to accomplish Bluetooth; one with the old

Bluetooth pattern (serial port connection) and one with the new BLE (peripheral

connection) introduced in Bluetooth 4.0.

I. Serial port connection

In order to accomplish a simple Bluetooth connection, the Arduino uses in this case a

HC05 serial module. Such module cannot handle peripheral connectivity, that means

that the communication between both is unstable and cannot be guaranteed after a

new connection or reconnection to send multiple messages with a padding of time.

!30

Figure 6. HC05 general module schematics.

Another challenge that appears is the need to build a script[3] in shell in order to

perform the pairing of the two devices for the first time, which, since the new Bluez[4]

version for Linux, such task is a bit more complicated having to perform operations

into a dynamic system type. As a side note, the script solves that by putting delays

and expects, awaiting for the terminal to finish its job in every task.

II. Peripheral connection

Such connection is accomplished by an external Bluetooth shield; the one used in

this case is the BLE Shield 2.1[5]. This component communicates with the Arduino

through an ACI (Application Controller Interface), meaning that the pins perform

the same operation as the shield, transforming the Arduino code into the a code the

BLE shield can read with the provided libraries.

The peripheral connectivity allows multiple messages to be sent with different

paddings of time sleeping the central module and the advertiser while they are not

talking to each other. That is basically what Lights is and needs. Another fact that is

important is the pairing of it, which is done automatically and within code, that

!31

Figure 7. BLE Shield 2.1 main component, the nRF8001 BLE provider.

means that there is no need of external and internal Bluetooth libraries within the

system and the kernel of Linux.

5.4.3.2. HANDLING OF THE LIGHT

The first thing the program of the Arduino does is to open the serial port; that makes

the shield able to receive characteristics and connect to other devices. The serial port

loops every second to try to receive new information. Once a characteristic is sent

over a peripheral connection via Bluetooth the serial port checks the buffer sent from

Lights Berry to see if it contains an array with three numbers from 0 to 255. The BLE

shield reads those numbers with the function ble_read() provided by the creator’s

library and then it performs an analogWrite for those values to output in the LED.

5.4.4. LIGHTS APP

The app needs to communicate various things to the end user, easiness, cleanliness

and being a straight to the point solution. This section explains the flow of the app

and how the users experiences it by centering efforts into the UX and the

implementation of it.

Lights contains:

- Internal database to store the information coming from the backend.

- Socket connector to emit and receive messages.

- Bluetooth hub to advertise the app even though it is also prepared to be a

central module.

- Wheel of colors to select the desired color of the LED (all the color computation

related remains within the app).

!32

- Requester and networking layer to get information over HTTP from Lights

Backend.

Before jumping straight to the flow, figures 8 and 9 show the two main screens of the

app. Those are the most important screens since the one in the left is the one the user

sees in the beginning when it opens the app for the first time and the one in the right

is the one the user interacts with all the time. Those screens then need to show

consistency and be easy enough for the end user to use.

!33

Figures 8 & 9. The initial screen of lights (left) and the editing screen (right).

5.4.4.1. FLOW OF THE APP

The app presents other screens in addition to figures 8 and 9 in order to accomplish

the two main functionalities of it; the pairing of the light via bluetooth as well as the

fetching of it, and the controlling of it via sockets.

I. First screen

After the user installs the app in the phone it is presented with the screen in figure 8.

Such screen explains the purpose of the app and has a huge start button that lets the

user start pairing the app with the platform. This screen has more importance than

the others because is the first screen the user sees of the app. It needs to be functional

and have a good design to engage the user with the product.

There is a ripple effect around the button hinting the action the user should take

every time.

!34

Figures 10, 11 & 12. (From left to right) Searching, pairing and paired screens of Lights.

II. Searching screen

Once the user presses the start button, the app begins to look for peripherals around.

As in iOS, there is the need to grant access to the Bluetooth of the phone in order to

use it; the user is asked for it right before searching.

After that, the app simulates a radar to indicate that is performing the search of

peripherals.

Is important to note that the phone is not trying to connect to anything. The phone is

just advertising itself, it does not act as an advertiser; that basically means that the

communication is a bit different, the phone does not send any message to the

platform’s Lights Berry server, the phone tells the server that it wants information

and the server sends that information back within a characteristic.

III. Pairing screen

Once the connection is established, the server sends to the phone the token of the

controller and the id of said controller. With that information, the app is able to start

fetching the lights from the platform’s Lights Backend’s HTTP RESTful API, going to

the next step when this one is ready.

As a side note, there is a designed error display where connection errors, internet

problems and such are shown.

IV. Paired screen

Even though this is just another step that could seem unnecessary, in this screen the

app downloads the content mentioned in point III and starts the connection to the

backend via web sockets. When this is done, the end user is able to start controlling

the lights after pressing the white button in the bottom of the figure 12.

!35

V. Editing screen

The editing screen shall only do one thing and one thing only, editing the lights.

Instead of doing some sliders to change the colors, the design opts to do something

different, a bit more fun and easier to use. The wheel changes the colors when the

user rotates it or changes the intensity when the user varies the radius of it.

With a big button to turn it on and off, the UI changes based on the color the user

selects.

Finally, needs to be said that the user is able to search for new content or new lights

tapping the button in the top right corner of figure 9; after that, the process starts

again in point I.

5.4.4.2. INNER OPERATIONS OF THE APP

The app performs various inner operations under the hood. Some are convenience,

like not showing the UI while there is no internet connection, some are UX related

tasks like showing the pairing screen if there is no light saved yet in the persistency

layer.

A part from those conveniences, the app downloads the content from the Lights

Backend in the /lights endpoint; when the response is valid, it saves the light into the

persistency layer and connects via sockets with the library socket.io[6]. Once this is

done, the user is able to spin the wheel that performs the computation to get the

position of the finger, building from that, the color for the LED light, sending a

socket with the updated light object at the end.

As explained before, the app also advertises itself via Bluetooth to get the token and

the controller_id in order for it to perform the Lights Backend requests.

!36

5.4.5. INDUSTRIAL DESIGN

Lastly in the making of the lights, there are two pieces of industrial design that are

done. A hub (the container of Lights Berry) and a light (the container of Lights

Duino).

The plans from figure 13 are shown in section 1 of the annex III.

5.4.5.1. DESIGN OF THE HUB

For the design of the hub is necessary to do something simple, intuitive and easy to

use. To do that the end user needs basically some key components in it:

- A reset button to restart the system in case there is a problem.

- An indicator that the device is ready to start pairing.

With that in mind, the hub also needs to contain a mini computer as the Raspberry Pi

and have a connector to ethernet as well as to the current.

The design of it features a black beveled box with an indicator in the frontal part and

the connections (ethernet and current) with the reset button in the back. In the top

face there is a circular indicator for other events and future versions of the product.

!37

Figure 13. 3D render of the hub that controls the lights.

Such indicator could be used to show the current status of the lights, etc. Finally, the

color of the hub is a black mat in the top and a plastic reluctant black in the sides.

5.4.5.2. DESIGN OF THE LIGHT

The design of the light has in mind that needs to be for the general public. The color

chosen for the lamp is an industrial gray with a shape that reminds to an old light.

The lamp has multiple functions and positions and is designed with that intention in

mind. It can be just a small lamp in the ground or in a table, featuring 4 screws in the

face of it to stay in the desired position of the user, and it can also be used as a

spotlight with the back part that subjects it.

With that introduction, the design of the lamp can be seen in the figures 14 and 15

with the plans of it appearing in the section 2 of the annex III.

The lamp is designed to have an E26 LED light type that is provided to have the

hardware inside already available.

!38

Figures 14 & 15. Close up 3D renders of the light with a ground position. Size in comparison of a dollar coin.

The light’s materials are steel for the body of the lamp and stainless steel for the

small screws that go in the middle of the big screws in the back. The front part of the

light can be in crystal or plastic.

As a small detail and as seen in figure 16, the back of lamp has a small button that

turns on and off the light so the user does not have to unplug it from the current if

such user does not have the app around.

As seen in figures 14 and 15 with the comparison of the coin, the light is small

enough because it needs to be portable and easy to hold for the user to be able to

change the position of it. That is why the main body, from head to the feed is

roughly 40 cm. Being the diameter of the eye 23 cm.

Aspects aside, the look of the light is industrial and trendy, with first class materials

that makes it not for the geek market but for the general one instead. The ability of

being a lamp separately without the hub adding the button in the back opens the

end user and the market of it a little bit more, even though that is not the main

intention of it.

!39

Figure 16. Detailed back of the lamp with the button to control it.

5.5. REFERENCES

[1]. GitHub. NodeJS startup script [2016, May 21]. Retrieved from: https://

gist.github.com/RamonGilabert/e15e91de0b5937e145bba4cca342c637

[2]. Arduino. Arduino UNO landing website [2016, May 21]. Retrieved from:

https://www.arduino.cc/en/main/arduinoBoardUno

[3]. GitHub. Bluetooth script to pair devices [2016, May 21]. Retrieved from: https://

gist.github.com/RamonGilabert/046727b302b4d9fb0055

[4]. BlueZ. BlueZ library release notes [2016, May 21]. Retrieved from: http://

www.bluez.org/category/release/

[5]. Red Bear. BLE shield landing page [2016, May 21]. Retrieved from: http://

redbearlab.com/bleshield/

[6]. Socket.IO. Library to send web-sockets from the web or from an app [2016, May

23]. Retrieved from: http://socket.io 

!40

https://gist.github.com/RamonGilabert/e15e91de0b5937e145bba4cca342c637
https://www.arduino.cc/en/main/arduinoBoardUno
https://gist.github.com/RamonGilabert/046727b302b4d9fb0055
http://www.bluez.org/category/release
http://redbearlab.com/bleshield/
http://socket.io

6. TESTS AND RESULTS

There are numerous tests performed for the project to accomplish a maximum of 1%

or less of error in all the listed cases, this introduction names a few.

The main tests across the project cover the most error prone situations, which for

instance are:

- Connection of the app lost.

- Bluetooth connectivity lost.

- Device not found during search over Bluetooth.

- Multiple pairing of devices with the hub at once.

After those, it is important to cover the least error prone situations and the ones that

are a bit harder to fix or are not fixable by the developer of the project since they

relay in third party libraries and such.

- Web sockets fail in connection or in sending.

- The Bluetooth BLE 2.1 Shield stops working.

There are also stress tests in the emitting and broadcasting socket as well as the

Bluetooth connection.

- Stress tests sending hundreds of requests per minute within a socket.

- Stress tests sending hundreds of requests per minute within the Bluetooth

connectivity.

Finally, there are tests covering the whole process (when a new user connects for the

first time the hub and the light), to see the rate of success in that scenario.

!41

Each of the sub-sections has an extended explanation on why that particular test is

needed and the success rate of it. Needs to be said that each test has a span of 8 to 16

tries for each situation, that, is added to all the debugging done during development,

which makes it a final span of 8 to 60 tries for each.

All the tests are ran in debugging mode and with logs present at all times, that

means that there is full control of the situations and if any problem occurs, it is

tracked with different debugging tools.

6.1. ERROR PRONE SITUATIONS

In this case, an error prone situation represents anything that happens often or can

happen for no apparent reason within the code, that could be the loss of internet

connection, etc. such errors are separated into:

- Bluetooth connectivity problems such as disconnection, device not found, etc.

- Internet connectivity problems such as low internet, no internet at all, etc.

!42

Figure 17. Arduino connection for the RGB LED.

- Multiple devices trying to send sockets, connecting to the hub, etc. (stress tests)

at once.

- Others, device not opening in a correct way, resetting not working, connection

done in more than a period of time, etc.

6.1.1. BLUETOOTH TESTS AND RESULTS

Testing Bluetooth connectivity is hard in terms of accessibility; the connection could

fail at any time even though the code is working; that means that there is no clear

scenario to reproduce a bug or a problem. That makes the test be just difficult to

perform and leads to the only type of test that makes sense, which is the error by

trying.

First thing is to test if the Raspberry Pi connects to the phone via Bluetooth finding

the light every time it resets.

I. Test over first connection - Light found.

The present test covers the cases where the hub is turned on and the light is either on

or about to be.

Table 2. Pairing tests via bluetooth.

Time to find the light Pairing success Connection time after found

5s ✓ 1s

6s ✓ 1s

7s ✓ 1s

5s ✓ 1s

5s ✓ 1s

6s ✓ 1s

5s ✓ 1s

6s ✓ 1s

!43

In order to do the test, the hub needs to be on (green LED with a value of 1). After

that, a timer that tells the «Time to find the light» column starts to run. When the

BLE shield turns on its LED, the test is done, it means that the connection is

successful.

II. Test after first connection - Light controlled.

The present test has the intention to cover the case where the first test has passed

and the user starts controlling the light with the phone.

After the green LED of the hub is on, the user tries to turn on and off the light

repeatedly checking when it behaves as it should, annotating the seconds elapsed in

«Time to connect to the light» since such LED turned on.

The last column of this test annotates if the status of the light is fetched from the

central database in the cloud.

III. Test over phone connection - Phone pairing for the first time.

The present test covers the pairing of the phone with the hub for the first time when

the user downloads the app from the AppStore.

Table 3. Pairing tests after the first connection is established.

Time to connect to the light Fetched status from database Pairing success

2s ✓ ✓
1s ✓ ✓
1s ✓ ✓
2s ✓ ✓
3s ✓ ✓
2s ✓ ✓
1s ✓ ✓
1s ✓ ✓

!44

Since this is the first experience that the user has with the app and the platform, it is

important for this test to be perfect. As a side note, the «Time to get the

characteristic» is a bit bigger since the platform (for the first time ever), needs to find

the light and connect to it too.

IV. Test over phone connection - Phone pairing for the X time.

The present test covers the phone connecting or trying to look for the hub again after

the first connection has been successful; that is, when the user taps the search button

in the upper right corner to search again for a new light.

Table 4. Phone pairing rate of success for the first time.

Time to get the characteristic Pairing success Seconds to start controlling

3s ✓ 1s

3s ✓ 1s

4s ✓ 1s

5s ✓ 1s

2s ✓ 1s

2s ✓ 1s

3s ✓ 1s

4s ✓ 1s

4s ✓ 1s

5s ✓ 1s

2s ✓ 1s

Table 5. Phone pairing rate of success for the X time.

Time to get the characteristic Pairing success Seconds to start controlling

1s ✓ 1s

2s ✓ 1s

2s ✓ 1s

1s ✓ 1s

3s ✓ 1s

!45

6.1.2. INTERNET TESTS AND RESULTS

The test in this section contains a poor yet inexistent internet connection from the

device of output (iOS phone) to the Lights Backend in order to control the light,

showing the seconds of duration based on the MB/s of downloading and uploading

that the phone has.

The profile used to perform this test is the one in the following table.

2s ✓ 1s

1s ✓ 1s

4s ✓ 1s

Time to get the characteristic Pairing success Seconds to start controlling

Table 6. Low or inexistent internet connection tests.

Duration in seconds to perform KB/s Success in changing

3s 500 ✓
4s 500 ✓
5s 500 ✓
3s 500 ✓
5s 500 ✓
6s 500 ✓
7s 500 ✓
4s 500 ✓

Table 7. Parameters of the internet connection used in the tests.

Downlink Uplink

Bandwidth 1 MBPS 500 KBPS

Packets dropped 10% 10%

Delay 500ms 500ms

!46

6.1.3. STRESS TESTS

There are two ways to perform the stress tests; the first one is by performing lots of

requests to the server in the cloud, the other one is stressing the Raspberry Pi, thus

the light with multiple connections at once.

The following tests present the number of connections per minute that are done in

order for the test to pass.

I. Stress to the cloud

To perform such operation, the backend reduces resources (cores, power, etc.) and

sleeps more often; that makes each request to be slower since it has to either wait for

the backend to be awake or to finish processing its current requests. In order to fix

possible errors, there is going to be an increase in the number of cores and power of

the server having it always awake depending on how many users Lights has; the

price for this aspect is shown in section 7.2.3 in the column of costs derived from

hosting.

Table 8. Stress connection tests to the cloud.

Requests per minute Time of response Connection success

60 1s ✓
120 1s ✓
180 1s ✓
240 1.5s ✓
300 1.5s ✓
360 1.5s ✓
420 2s ✓
480 2s ✓
540 2s ✓
600 2s ✓ (98% of the times).

!47

The connection success rate is given by weather the table in the database changes

when the socket is performed and if the backend does not crash or sends back a 503

error (Internal Server Error) or a socket not connected error.

As seen in the last requests, 10 connections per second to the backend are too much

causing the server to crash. By adding more resources (which is configured to do

automatically), this gets fixed.

II. Stress to the light

The present test is related to the previous one because after there has been a success

in the database, Lights Backend tries to connect to Lights Berry. Such connection to

the hub is what this test measures. The result of it is given by the change of the light.

It can be either a positive result (the light changes or turns state) or a negative one

(the light does not change status or it shuts down because of overload).

The last requests have a 100% success rate relative to the success rate of the one in

Lights Backend with the same number of requests.

Table 9. Stress connection tests to the hub.

Requests per minute Time of response Connection success

60 1.5s ✓
120 1.5s ✓
180 1.5s ✓
240 2s ✓
300 2.5s ✓
360 2s ✓
420 2.5s ✓
480 2s ✓
540 2.5s ✓
600 2.5s ✓

!48

6.2. PROCESS TEST

It is so important to make a great product in the exterior of it as it is to make a

perfect development and execution in the interior. The process test measures the first

time ever the user connects the hub for the first time and downloads the app from

the store altogether.

The way this test measures its results is by measuring time and success rate of the

different phases. A first timer that tells when the hub has posted itself (the

controller), a second timer that tells if the light is connected, letting the third timer

tell if the phone got a successful connection. After that, the success rate is

represented by if the light changes state from a phone’s command.

The tests are performed in a good internet connection environment because the hub

is connected to the ethernet. The first process «Hub ready» is the most complicated

one, thus it takes more time, that is because the app needs to initialize, check

databases, fetch information from Lights Backend, etc. other than that, the BLE

shield does a really good job finding and performing Bluetooth connections.  

Table 10. First time process success rate.

Hub ready Light found Phone found Success

5s 1s 1s ✓
6s 2s 1s ✓
3s 2s 1s ✓
4s 1s 2s ✓
5s 2s 2s ✓
4s 2s 2s ✓
3s 1s 3s ✓
4s 2s 1s ✓
3s 1s 1s ✓
4s 2s 3s ✓

!49

7. BUDGET AND ENGINEERING

The present point, and explicitly section 7.1, explains the cost of the technologies and

the design of a light that is prototyped and built before the design phase, using

section 7.2 to show the costs derived from porting such prototype into mass

production. Such sections are shown depending on if they are all time costs

depending on production or one time costs depending on development.

The industries before the prototype include:

- Creative and concept design.

- Development and engineering to have a working object.

- Design phase with materials and different tests.

The industries after the prototype include:

- Fabrication of different sub-prototypes with different end results and the same

design idea to check, after user testing, the best and most accepted end result.

- Industry for the quality of the service in a stress test of the points stated in

section 6.1.3 as well as a stress test for the materials and the construction of it.

- Perfectionism and iterating engineering.

- Global manufacturing.

This section tries to simplify the budget of the project understanding the

construction of Lights into mass production and comparing mass prices over

different provides over the world and facing them towards the estimates.

!50

Needs to be said that all the work that is done before and after the prototyping phase

is a one man work and hour, so this budget does not show how a cross functional

team of any sort would perform doing the same operations.

7.1. GENERAL OVERVIEW OF LIGHTS

Before jumping into the estimations and the actual cost in mass production, this

section explains the man hours involved and the components that are being used in

Lights. Thus, this section explains the before industries, which simplify the after

ones.

7.1.1. CREATIVE AND ARCHITECTURAL PHASE

In every creation of a platform there is a lot of creative phase in order to decide what

the product needs to end up being, which concepts are involved to it and even the

architecture of each of the most valuable ones.

The hours spent on this section are hours that normally could not be billed or added

to the product if this was bound to be sold to a client or to a pitch of ideas; however,

since this is has an end result to a product with a general public, the hours are

counted as billable.

Following the Gantt diagram shown in table 1 in section 4.3; the design phase,

creative phase, and so on, take place over the course of 3.5 months, with the

discussions for the architecture taking place all over the project. The first estimation

for this phase is at around 60 hours to have all the architectural system prototyped in

paper before starting; those 60 hours include a small buffer to discuss further

solutions and solve different problems derived from scalability, etc. while

developing.

!51

7.1.2. DEVELOPMENT, TESTING AND ENGINEERING PHASE

While building a product there are hours of research, prototyping, internal design

and actual building and making of the product. This subsection explains in detail

each of the hours of the engineering process divided into the actual sub products of

the platform.

The hours spent to build the prototype, test and engineer are 220 hours in total and

are divided into different user stories within each epic, each epic represents one

topic, which represents a big theme or a big mark in the platform. Such user stories

follow the standard agile pattern[1] used as a standard in the development industry

to deliver in a faster and lighter way.

I. Lights Backend (70h)

As an admin I want to have a database to see all the controllers and products.

(17.5h)

As an admin I want to have a socket central module in where to manage

connections. (15h)

As an admin I want to have a basic RESTful API with the controllers and

products. (27.5h)

As a user I want the backend to be configured within the terms of lights. (10h)

II. Lights Berry (55h)

As an admin I want to have the control to be able to get and send sockets. (15h)

As an admin I want to be able to have a Bluetooth central module ready to get,

receive and send information via such communication. (30h)

!52

As an admin I want to have a requester pattern to communicate to a RESTful

API. (8h)

As a user I want to have a way to know that the product is ready to use. (2h)

III. Lights Duino (5h)

As an admin I want to be able to parse a buffer of 3 integers and represent them

in an RGB LED. (3h)

As a user I want to have a light and the electronics to see the results from the app.

(2h)

IV. Lights app (60h)

As a user I want a fast way to edit and control the color and status of the light.

(20h)

As a user I want to have the ability to pair to a device to get information. (15h)

As a user I want to connect via sockets to the platform. (5h)

As a user I want to be able to request and save in the persistency layer a light.

(15h)

As a user I want to be notified if there is no internet connection. (5h)

V. Scripts (15h)

As a user I want to have Lights Berry in connection to the current. (5h)

As an admin I want to have a way to interact with BluetoothCTL. (10h)

!53

VI. Testing (15h)

As a user I want to have a crash free platform and product. (15h)

7.1.3. DESIGN, PROTOTYPE, TINKERING

The design phase contains the initial wireframes and final concept for the app as

well as the 3D prototypes and renders for the hub and lamp; all of that is presented

in sections 5.4.4 and 5.4.5. The estimation in hours also includes the learning of 3D

design and development done in Cheetah 3D[2].

The general estimation for the design phase, prototyping and tinkering of it while

the development process is on course is of around 40 hours in total. 15 hours for the

app and 25 for the actual 3D renders, learning, plans (shown in annex III), etc.

7.2. TOTAL COST ESTIMATIONS

After seeing the actual hours divided into each phase, the estimations of the costs is

presented in this sub-section containing both the before prototyping and the after

one taking different manufacturing prices from different providers as an example.

7.2.1. ONE TIME COSTS

All the prices shown in table 11 display the general price to develop the platform

and the product, thus, this is a one time cost and not something that is applied to

every light or every end product separately.

!54

Note that this price does not include maintenance in the product as well as further

development; such task is done if enough lights and products are made and there is

enough money to continue with the development of it.

All the prices an hour are shown as the standard in the industry for a starter project.

7.2.2. PER LIGHT COST

With that, there is the need to add the prices of the different components used in the

project, such as the BLE shield, the Raspberry Pi as a micro computer, the Arduino as

the micro-controller, etc.

Table 11. Estimated cost of the industries involved before the prototype phase is completed.

Hours Price (1 hour) Total price

Creative 60 30 $1,800.00

Engineering 220 40 $8,800.00

Design 40 35 $1,400.00

General testing 20 20 $400.00

$12,400.00

Table 12. Cost of the distinct components per light.

Quantity Price

BLE Bluetooth Shield 1 $19.90

Arduino UNO 1 $29.95

RGB LED Bulb 1 $10.00

General components 1 $2.00

$61.85

!55

Even though the light and the hub are treated as one in production and

manufacturing, its inner components are different from one another, that creates two

tables.

Such prices show the cost of just one of the lights and not the price into mass

production which is cheaper than individually.

Finally, there is the need to add the prices for the materials used to build the lights as

well as the general electronic components.

General components include screws, trims, etc. The other prices are shown from

major wholesale industries in different places around the world making a mean cost

and price out of it[3][4][5].

Table 13. Cost of the distinct components per hub.

Quantity Price

Raspberry Pi 1 $35.00

General components 1 $2.00

$37.00

Table 14. Estimated cost of the materials used to produce each light.

Quantity Price

Steel 400 gr $0.86

Plastic 50 gr $0.02

Cables 1 m $1.00

General components - $2.00

$3.88

!56

7.2.3. MASS COST

Finally, there is the need to calculate costs of some of the parts of the platform based

on the mass production that it has, that is, cost of the hosting depending on how

many users[6], cost of the packaging and general manufacturing, etc.

There is an special consideration in the table which is that one pack is 3 lights and 1

hub and all of them have the same price so the total cost is divided by 4 to simplify

terminology.

The final manufacturing costs (that include packaging) are an estimation based on

different providers called in Norway.

Table 15. Estimated cost of the materials used to produce each hub.

Quantity Price

Plastic 300 gr $0.12

Cables 2 m $2.00

General components 1 $1.50

$3.62

Table 16. Estimation of the cost in mass production of the different values.

Packs Manufacturing Hosting (mo) Before industry Maintenance Cost per light

1 $280.00 $0.00 $12400.00 $0.00 $3,170.00

10 $2,800.00 $7.00 $12400.00 $0.00 $380.18

100 $26,000.00 $7.00 $12400.00 $500.00 $97.27

1,000 $50,000.00 $100.00 $12400.00 $10,000.00 $18.13

10,000 $500,000.00 $500.00 $12400.00 $50,000.00 $14.07

100,000 $5,000,000.00 $750.00 $12400.00 $100,000.00 $12.78

1,000,000 $50,000,000.00 $1500.00 $12400.00 $250,000.00 $12.57

10,000,000 $500,000,000.00 $5000.00 $12400.00 $650,000.00 $12.52

!57

Table number 16 shows that the price of a light and thus, a hub tends to 12.5$ in a

real mass production environment. That represents more people working on

maintenance, making the company evolve, new technologies in the product,

improvements in the platform, etc.

Such prices do not include the general marketing of it, making it a bit hard to

estimate since the starting point is a crowdsourcing campaign where the marketing

is done by itself. Transport costs derived from the selling of products from the

campaigns are included as a plus in the price and do not affect the cost of the

product; that also applies to taxes in different countries derived from the light, being

the taxes from the manufacturing process included as per Norway (25%) and is

susceptible to change based on the country in which such production is performed.

7.3. MARKET STUDY AND GENERAL PUBLIC

Is difficult to predict the market that a light like this one is bound to have.

Depending on how much stores, marketing, etc. it might have more or less sells.

However, the idea for this project is to make a crowdsourcing campaign out of it,

which reports documented cases of other successful campaigns ran and can give a

rough estimate of the product income, inversion to make, etc.

It is seen in section 7.2.3 that the price that a light should target to is of around 14$ or

less; that means having at least 30000 lights and 10000 hubs, which is the equivalent

to 10000 packs on sell.

This would make the total cost, if the intention is to have lights at the target price

mentioned, of around $600,000 (!); such price includes a bit of

a margin for the business but not the 30% that is intended to be added.

After a quick look in the most popular crowdsourcing campaigns, it is seen that such

projects normally pledge something around $400,000 to $600,000[7][8]. Such lights cost

10000$ ⋅(14$ ⋅4)+ 40000$

!58

around 19 - 20 dollars each, which makes it more expensive than the price lights is

targeting to (without transport and marketing costs since it is a given that such

crowdsourcing campaigns provide it already and the transport is added as a plus on

top).

A part from that though, needs to be said that the intention of the lamp is not just to

be smart but also to be a normal use case light; that is since it has buttons to interact

to within the hardware; that potentially opens up the public of it to a wider range

and, when categorizing the product, it could be recognized under design and not

only under technology.

7.4. FINAL COST ESTIMATION

Table 16 shows that, with a production tending to more than 4000 units of the

product, Lights starts to be an affordable object and starts competing with the other

products in the market seen in section 3.

Making the product tend to more units and imagining an scenario where the market

is strong enough, a pack of Lights would cost 50$ without the business margin,

adding a margin of around 30%, different marketing campaigns for it in different

websites, etc. and costs derived from other aspects, the final price of it would be at

around 80$ a pack, meaning 3 lights and one hub.

That makes the product affordable enough and with an amortization due to the

10000th pack.

7.5. REFERENCES

[1]. MGS. Agile user stories, how to write them [2016, May 28]. Retrieved from:

https://www.mountaingoatsoftware.com/agile/user-stories

!59

https://www.mountaingoatsoftware.com/agile/user-stories

[2]. Cheetah3D. 3D software for design [2016, May 28]. Retrieved from: http://

www.cheetah3d.com

[3]. Alibaba. Stainless steel wholesale [2016, May 29]. Retrieved from: http://

www.alibaba.com/product-detail/carbon-steel-or-stainless-steel-

wire_60364005977.html?spm=a2700.7724838.0.0.z0qiqW

[4]. Alibaba. Polycarbonate plastic wholesale [2016, May 29]. Retrieved from: http://

www.alibaba.com/product-detail/UV-Reflective-Wholesale-Makrolon-Solid-

Polycarbonate_60401155754.html?spm=a2700.7724838.0.0.v7XEZd&s=p

[5]. Alibaba. Cables wholesale [2016, May 29]. Retrieved from: http://

www.alibaba.com/product-detail/Europe-Plug-RF-03_60406625917.html?

spm=a2700.7724838.0.0.F4GzKZ

[6]. Heroku. Heroku pricing [2016, May 29]. Retrieved from: https://

www.heroku.com/pricing

[7]. Indiegogo. Smart bulb campaign in a crowdsourcing website [2016, May 29].

Retrieved from: https://www.indiegogo.com/projects/world-s-most-affordable-wi-

fi-smart-bulb#/

[8]. Kickstarter. Smart lamp campaign in a crowdsourcing website [2016, May 29].

Retrieved from: https://www.kickstarter.com/projects/2128753402/fluxo-the-

worlds-first-truly-smart-lamp  

!60

http://www.cheetah3d.com
http://www.alibaba.com/product-detail/carbon-steel-or-stainless-steel-wire_60364005977.html?spm=a2700.7724838.0.0.z0qiqW
http://www.alibaba.com/product-detail/UV-Reflective-Wholesale-Makrolon-Solid-Polycarbonate_60401155754.html?spm=a2700.7724838.0.0.v7XEZd&s=p
http://www.alibaba.com/product-detail/Europe-Plug-RF-03_60406625917.html?spm=a2700.7724838.0.0.F4GzKZ
https://www.heroku.com/pricing
https://www.indiegogo.com/projects/world-s-most-affordable-wi-fi-smart-bulb#/
https://www.kickstarter.com/projects/2128753402/fluxo-the-worlds-first-truly-smart-lamp

8. MOTIVATION AND CONCLUSIONS

8.1. MOTIVATION

The idea of the project is born from the passion to solve a problem that, as engineers

we are encountering more and more nowadays, diversity and specialization. My

knowledge is based in an electronic engineering degree combined with software

development and, in those two fields, the diversity of ideas is growing every day

more and more. From an electronic perspective there are more and more optimized

versions of new components every day, cheaper hardware, more memory or more

capacity means more innovation; as per software, there are more and more

programming languages aiming to become the next big thing, frameworks to do new

components, etc. but there is quite nothing that unifies what we have learnt in the

past 50 years from software development with the knowledge that we are getting

nowadays from hardware and electronics.

This project aims to unify my knowledge to create something that has smartness,

union, and components working together to create something that just 10 years ago

was so costly and difficult that we could not think of.

8.2. WHY LIGHTS

Lights has two main focuses. First, to proof that the future is merging different fields

within engineering such as computer science and electronics, but most importantly,

Lights is born to proof that home automation, connected devices and the internet of

things can be cheap and easy enough for people to use at their homes targeting a

general public and not only the geek one.

The first question that raises is then, why a smart lamp? Lights, as mentioned in this

report has two servers that talk to each other; if something abstract enough from that

!61

paradigm can be extracted easily and something else can be imported into such

platform, anything can be smart and part of the home automation deal. A thermostat

could be connected into the current architecture changing some of the basic

parameters and then the project would be a bit different although the idea would be

the same. That means that with such paradigm, this project aims to create a platform

rather than just an end project; that led to just one question, which is the device to be

connected, the answer is a light for its visual feedback and easiness in the use and

installation.

8.3. CONCLUSIONS

It is hard to know where to stop when building something as generic and straight

forward into the future as this. After the whole process explained in this document,

Lights turned to be a generic open source platform with an inducted product that

can control lights from anywhere in the world, but the fact that anybody can edit it

and customize it to make it their own, makes this something that cannot be imagined

or described in just a small report.

From the first wheel invented until this project; lots of years of innovation and

inventions have put technology in our day to day lives; more and more people

interact with their devices now, 9 years ago we could not imagine holding a super

computer in our hands while now, we wear it in our wrists. Every day there is a new

couple of words together forming a new one, AI, VR, IoT, etc.

Breaking technologies disrupt the market being the next big thing until a new

technology appears and, within this world where we live, fast delivered solutions

that solve real problems in a light and easy way is something engineers, designers

and companies around the world are and will try to aim for.

!62

Within this context, Lights creates something the world is going towards to,

specialization while diversity within industries. In 2016 the future tells engineers

that they have to be able to jump into a new technology within weeks if they want to

keep their jobs, be in the last trends or even be able to carry on designing or

engineering products. This level of change is what makes Lights truly important; the

fact that it has so many industries together, so many technologies involved; software,

hardware, electronics, design, development, engineering, planning, economics,

financing and many more and just to name a few.

After more than 350 hours developing, researching, creating, writing and designing,

Lights is what it was intended to be, a prototype that can be used from anywhere in

the world, connected with all the easiness available, with a good design aiming to go

for the general public and ready to be sent into a crowdsourcing campaign; thus, it

completes the goals that were set in the beginning of this project back in October.

There are lots of new ideas coming every day that can be added into a project like

this, new technologies, languages or frameworks that improve the communications,

new shields or super tiny computers that give velocity and easiness in the

implementation or even new standards to push and add new users. With this, it is a

given that Lights is on and does not stop here with this spec; this is just the MVP of

something that can truly be the next big thing within the Internet of Things; that

field within software and electronics that is just about to get started.  

!63

9. GENERAL REFERENCE LIST

9.1. BIBLIOGRAPHY

Gordon McComb [2013]. Arduino Robot Bonanza: McGraw-Hill.

Giancarlo Fortino, Paolo Trunfio [2014]. Internet of Things Based on Smart Objects:

Springer.

Guillermo Rauch [2012]. Smashing Node.js: JavaScript Everywhere: Smashing.

Mike Cantelon, Marc Harter, TJ Holowaychuk, Nathan R [2014]. Node.js in action:

Manning.

9.2. WEBLIOGRAPHY

ABI research. 1.5 Million Home Automation Systems Installed in the US This Year

[2016, May 15]. Retrieved from: https://www.abiresearch.com/press/15-million-

home-automation-systems-installed-in-th/

Apple. Developer documentation for CoreBluetooth [2016, May 25]. Retrieved from:

https://developer.apple.com/library/ios/documentation/

NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/

CoreBluetoothOverview/CoreBluetoothOverview.html

Alibaba. Stainless steel wholesale [2016, May 29]. Retrieved from: http://

www.alibaba.com/product-detail/carbon-steel-or-stainless-steel-

wire_60364005977.html?spm=a2700.7724838.0.0.z0qiqW

Alibaba. Polycarbonate plastic wholesale [2016, May 29]. Retrieved from: http://

www.alibaba.com/product-detail/UV-Reflective-Wholesale-Makrolon-Solid-

Polycarbonate_60401155754.html?spm=a2700.7724838.0.0.v7XEZd&s=p

!64

https://www.abiresearch.com/press/15-million-home-automation-systems-installed-in-th/
https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html
http://www.alibaba.com/product-detail/carbon-steel-or-stainless-steel-wire_60364005977.html?spm=a2700.7724838.0.0.z0qiqW
http://www.alibaba.com/product-detail/UV-Reflective-Wholesale-Makrolon-Solid-Polycarbonate_60401155754.html?spm=a2700.7724838.0.0.v7XEZd&s=p

Alibaba. Cables wholesale [2016, May 29]. Retrieved from: http://

www.alibaba.com/product-detail/Europe-Plug-RF-03_60406625917.html?

spm=a2700.7724838.0.0.F4GzKZ

Arduino. Arduino UNO landing website [2016, May 21]. Retrieved from: https://

www.arduino.cc/en/main/arduinoBoardUno

BlueZ. BlueZ library release notes [2016, May 21]. Retrieved from: http://

www.bluez.org/category/release/

Cheetah3D. 3D software for design [2016, May 28]. Retrieved from: http://

www.cheetah3d.com

Gartner. 6.4 Billion Connected "Things" Will Be in Use in 2016, Up 30 Percent From

2015 [2016, May 17]. Retrieved from: http://www.gartner.com/newsroom/id/

3165317

GitHub. Bluetooth script to pair devices [2016, May 21]. Retrieved from: https://

gist.github.com/RamonGilabert/046727b302b4d9fb0055

GitHub. Bluetooth struct within Lights [2016, May 21]. Retrieved from: https://

github.com/RamonGilabert/Lights/blob/master/Lights/Lights/Library/

Bluetooth/Bluetooth.swift

GitHub. Lights Backend by Ramon Gilabert [2016, May 16]. Retrieved from: https://

github.com/RamonGilabert/Lights-Backend

GitHub. Lights Berry by Ramon Gilabert [2016, May 16]. Retrieved from: https://

github.com/RamonGilabert/Lights-Berry

GitHub. Lights by Ramon Gilabert [2016, May 16]. Retrieved from: https://

github.com/RamonGilabert/Lights

!65

http://www.alibaba.com/product-detail/Europe-Plug-RF-03_60406625917.html?spm=a2700.7724838.0.0.F4GzKZ
https://www.arduino.cc/en/main/arduinoBoardUno
http://www.bluez.org/category/release
http://www.cheetah3d.com
http://www.gartner.com/newsroom/id/3165317
https://gist.github.com/RamonGilabert/046727b302b4d9fb0055
https://github.com/RamonGilabert/Lights/blob/master/Lights/Lights/Library/Bluetooth/Bluetooth.swift
https://github.com/RamonGilabert/Lights-Backend
https://github.com/RamonGilabert/Lights-Berry
https://github.com/RamonGilabert/Lights

GitHub. Lights Duino by Ramon Gilabert [2016, May 16]. Retrieved from: https://

github.com/RamonGilabert/Lights-Duino

GitHub. Lights Editing view [2016, May 21]. Retrieved from: https://github.com/

RamonGilabert/Lights/blob/master/Lights/Lights/Editing/Views/

EditingView.swift

GitHub. Noble library [2016, May 21]. Retrieved from: https://github.com/

sandeepmistry/noble

GitHub. NodeJS startup script [2016, May 21]. Retrieved from: https://

gist.github.com/RamonGilabert/e15e91de0b5937e145bba4cca342c637

Heroku. Heroku pricing [2016, May 29]. Retrieved from: https://www.heroku.com/

pricing

Home (Apple). An app to interact with the internet of things devices [2016, June 19].

Retrieved from: http://www.apple.com/newsroom/2016/06/apple-previews-

ios-10-biggest-ios-release-ever.html

HomeKit (Apple). A platform for the Internet of Things [2016, May 17]. Retrieved

from: http://www.apple.com/ios/homekit/

Honeywell. Honeywell history and inventions [2016, May 15]. Retrieved from:

http://twincities.honeywell.com/honeywell-history-and-minnesota-heritage/

Hue (Philips). A smart lamp and bulb connected with an intermediary hub [2016,

May 17]. Retrieved from: http://www2.meethue.com/nn-no/

Indiegogo. Smart bulb campaign in a crowdsourcing website [2016, May 29].

Retrieved from: https://www.indiegogo.com/projects/world-s-most-affordable-wi-

fi-smart-bulb#/

!66

https://github.com/RamonGilabert/Lights-Duino
https://github.com/RamonGilabert/Lights/blob/master/Lights/Lights/Editing/Views/EditingView.swift
https://github.com/sandeepmistry/noble
https://gist.github.com/RamonGilabert/e15e91de0b5937e145bba4cca342c637
https://www.heroku.com/pricing
http://www.apple.com/newsroom/2016/06/apple-previews-ios-10-biggest-ios-release-ever.html
http://www.apple.com/ios/homekit/
http://twincities.honeywell.com/honeywell-history-and-minnesota-heritage/
http://www2.meethue.com/nn-no/
https://www.indiegogo.com/projects/world-s-most-affordable-wi-fi-smart-bulb#/

Instructables. NodeJS and web-sockets tutorial [2016, May 20]. Retrieved from:

http://www.instructables.com/id/Easy-NodeJS-WebSockets-LED-Controller-for-

Raspberr/

Kickstarter. Smart lamp campaign in a crowdsourcing website [2016, May 29].

Retrieved from: https://www.kickstarter.com/projects/2128753402/fluxo-the-

worlds-first-truly-smart-lamp

Link Labs. Comparison between BLE and Bluetooth [2016, May 25]. Retrieved from:

http://www.link-labs.com/bluetooth-vs-bluetooth-low-energy/

MGS. Agile user stories, how to write them [2016, May 28]. Retrieved from: https://

www.mountaingoatsoftware.com/agile/user-stories

Nest (Alphabet). A smart thermostat [2016, May 17]. Retrieved from: https://

nest.com

Red Bear. BLE shield landing page [2016, May 21]. Retrieved from: http://

redbearlab.com/bleshield/

Servicelab. Control an Arduino with NodeJS over Bluetooth [2016, May 20].

Retrieved from: http://servicelab.org/2012/12/12/wirelessly-control-your-arduino-

with-nodejs-over-bluetooth/

Socket.IO. Library to send web-sockets from the web or from an app [2016, May 23].

Retrieved from: http://socket.io

UC3M. How to write a bibliography or a reference list [2016, May 31]. Retrieved

from: http://portal.uc3m.es/portal/page/portal/biblioteca/aprende_usar/

como_citar_bibliografia#sitios

!67

http://www.instructables.com/id/Easy-NodeJS-WebSockets-LED-Controller-for-Raspberr/
https://www.kickstarter.com/projects/2128753402/fluxo-the-worlds-first-truly-smart-lamp
http://www.link-labs.com/bluetooth-vs-bluetooth-low-energy/
https://www.mountaingoatsoftware.com/agile/user-stories
https://nest.com
http://redbearlab.com/bleshield/
http://servicelab.org/2012/12/12/wirelessly-control-your-arduino-with-nodejs-over-bluetooth/
http://socket.io
http://portal.uc3m.es/portal/page/portal/biblioteca/aprende_usar/como_citar_bibliografia#sitios

UC3M. How to write a scientific document [2016, May 14]. Retrieved from: http://

docubib.uc3m.es/CURSOS/Documentos_cientificos/Normas%20y%20directrices/

UNE_50135=ISO%205966.pdf

UC3M. How to write a scientific document [2016, May 14]. Retrieved from: http://

docubib.uc3m.es/CURSOS/Documentos_cientificos/Normas%20y%20directrices/

UNE_50135=ISO%205966.pdf

UNC. Formatting guidelines in a thesis [2016, May 14]. Retrieved from: http://

gradschool.unc.edu/academics/thesis-diss/guide/format.html

University of Lleida. Thesis law from the University of Lleida [2016, May 14].

Retrieved from: http://www.eps.udl.cat/docs/info_acad/normatives/tfg/actual/

normativa/Reglament_TFG_i_TFM.html

Wikipedia. Retina display explanation [2016, May 22]. Retrieved from: https://

en.wikipedia.org/wiki/Retina_Display  

!68

http://docubib.uc3m.es/CURSOS/Documentos_cientificos/Normas%20y%20directrices/UNE_50135=ISO%205966.pdf
http://docubib.uc3m.es/CURSOS/Documentos_cientificos/Normas%20y%20directrices/UNE_50135=ISO%205966.pdf
http://gradschool.unc.edu/academics/thesis-diss/guide/format.html
http://www.eps.udl.cat/docs/info_acad/normatives/tfg/actual/normativa/Reglament_TFG_i_TFM.html
https://en.wikipedia.org/wiki/Retina_Display

ANNEX I  

INDEX

1. Color wheel (iOS) 1..

2. Advertiser Bluetooth connectivity (iOS) 3..

3. Central module Bluetooth (NodeJS) 4...

4. Database in Lights Berry (PostgreSQL) 5...

5. Socket connectivity (NodeJS) 6..

6. References 7..

1. COLOR WHEEL (IOS)

The following code shows the main components to build a wheel like the one in the

Lights App.

Other helper functions are used to convert values from the HSV color space to the

RGB color space as it is seen in section 1 of the annex II. The important part, though,

!1

func createWheel() -> CGImageRef? {
 let dimension: CGFloat = Dimensions.size
 let bufferLength: Int = Int(dimension * dimension * 4)
 let bitmapData: CFMutableDataRef = CFDataCreateMutable(nil, 0)

 CFDataSetLength(bitmapData, CFIndex(bufferLength))

 let bitmap = CFDataGetMutableBytePtr(bitmapData)
 let final = Int(Dimensions.size)

 for x in 0 ..< final {
 for y in 0 ..< final {
 let point = CGPoint(x: CGFloat(x), y: CGFloat(y))
 var hsv: HSV = (hue: 0, saturation: 0, brightness: 0, alpha: 0)
 var rgb: RGB = (red: 0, green: 0, blue: 0, alpha: 0)
 let color = saturation(point)
 let saturate = color.saturation

 if saturate < 1 {
 let alpha: CGFloat = saturate > 0.992 ? (1 - saturate) * 100 : 1

 hsv = (hue: color.hue, saturation: saturate, brightness: 1, alpha: alpha)
 rgb = convertHSV(hsv)
 }

 let offset = Int(4 * (point.x + point.y * Dimensions.size))

 bitmap[offset] = UInt8(rgb.red * 255)
 bitmap[offset + 1] = UInt8(rgb.green * 255)
 bitmap[offset + 2] = UInt8(rgb.blue * 255)
 bitmap[offset + 3] = UInt8(rgb.alpha * 255)
 }
 }

 let colorSpace = CGColorSpaceCreateDeviceRGB()
 let dataProvider = CGDataProviderCreateWithCFData(bitmapData)
 let bitmapInfo = CGBitmapInfo(rawValue: CGBitmapInfo.ByteOrderDefault.rawValue
 | CGImageAlphaInfo.Last.rawValue)
 let reference = CGImageCreate(final, final, 8, 32, final * 4,
 colorSpace, bitmapInfo, dataProvider, nil,
 false, .RenderingIntentDefault)

 return reference
 }

Code 1-AI. Color wheel coded for an iOS app.

is to explain how to build a color wheel within milliseconds having to go within so

many pixels as a Retina display[1] has.

The main important part of the piece of code is the fact of interacting directly with

the C compiler, creating and async buffer with the CFMutableDataRef. With that and

two for loops to represent both the X and the Y axis that go through all the points of

it until the desired size of the wheel, the program calculates the exact value in the

color spectrum with the saturation function and adds it to the first array of mutable

data that we have previously created.

After such data is created, it performs and operation with the CGImageCreate global

function to create a small image of one pixel by one pixel of the given color

calculated, as said, with the relative position within the wheel.

Finally, needs to be said that the helper functions used and also the gestures of the

wheel can be seen in the footnote link that shows the file containing the called

EditingView[2]. 

!2

2. ADVERTISER BLUETOOTH CONNECTIVITY (IOS)

To create a Bluetooth connectivity within an iOS phone, the app asks for the

permission to get to the Bluetooth hardware and, after that and importing

CoreBluetooth, the developer can start being both a central module or an advertiser.

As in the previous section there are a bunch of helper functions that perform the non

essential operations[3].

In this snipped of code, it is shown the basic delegate methods called when

discovering peripherals around as an advertiser, from the service, to the

characteristic with the message within it. In this case, this message contains the

controller and the token to be used to fetch information from Lights Backend.  

!3

 let peripheralManager = CBPeripheralManager(delegate: self, queue: queue)
 peripheralManager.scanForPeripheralsWithServices([CBUUID(string: Constants.service)],
 options: nil)

 func peripheral(peripheral: CBPeripheral, didDiscoverServices error: NSError?) {
 guard let services = peripheral.services else { return }

 for service in services {
 peripheral.discoverCharacteristics([CBUUID(string: Constants.characteristic)],
 forService: service)
 }
 }

 func peripheral(peripheral: CBPeripheral, didDiscoverCharacteristicsForService service:
 CBService, error: NSError?) {
 guard let characteristics = service.characteristics else { return }

 for characteristic in characteristics {
 peripheral.setNotifyValue(true, forCharacteristic: characteristic)
 }
 }

 func peripheral(peripheral: CBPeripheral, didUpdateValueForCharacteristic characteristic:
 CBCharacteristic, error: NSError?) {
 if let data = characteristic.value, string = String(data: data, encoding:
 NSUTF8StringEncoding) {
 // Do what is needed with the string received.
 }
 }

Code 2-AI. Generic bluetooth advertiser for an iOS app.

3. CENTRAL MODULE BLUETOOTH (NODEJS)

To create a Bluetooth as a central module in NodeJS, there is the need to import a

library called Noble[4]. After a connection, Noble is able to start scanning.

When something is discovered, weather if it is a BLE Shield (the micro-controller

component) or Lights (the iOS app), it does one operation or another[5].

Needs to be said that Noble sends buffers in order to be able to transmit the

information; an example of that is when it finds an app; the token of the controller

and the id of it conform the characteristic that is sent back.  

!4

 noble.on('stateChange', function(state) {
 if (state === "poweredOn") {
 noble.startScanning();
 }
 });

 noble.on('discover', function(peripheral) {
 if (peripheral.advertisement.localName === "BLE Shield") {
 var address = peripheral.address;
 connect(peripheral, "713d0003503e4c75ba943148f18d941e")
 .then(function(characteristic) {
 // With the characteristic, save the address of the Arduino and create a light.
 } else if (peripheral.advertisement.localName === "Lights") {
 connect(peripheral, "7DAB97504510410CB030D5597D3EBE6D".toLowerCase())
 .then(function(characteristic) {
 var buffer = new Buffer(
 controller.token.toString() + ' ' + controller.id.toString(), "utf-8");
 characteristic.write(buffer, false);
 });
 }
 });

Code 3-AI. Bluetooth central module in NodeJS.

4. DATABASE IN LIGHTS BERRY (POSTGRESQL)

The snipet of code 4-AI, creates the database structure for Lights Berry. It has the two

entities needed to do so, Controller and Lights.

It is interesting to point out the last line of it, where, adding a constraint with a

foreign key, such code adds a relation to the Lights table from the Controller one in

order for each Light to have just one parent and the Controller to have multiple

lights instead.  

!5

CREATE TABLE Controller(
 id INT NOT NULL,
 phone_id INT NOT NULL,
 created DATE NOT NULL,
 updated DATE NOT NULL,
 address STRING,
 PRIMARY KEY (id)
);

CREATE TABLE Lights(
 id INT NOT NULL,
 status BOOL NOT NULL,
 intensity FLOAT NOT NULL,
 red FLOAT NOT NULL,
 green FLOAT NOT NULL,
 blue FLOAT NOT NULL,
 created DATE NOT NULL,
 updated DATE NOT NULL,
 token STRING NOT NULL,
 address STRING,
 controller_id INT NOT NULL,
 PRIMARY KEY (id)
);

ALTER TABLE Lights ADD CONSTRAINT lights_fkey FOREIGN KEY (controller_id) REFERENCES
Controller(id)

Code 4-AI. PostgreSQL snippet that creates the Lights Berry database.

5. SOCKET CONNECTIVITY (NODEJS)

In order to accomplish socket connectivity in NodeJS there are lots of libraries, to

choose one there is the need to look into which one performs best in iOS; after some

research the chosen library is socket.io[6].

The connection via sockets is pretty simple with such library. There is the need to

connect first and, after that, the receiver can get messages[7] whereas the emitter can

send them. It is seen in the code and implementation of Lights Backend that such

connection broadcasts messages to sockets instead of creating a 1 on 1

communication with them, that is just in case there was multiple users with the app

on controlling one light at the same time for instance. The example code above

shows a receiver socket.  

!6

 var socket = io.connect('https://lights-backend.herokuapp.com', { reconnect: true });

 socket.on('connect', function() {
 console.log('A light connected to the central server.');
 });

 socket.on('light-' + controllerID, function(light) {
 berry.light(light.light);
 });

 socket.on('new-ios-light-' + controllerID, function(light) {
 if (!controlled) {
 controlled = true;
 }
 });

Code 5-AI. Socket receiver in Lights Berry (NodeJS).

http://socket.io

6. REFERENCES

[1]. Wikipedia. Retina display explanation [2016, May 22]. Retrieved from: https://

en.wikipedia.org/wiki/Retina_Display

[2]. GitHub. Lights Editing view [2016, May 21]. Retrieved from: https://

github.com/RamonGilabert/Lights/blob/master/Lights/Lights/Editing/Views/

EditingView.swift

[3]. GitHub. Bluetooth struct within Lights [2016, May 21]. Retrieved from: https://

github.com/RamonGilabert/Lights/blob/master/Lights/Lights/Library/

Bluetooth/Bluetooth.swift

[4]. GitHub. Noble library [2016, May 21]. Retrieved from: https://github.com/

sandeepmistry/noble

[5]. GitHub. Lights Berry’s Bluetooth class [2016, May 23]. Retrieved from: https://

github.com/RamonGilabert/Lights-Berry/blob/master/app/classes/bluetooth.js

[6]. Socket.IO. Library to send web-sockets from the web or from an app [2016, May

23]. Retrieved from: http://socket.io

[7]. GitHub. Lights Berry’s Sockets class [2016, May 23]. Retrieved from: https://

github.com/RamonGilabert/Lights-Berry/blob/master/app/classes/socket.js 

!7

https://en.wikipedia.org/wiki/Retina_Display
https://github.com/RamonGilabert/Lights/blob/master/Lights/Lights/Editing/Views/EditingView.swift
https://github.com/RamonGilabert/Lights/blob/master/Lights/Lights/Library/Bluetooth/Bluetooth.swift
https://github.com/sandeepmistry/noble
https://github.com/RamonGilabert/Lights-Berry/blob/master/app/classes/bluetooth.js
http://socket.io
https://github.com/RamonGilabert/Lights-Berry/blob/master/app/classes/socket.js

ANNEX II  

INDEX

1. General concepts 1...

I. What is a RESTful API? 1..

II. What is an endpoint in an API? 2..

III. Details of an HTTP method. 2..

IV. Web sockets vs HTTP. 3...

V. What is and why Heroku? 3...

VI. What is and why Postgres? 4..

VII. Bluetooth, advertising, peer to peer. 4..

VIII. Theory of colors 6...

IX. What is a persistency layer? 8..

2. Other components 9...

3. The making of in numbers 10...

4. Testing the project 11..

5. Challenges 12..

6. References 13...

1. GENERAL CONCEPTS

This section explains general concepts used across the explanations in technological

detail that are useful to note. Some are generic terms in backend development, some

generic terms in the technologic world.

I. What is a RESTful API?

To answer this question, is best to start by defining what an API is; API stands for

Application Programming Interface and, while there are lots of types of APIs, this

explanation is centered in just a web based type system. An API represents a set of

protocols or tools that make building software easy and accessible for other clients to

interact with it.

As it is seen during the explanation of the making of, this project uses a shield to use

BLE technologies in the Arduino. The shield creator has facilitated an API for the

developers to access such shield, it has some methods, properties, etc. that the

developer can use.

In the case of the project, the API is the one that is provided by the server, in this case

the Lights Backend to the iOS app and to Lights Berry in order for those last two to

communicate with the central backend.

However, the question then is, what does the backend facilitate to the, in this case,

clients? Basically a RESTful pattern for them to be able to fetch, edit, add or delete

items in the cloud’s database.

A RESTful API provides the clients with a set of endpoints (routes, explained later)

in where to POST, PUT, PATCH, DELETE or GET items from the database. This

means that there is a separation of concerns between where the main data is, which

is in the backend, and where it is represented. And that is a backend with an API.

!1

II. What is an endpoint in an API?

An API endpoint defines a contract for the communication between a client and a

backend, this means that, the backend, since the API lives there, proposes a contract

with a set of routes (for instance /lights) to the clients, in those routes, the API does

something based on the HTTP method that the request is going with, this can be

deleting an entity in the database, etc. In the previous point it is said that those

methods can be POST, PUT, PATCH, DELETE or GET.

In an API that supports fetching /lights a GET /lights call would return normally a

JSON response with an array of light objects.

An endpoint can have multiple paths inside its own route, that means that /lights can

have an id to identify a specific light. That is represented like this: /lights/:id. In this

case, doing a GET /lights/:id would return just the light with the given id in the

request.

III. Details of an HTTP method.

HTTP is an application protocol that creates the basic communication over the web.

In the endpoint section, it has been said that when somebody requests something the

API responds with something else, can be JSON, can be HTML, can be anything.

In order for the API to return something there needs to be a transmission protocol, in

this case TCP (Transmission Control Protocol) to a particular port; that means that

when the server starts it opens a port somewhere in the cloud in this case. When the

client requests something to that port the server is able to return something.

The methods that form the HTTP pattern have been already said in the two previous

points above.

!2

Finally, needs to be said that an HTTP method has three main parts to do a request,

the method as explained before, some headers and the body. The headers are general

objects that should go to every request but that does not make sense to put into the

body. The body is the request in general if needed. A header to request or post JSON

could be the key Content-Type with the parameter application/json; the server then

knows based on the object in the header that the return type for the response should

be JSON.

IV. Web sockets vs HTTP.

While most of the internet is using HTTP, web sockets (referred as sockets in most of

this document) are a relatively new pattern that make internet communication

between devices and clients really fast and easy even though it breaks the pattern of

the safe communication over the net. Instead of having to create a connection every

time, a socket establishes a connection to another socket once; in this case one server

works as a socket and a client works as another one. Once this handshake is done,

both sockets can start sending messages to one another. This last part of the sentence

is crucial because in the HTTP requests the server is not prepared to talk back to the

client to request some information. With sockets, the server can listen to any message

the client can send.

V. What is and why Heroku?

Heroku is the chosen application platform to host the server[1]. Said platform works

as a server that contains multiple applications inside. Heroku’s difference over some

of the most famous competitors such as AWS[2] by Amazon is the deploying system;

once something is merged into the master branch in GitHub in this case, Heroku

deploys a new version of the server and makes it available right away, no need to

copy and paste code, etc.

!3

VI. What is and why Postgres?

PostgreSQL is the database language used to develop the project. Even though there

is no particular reason on why Postgres, it has worked really well during the whole

project with great support in Linux.

In order to check the status of the database, entities, tables, etc. A software developed

by an indie developer has been used, the name of the application is Postico[3].

VII. Bluetooth, advertising, peer to peer.

Bluetooth is one of the essential components of Lights and also one of the most

complicated topics to cover. This section explains the two types of Bluetooth

connectivity that exist and the one chosen in Lights.

Without entering into too much detail of the history of Bluetooth, this explanation

talks about the differences between a pairing system in Bluetooth and a BLE (central

module) system where other devices act as a peripherals.

In order to explain how Bluetooth works and used to work, this explanation uses as

an example a heart rate measurement system.

In this case, such system would be able to pair the device with the phone and that

phone would remember that that device was paired via Bluetooth. The next time

that heart rate measurement system would appear next to the Bluetooth module, the

phone would remember that the address of the device is something it should be

paired to, so it would try to connect to it, having always a bridge between those two

devices while in range.

While this is fine, Bluetooth 4.0[4] brought BLE, or Bluetooth Low Energy. This kind

of communication, while significantly similar to the old Bluetooth has the difference

!4

in that the central module, in this case the phone would sleep the connection while

not being in use. That would make the battery life significantly better.

The problem with BLE is that not every component supports it since it is a relatively

new thing, components such as the Arduino UNO do not have support for it nor

cheap serial modules of Bluetooth. That makes things a bit more complicated and

that is why third party libraries and components help in this case.

The way BLE works now is with peripherals, services and characteristics. Basically

there is a peripheral which is the device and another peripheral which is the phone.

One of them acts like an advertiser while the other acts like the central module. The

difference between those is basically that the advertiser looks for central modules to

connect whereas the central module waits for advertisers to appear in a search and

in range.

Following with the example of the heart system, the phone starts to look for an

advertiser peripheral around; once the heart system starts to advertise itself, the

connection is established and then a service connects to the central module (phone).

A service is a part of a peripheral that contains characteristics[5]. As an example, the

heart measurement system has a service called Heart rate service, such service

contains multiple characteristics with different messages inside, those could be the

!5

Figure 1-AII. Example of a generic connection for a health solution using BLE.

body sensor location, the heart rate measurement, etc. In the Lights’ case, this can be

for instance the light status, the light intensity, the light color and so on.

Those characteristics and the messages inside are the buffers that the central module,

or the advertiser receive.

Another key difference between the normal Bluetooth and BLE is the quantity of

data that it is intend to transport. While Bluetooth consumes a lot of battery, it also

transports a lot of data between devices. That is a problem that BLE does not have

since characteristics are intended to conduct small amounts of data, the heart rate in

a given time, the light color, etc.

VIII. Theory of colors

The theory of colors is something that needed to be used within the project when

building the app, as shown in the making of the product, the app has a wheel of

colors; those colors are built based on the location in the screen of the wheel, size,

radius, etc.

!6

Figure 2-AII. Characteristic examples within a peripheral connection.

Such wheel also needs to represent colors that can be ported to a LED. That fact is

why is necessary to understand how a color is built, different types of colors, etc.

There are multiple types of ways to represent a color, the most natural ones are the

RGB, standing for Red, Green and Blue, the CMYK model, standing for Cyan,

Magenta Yellow and Key (black) or for instance the HSB, standing for Hue,

Saturation and Brightness.

Each combination of those colors or parameters can build any color in the spectrum.

This explanation does not enter into much into the CMYK model, used a lot for

printed models. Instead, it explains the RGB model and how to port that model into

the HSB model, used to represent the wheel in Lights.

An RGB color[6] is the one that is created from the colors it stands for, as said before,

red, green and blue. Those colors from a range between 0 and 255 can create any

color. Additionally, there is another scale called RGBA, which also includes the alpha

of the color. This is not used to measure the intensity of such color in this case or the

opacity in a normal case. Example of colors are for instance the white color RGB 255

255 255 or the black, RGB 0 0 0.

In the other hand, an HSB color is represented by the hue, saturation and brightness

of a color. One by one, hue is the property of a color that represents its hue, meaning,

its general value, there are 6 hues in the spectrum: red, orange, yellow, green, blue

and violet; those are the pure bright colors. Saturation means the intensity of a color,

how intense a color is in its powerfulness, in photography, more saturation means

more powerful colors. Finally the brightness of a color means what it stands for, how

much brightness that color gives. While black gives zero brightness, white gives all

the possible brightness.

In order to build a wheel, it is easier to do so with an HSB spectrum, that is because

the representation of the colors are done with HSB, where the saturation goes with

!7

the radius and the hue goes with the shape of the circle. Combining those values in

an algorithm, this one is able to create a wheel of colors.

But the question still remains, how to convert that HSB color that the wheel needs to

be built to a RGB color that the LED can represent?

If the saturation is 0, the color is white because the radius is 0, the same happens

when the brightness is 1. There is a formula that represents all the other cases.

IX. What is a persistency layer?

The persistency layer in an application is represented by the database inside the app.

In iOS, normally done in Core Data[7] and nowadays with Realm[8] among others.

For this project, the persistency layer is built upon the NSUserDefaults that Apple has

in iOS. NSUserDefaults are a much more simple way to persist something if that

something is simple enough, one object, one primitive value, etc.

As what needs to be persisted in this app is just an array of lights, the defaults is the

best and easiest place to save it.  

!8

 var second = B < 0.5 ? B * (1 + S) : (B + S) - (S * B)  
 var first = 2 * B - second 
 
 var R = 255 * converter(first, second, H + (1 / 3))  
 var G = 255 * converter(first, second, H)  
 var B = 255 * converter(first, second, H - (1 / 3))

 func converter(first, second, hue) { 
 if (hue < 0) hue += 1 
 if (hue > 1) hue -= 1 
 if ((6 * hue) < 1) return (first + (second - first) * 6 * hue) 
 if ((2 * hue) < 1) return second 
 if ((3 * hue) < 2) return (first + (second - first) * ((2 / 3) - hue) * 6)
 
 return first 
 }

Code 1-AII. HSL (HSB) to RGB conversion for iOS.

2. OTHER COMPONENTS

Is worth mentioning some of the components that have been useful to develop while

doing the platform and that work as a separate library or component for other

people to use. As stated already all the code and design for Lights is open source and

available in GitHub[9].

The first component is Socket[10], a client to send web-sockets in the format of

socket.io to any connection. Editing some parameters and putting the code lets you

send a message. This is useful before having the app to test if the sockets are

working or not without having to build a special client for it.

The second component is Ripple[11], a convenience library to create ripples in a UI’s

app, really simple made and easy to use.

The third component is Bluetooth[12], this library makes the task of configuring a

Bluetooth device within your app really easy, weather you are advertising or looking

for peers as a central module, trying to receive messages or anything similar to it.

Bluetooth creates the central managers for you.  

!9

http://socket.io

3. THE MAKING OF IN NUMBERS

After 2 servers, an iOS app, some shell scripts for Linux, some libraries, Arduino

code, and many more, the prototype is up and running. Some of the numbers that

led to finish the project are the following.

- The project has more than 15000 lines of code written by the author and more

than 20000 lines combined with external libraries.

- The project has 7 different programming languages (NodeJS, PostgreSQL,

Swift, Shell, HTML, CSS and C).

- The whole project including design is open source and available in GitHub.

- The project includes electronics and software going together as is the case of

the Bluetooth connectivity.

- The project has created 3 different libraries available after its creation, listed in

5.9.

- People from over 7 different countries have helped in the concept, idea and

making of the project.

- The production of the code and the design has been done during more than 4

months every afternoon.

!10

4. TESTING THE PROJECT

This section explains how the process of testing the platform is, since there are lots of

components involved, there are also lots of ways to test each of them individually

and in group. As section 6 explains, there are different things to test in a platform of

this magnitude.

For the Lights Backend, as it is just a straight forward API, the local version of it is

just running in the computer and, when working, deploying to Heroku. In order to

test such API there is a RESTful client named Paw[13] that has been used. To use this

client the user just enters some parameters about the HTTP request and makes the

call towards the API, the app returns the response from the backend.

For Lights Berry the situation is different. Postgres does not behave in the same way

in Mac OS X than it does in Linux which makes it a bit harder to test since the

configuration needs to be different. The way it is solved is to do the simple backend

in Mac OS X pushing a working version to GitHub. After that, over SSH to the local

IP of the Raspberry Pi just connect to it, clone the git repository, run the builder to

install all the dependencies and run the server over SSH. That way the interaction is

done easily, testing the code by putting logs across the server.

To test the sockets, the component mentioned in section 2 of the annex II is used, the

one called Socket; that makes the process easier because there is no need to build a

client or an app in order to see some results before jumping into the actual

production code.

The native app is tested multiple times doing the process of changing lights, etc.

over and over to check if it works 100% of the times. The app has also been tested

while developing, which makes it less error prone than the other solutions.  

!11

5. CHALLENGES

Before the server had Bluetooth communication the light was controlled by the

Raspberry Pi itself, the problem with that is basically that the Raspberry Pi does not

have multiple analog pins. it works with digital pins, with an output of either 1 or 0.

In order to accomplish different colors there is the need to give values like RGB 0.5

0.1 0.7 and not only 1 or 0. The way to solve this is to make pulses of different

frequencies to achieve the color that the RGB value represents. It is what is known as

PWM modules.

This is obviously solved by just letting the Arduino connect the light over its analog

ports. Those can produce different outputs than either 0 or 1.  

!12

Figure 3-AIII. Graph comparing a PWM signal with an analog output.

6. REFERENCES

[1]. Heroku. About page of Heroku [2016, May 24]. Retrieved from: https://

www.heroku.com/about

[2]. Amazon. Amazon Web Services [2016, May 24]. Retrieved from: https://

aws.amazon.com

[3]. Egger Apps. Postico app explanation [2016, May 25]. Retrieved from: https://

eggerapps.at/postico/

[4]. Link Labs. Comparison between BLE and Bluetooth [2016, May 25]. Retrieved

from: http://www.link-labs.com/bluetooth-vs-bluetooth-low-energy/

[5]. Apple. Developer documentation for CoreBluetooth [2016, May 25]. Retrieved

from: https://developer.apple.com/library/ios/documentation/

NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/

CoreBluetoothOverview/CoreBluetoothOverview.html

[6]. RGB. Information about the RGB pattern [2016, May 26]. Retrieved from: http://

rgb.to

[7]. Apple. Developer documentation for CoreData [2016, May 27]. Retrieved from:

https://developer.apple.com/library/watchos/documentation/Cocoa/

Conceptual/CoreData/index.html

[8]. Realm. Documentation and explanation of what Realm is [2016, May 28].

Retrieved from: https://realm.io

[9]. GitHub. GitHub page of the author [2016, May 29]. Retrieved from: https://

github.com/RamonGilabert

!13

https://www.heroku.com/about
https://aws.amazon.com
https://eggerapps.at/postico/
http://www.link-labs.com/bluetooth-vs-bluetooth-low-energy/
https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/CoreBluetooth_concepts/CoreBluetoothOverview/CoreBluetoothOverview.html
http://rgb.to
https://developer.apple.com/library/watchos/documentation/Cocoa/Conceptual/CoreData/index.html
https://realm.io
https://github.com/RamonGilabert

[10]. GitHub. Socket repository [2016, May 29]. Retrieved from: https://github.com/

RamonGilabert/Socket

[11]. GitHub. Ripple repository [2016, May 29]. Retrieved from: https://github.com/

RamonGilabert/Ripple

[12]. GitHub. Bluetooth repository [2016, May 29]. Retrieved from: https://

github.com/RamonGilabert/Bluetooth

[13]. Lucky Marmot. Explanation of what Paw is [2016, May 29]. Retrieved from:

https://luckymarmot.com/paw 

!14

https://github.com/RamonGilabert/Socket
https://github.com/RamonGilabert/Ripple
https://github.com/RamonGilabert/Bluetooth
https://luckymarmot.com/paw

ANNEX III  

INDEX

1. The hub plans 1...

2. The lights plans 2..

 R30

 62,90

56,13

 120

A A 25

 120

B

 R0,50

 R1,50
SECCIÓN A-A

ESCALA 1 : 1

 R1,50

DETALLE B

ESCALA 5 : 1

Ramon Gilabert Llop
HUB1:1

A3 1
8 7

A

B

23456 1

578 246 13

E

D

C

F F

D

B

A

E

C

Descripció

Referència

Revisió: Full:

ESCOLA POLITÈCNICA
SUPERIOR

UNIVERSITAT DE LLEIDA

Acords no
indicats

Format:
Escala:Si no s'indica el contrari les

cotes s'expresen en mm

Projectat:

Tractament superficial:

Tractament tèrmic:
Massa:
Material:

Dimensió Tolerància

Toleràncies generals
(mm)

Rugositat no indicada:

0 - 10
10 - 50
50 - 200

> 200

0,1
0,2
0,8
1

SECTION

DETAIL
SCALE

SCALE

Hub

R90

DETAIL

SECTION

DETAIL
SCALE

SCALE

SCALE

DETAIL
SCALE 1 : 2

