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Abstract. Distributed Video-on-Demand (DVoD) systems are proposed as a 
solution to the limited streaming capacity and null scalability of centralized 
systems. In a previous work, we proposed a fully distributed large-scale VoD 
architecture, called Double P-Tree, which has shown itself to be a good ap-
proach to the design of flexible and scalable DVoD systems. In this paper, we 
present relevant design aspects related to video mapping and traffic balancing 
in order to improve Double P-Tree architecture performance. Our simulation 
results demonstrate that these techniques yield a more efficient system and con-
siderably increase its streaming capacity. The results also show the crucial im-
portance of topology connectivity in improving multicasting performance in 
DVoD systems. Finally, a comparison among several DVoD architectures was 
performed using simulation, and the results show that the Double P-Tree archi-
tecture incorporating mapping and load balancing policies outperforms similar 
DVoD architectures. 

1   Introduction 

Video on Demand (VoD) has been gaining popularity over recent years with the 
proliferation of high-speed networks. Distributed continuous media applications, are 
expected to provide service to a large number of clients often geographically dis-
persed over a metropolitan, country-wide or even global area. Employing only one 
large centralized continuous media server to support these distributed clients results 
in a high cost and non-scalable system with inefficient  resource allocations. 

To address this problem, researchers have proposed distribution of the service in 
order to manage client dispersal. Systems based on this approach are termed Distrib-
uted VoD systems and they have demonstrated the ability to provide minimum com-
munication-storage cost for distributed continuous media streaming applications [1].  

A DVoD system requires the arrangement of those servers that offer the video re-
trieval and playback services in a distributed system, in order to support a large num-
ber of concurrent streams. In the literature, these approaches range from: 1) the use of 
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Independent servers, 2) one level proxies,  to  3) hierarchical distributed systems. The 
initial approach is based on replicating VoD servers close to clients’ networks so that 
these users do not need to access the main server [2]. One-level proxies try to reduce 
the size of local servers in such a way that they only store those videos with a higher 
access frequency; these servers are managed as main-server caches and are called 
proxies [9]. Hierarchical DVoD systems are based on a network with a hierarchical 
topology, with individual servers on the nodes and network links on the edge of the 
hierarchy. The nodes at the leaves of the hierarchy, termed head-ends, are points of 
access to the system where clients are usually connected [3][9][12][14]. 

 In [6] we proposed an architecture for a fully distributed VoD system (called Dou-
ble P-Tree) which, in addition to supporting a large number of concurrent streams, 
allows for the distribution of network traffic in order to minimize the network’s band-
width requirements. This is achieved by distributing both the servers as well as the 
clients throughout the topology, avoiding the concentration of communication traffic 
on the last level of the hierarchy (head-end). It is demonstrated through an analytical 
study that this distributed architecture is fault-tolerant and guarantees unlimited and 
low-cost growth for a large-scale VoD system. 

 In this paper, we focus on the design aspects of the Double P-Tree architecture 
with the view to optimizing its performance and to supporting a greater streaming 
capacity. We concentrate particularly on two aspects: incorporating a video-mapping 
mechanism to minimize service distance, and the proposal of traffic-balancing poli-
cies that allow a reduction in network bandwidth requirements for the system. These 
proposed policies have been evaluated through several simulation experiments and 
the results have shown significant improvement in the Double P-Tree architecture’s 
performance. In addition, on the one hand we study the influence of the architecture’s 
connectivity in improving the efficiency of multicast policies in distributed systems, 
and on the other hand we analyze the proxy storage capacity.  
The remainder of this paper is organized as follows: in section 2, we first give an 
overview of the Double P-Tree architecture and we describe some topics related to its 
implementation. In section 3, we propose some techniques related to video placement 
and traffic balancing. Performance evaluation is shown in section 4 and, finally, in 
the last section, we indicate the main conclusions to be drawn from our results.  
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(a) Topology (b) Network infrastructure 

Fig. 1. Double P-Tree Architecture 



2   Distributed VoD Architecture 

Fig.1a depicts the architecture of the proposed DVoD system. This architecture is 
designed as a network with a tree topology, with individual small servers (proxies) as 
the nodes, and network links as the edges of the hierarchy.  Nodes are assumed to be 
able to store a limited number of videos and stream a finite number of videos. Mean-
while, networks links are expected to guaranteed the specific QoS requirements of 
video communications. A brief description of the system architecture is given bellow. 

2.1   Network Topology 

For the network topology we have selected a fully distributed topology based on 
proxies. The structure of this topology consists of a series of levels, in accordance 
with the number of local networks and the order of the tree. Each hierarchy level is 
made up of a series of local networks with its local-proxy and clients that forms the 
following tree level. To improve topology connectivity, several local networks 
(named brothers networks) from the same level are interconnected, increasing the 
number of adjacent local networks without changing the topology size or last level 
width.  This new architecture is named Double P-Tree because the brother networks 
are joined in a second tree within the original tree topology [6].  

In order to reduce network bandwidth requirements the network infrastructure is 
designed using segmented switches in local networks. Fig 1b, shows network band-
width requirements for non-segmented and segmented switches. This selection is 
based on the fact that in segmented switches, every port (Pi) has an Independent-
bandwidth, and therefore, it is only necessary to have enough bandwidth in order to support the 
maximum traffic from all ports. Segmented switches allow the reduction of switch-
bandwidth requirements if traffic is distributed among different ports. 

Double P-Tree architecture can make better use of segmented switches due to its 
network traffic being distributed among different sources. A possible drawback of 
this utilization is that topology-port traffic (ports used to implement the topology) and server-
port (port used to connect proxy-server) could be unbalanced when the proxy load is central-
ized in one server-port. In order to solve this unbalance (increasing the bandwidth require-
ments), the architecture connects the proxies to local-networks using several ports.  

2.2   Proxy Server 

The simple inclusion of a hierarchical system with proxies does not, in itself, obtain 
improvements in the system’s scalability or efficiency: since, as all the proxies are 
caching the same videos, if a proxy cannot serve a request from its client, then it is 
also very probable that none of the other proxies will be able to serve this request, 
and the solution will then require accessing the main server. We therefore need to use 
a new proxy organization and functionality to increase the hit probability as the re-
quest climbs the various levels on the tree. This proposal lies in dividing the storage 
space available within proxies into two parts: one of these will continue functioning 



as a cache, storing the most requested videos; the other proxy space will be used for 
making a distributed mirror of system videos [6]. 

In order to provide True VoD we have concentrated on multicast transmission 
techniques [7][10]. These techniques can greatly reduce server I/O and network 
bandwidth. But with them, it is difficult to implement VCR functions since a dedi-
cated channel is not allocated to each user. Whenever a user tries to play the VCR 
functions he will disjoin the multicast channel, and some new resources that have not 
been planned before must then be reserved and assigned to him. These resources will 
be used to meet the VCR functions and/or to provide a unicast channel so that the 
user can continue with the normal playback. Several ideas has been proposed to solve 
this problem basically reserving some channels for these specific actions [5][11] .  

Our implementation for the VCR functions does not reserve specific channels and 
is based on the observation that there are periods of times during which network 
bandwidth is under-utilized. During these periods, the proxy server sends more video 
in advance (pre-fetching) to an appropriate client’s buffer. Whenever a user invokes a 
VCR action, the resources that have been assigned before the peak time are recovered 
in favor of this VCR request. 

Another important element that affects the proxy performance is the proxy file sys-
tem. Proxy servers that implement conventional file systems have been designed to 
reduce load on servers as well as client access time [4][13]. Nevertheless for continu-
ous media with soft real-time constraints, typical file systems based on best-effort 
paradigm are inadequate for achieving this new requirement.  Proxy servers can pro-
vide performance guarantees to applications only in conjunction with an operating 
system that can allocate resources in a predictable manner. 

In our case, the most representative workload is the updates and removes in the 
caching and mirroring subsystem; consequently, the disk broker must employ place-
ment policies that minimize fragmentation of disk space resulting from frequent 
writes and deletes. In order to obtain the best performance from the disk driver, track-
buffer techniques are used. These techniques eliminate rotational delays in reads and 
obtain maximum performance on write operations.  

3   Architecture Design Issues 

In order to implement an efficient DVoD architecture several challenging research 
problems have to be solved to allow an efficient management of network and the 
services. Some of these problems are related with the subjects of reducing service 
distance and balancing communication traffic. In this section we propose some poli-
cies to accomplish these goals. 

3.1   Videos mapping on distributed mirror 

The main factor that penalizes DVoD architectures performance, measured as the 
number of concurrent clients supported by the system (effective bandwidth), is the 
over-bandwidth required due to requests that cannot be served locally.  In this case, a 
remote service requires: local bandwidth in the remote server, bandwidth in the 



Table 1.  Performance of Video-Mapping Heuristic for Double P-Tree 

Mirror Distribution Effective bandwidth Mean service distance 

sequential 11.001 Mb/s 1,80 

U
ni

ca
st

 
heuristic 12.849 Mb/s 1,747 

sequential 14.913 Mb/s 1,80 

M
ul

tic
as

t 

heuristic 15.951 Mb/s 1,747 

server-port in the switch, bandwidth in the remote switch-topology port, bandwidth in 
the local switch-topology port and finally bandwidth in the client switch-port. A good 
approximation to evaluate this over-bandwidth is mean service distance (the distance 
needed to reach all movies from every node in the system).  

In particular, Double P-Tree mean service distance is affected by diverse factors, 
such as topology connectivity, proxy storage distribution between caching and mir-
roring, and mirror-videos mapping in proxies. The first and the second issues were 
analyzed in a previous paper [6], and the last one is studied below. 

Given that it is too complex achieve a optimal video distribution, we have devel-
oped a heuristic to choose which videos need to be mapped in every proxy-mirror. 
This heuristic consists of calculating, for each proxy within the architecture, the mini-
mum distance where we can find each of the movies of the system-repository (taking 
into account videos already mapped in the previous proxies). Then, in order to mini-
mize the mean service-distance, we always choose those videos that are stored in the 
proxy-mirrors furthest from this proxy. In the case of there being various videos at 
the same distance, the most popular are then selected. 
Table 1 shows the mean service distance and effective bandwidth obtained by the 
heuristic and a sequential distribution of videos based simply on assigning a group of 
videos to each one of the proxies in a sequential manner. These results use the 
simulation parameters given in section 4, taking unicast and multicast policies into 
account. As we can see, the heuristic reduces mean-service distance from 1.80 to 
1.74, which allows for an improvement in system performance (“Effective Band-
width” column) of 7% and 14% for unicast and multicast, respectively. 

3.2   Traffic Balancing policies 

In architectures using segmented switches, the bandwidth requirements for a network 
depends on the maximum traffic supported by any of its ports. Therefore, it is very 
important to balance port traffic in order to reduce bandwidth requirements and to 
increase system performance. 

In Double P-Tree architecture, most loaded ports are of the server and topology 
ports. Server ports can easily be balanced because the proxy server can choose at any 
time through which port a request is attended. 

On the other hand, balancing topology ports is more difficult because their load 
depends on video placement on distributed mirrors. For example, the links connecting 



Table 2.  Performance of Traffic Balancing Policies for  Double P-Tree 

Traffic Balancing Policy Effective bandwidth Mean Distance Imbalance 

Unbalance 12.849 Mb/s 1,747 56,44%

Mirror Balanced 12.240 Mb/s 1,769 (3) 55,61% (1) 

U
ni

ca
st

 

Traffic Balancing 15.653 Mb/s 1,747 30,45% (5) 

Unbalance 15.951 Mb/s 1,732 78,27%

Mirror Balanced 15.630 Mb/s 1,769 (4) 71,70% (2) 

M
ul

tic
as

t 

Traffic Balancing 19.700 Mb/s 1,747 48,07% (6) 

 

 

proxy servers that map the most popular videos would be more overloaded than oth-
ers, producing a traffic imbalance. 

To achieve traffic-load balancing, we have studied two different approximations: 
• Mirror Balanced. 

An initial approximation to avoid imbalance is by building the distributed mirror 
in more balanced way. This objective can be achieved tuning the previous mapping 
heuristic because we do not always select the most popular videos; rather, we choose 
a mixture of highly and less popular videos. 

• Dynamic traffic balancing. 
However, balancing through mirror distribution has a very limited maneuver-

ability and cannot easily adapt to changes in traffic patterns or video access fre-
quency. Therefore we have proposed another more dynamic policy for traffic load 
balancing. As the imbalance problem only appears with remote requests (which are 
the only ones that use topology ports), when a request cannot be attended, the local 
proxy also receives information about traffic from all alternative sources (i.e. proxies 
that have a copy of requested video and enough resources to attend the request). Us-
ing this information, and if there are two or more alternative paths (meaning some 
video replication), our balancing policy always chooses the least-loaded path in order 
to balance traffic. 

Using the simulation parameters given in section 4, in Table 2, we show the results 
obtained with these balance policies. As we can see, compared with imbalance, the 
mirror balanced  policy is successful in reducing imbalance1,2, but this reduction is 
not enough to compensate for the rise in service distance3,4. In contrast, the results 
obtained with the dynamic traffic load balancing policy are much better, decreasing 
imbalance significantly5,6 (without affecting service distance) and increasing per-
formance by around 24% (15.951Mbs and 19.700Mbs as against 12.849Mbs and 
15.653Mbs , for unicast and multicast respectively).  

4 Performance Evaluation 

In this section, we show the simulation results for Double P-Tree architecture and 
contrast these with other distributed architectures.  We conducted several experiments 
to 1) evaluate the effect of multicast, and 2) study the effect of proxy storage capacity 
on system behavior. 



Table 3.  Simulation Parameters 

Parameter Value  Parameter Value 
 Number of videos 100  Multicast technique Patching 
 Video length 90 minutes  Client buffer size 5 minutes 
 Local networks 63  Request rate (λ) 10 req/min by net 
 Network bandwidth 100 Mb/s 
 Server bandwidth  
1server port (1Sp) 100 Mb/s  Poisson distribution  ie
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 Server bandwidth  
3server port (3Sp) 300 Mb/s 

 Proxy capacity 20 videos 
 Zipf distribution ∑
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z
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p
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4.1  Simulation Environment 

To guide this objective, we have designed and implemented an object-oriented VoD 
simulator. The main parameters of the simulation environment are summarized in 
Table 3. In all studies, we use architectures with 63 local networks (6 levels in Dou-
ble P-Tree topology) using 100 Mbps segmented switches. The request inter-arrival 
time is generated by the simulation of a Poisson distribution1 with a mean of  1/λ, 
where λ is the request arrival rate in every local network in the VoD system. The 
selection of the video is modeled with a Zipf distribution2, with a skew factor of 0.7 
(z), which models the popularity of rental movies [1]. 

4.2   Effect of Multicast on Distributed VoD Architectures 

In this section, we evaluate DVoD system performance, using effective bandwidth 
(number of users attended * 1.5Mbs) as the main metric. This study allows us to 
evaluate the maximum streaming capacity for different architectures: Independent 
servers, one level proxies and Double P-Tree (using heuristic mapping and dynamic 
traffic balancing policy), for both unicast and multicast techniques. 

In order to obtain the results, plotted in Fig 2, we have assigned an aggregate net-
work bandwidth of 6.300Mbs and an aggregate sever bandwidth of 6.300Mbs (with 1 
server port) or 18.900Mbs (with 3 Server ports). To obtain the maximum system 
streaming capacity, we saturated the system using a high request ratio (10 req/min by 
network) and simulated the system behavior until the aggregate bandwidth is ex-
hausted. When there is no bandwidth available, the system achieves its maximum 
streaming capacity and we evaluate the system performance (effective bandwidth 
using unicast and patching [12]) . 

Using unicast, we can see that the Independent servers with 3Sp is the architecture 
that obtains the best results, achieving the theoretical maximum stream capacity of 
19Gbs (63 networks * 100Mbs * 3Sp). Meanwhile Double P-Tree with 7 brothers 
(7B) and 3Sp obtains an effective bandwidth of 18.2Gbs (4% less), due to the addi-
tional bandwidth required to attend distributed requests and lower storage require-
ments (20 as against 100 videos in every proxy). However, this underperformance is 
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less than expected according to the criteria of mean service distance between Inde-
pendent servers (1) and Double P-Tree architectures (1,747 according to Table 2). 
This result demonstrates the strength of our architecture in distributing and balancing 
traffic among topology ports in order to reduce network requirements. Also, as we 
can see, our architecture is better than 1-level proxies architecture (improved by 
75%). 

Double P-Tree architecture exploits its characteristics to realize its potential advan-
tage when client streams are shared using a multicast technique (Patching, in our 
case). In this more realistic scenario, Double P-Tree is the best solution, improving 
Independent servers by 27% (38.4Gbs as against 30Gbs) and one-level proxies by 
200% (38.4Gbs as against 12.7Gbs). 

The principal argument for this improvement is that the Double P-Tree has a better 
connectivity than the Independent server and one-level architectures. This better con-
nectivity means that, in Double P-Tree, mirror video streams can potentially be 
shared among requests coming from all adjacent networks, multiplying the sharing 
probability by topology connectivity. Meanwhile, in low interconnected architectures, 
potential stream sharing is limited only to local requests. 

4.3   Effect of Proxy Storage Capacity 

In this section, we evaluate the effect of proxy storage capacity on Double P-Tree 
performance. In Fig. 3, we can first see that a small proxy storage leads to low per-
formance due to large service distance being required to attend remote requests, and 
to its over-bandwidth requirements.  

With only storage for 15% of system videos, Double P-Tree performance (with 
patching) is equivalent to Independent severs performance, but uses 6 times less stor-
age. Also, we notice that the highest performance is obtained with proxy storage of 
around 25%. In this case, Double P-Tree performs Independent servers in more than 
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38% (41.5Gbs against 30Gbs). From this point, we can observe that in the measure 
that storage capacity grows, performance decreases until reaching Independent server 
performance, in which case the proxy has enough capacity to store a full video cata-
log copy. 

Why do more resources give less performance? The reasons for this interesting ef-
fect can be explained by the fact that, when Double P-Tree proxies have a lot of stor-
age (more than 30%), their architectural behavior is very similar to that of Independ-
ent server systems.  In this case, proxy mirrors have enough storage to reach all vid-
eos at distance-2 mirrors, therefore all remaining storage is assigned for caching.  

Increasing proxy-cache size increases the number of requests attended locally, cre-
ating two consequences. First, server ports have more load, leading to network traffic 
unbalancing and a faster network saturation. Second, there are videos with a medium 
access pattern that were previously managed under mirroring scheme. Proxy-mirrors, 
where these were mapped, centralized all requests coming from adjacent nodes, im-
proving stream sharing. If we now place these videos in the cache (replicating them in 
all proxies), we are decreasing access frequency for every video copy, reducing both 
the stream-sharing probability and system performance. This result clearly demon-
strates the goodness of distributed mirroring as against several full mirror replica-
tions. 

5.   Conclusions 

This paper deals with two decisive aspects for DVoD architectures performance:  
video placement policies in distributed mirrors and network-traffic balancing policies. 
The proposed policies attain a reduction in mean service distance and minimize net-
work requirements for the Double P-Tree architecture.  

Simulation results show that proposed policies substantially increase the number of 
concurrent clients who can be served by the system. The video mapping heuristic 
achieves an improvement of 7%, while the dynamic traffic-balancing policy yields an 
additional increase of 26%. These results clearly demonstrate the importance of net-



work-traffic balancing policies as a fundamental instrument in diminishing the net-
work bandwidth requirements in DVoD systems. 

On the other hand, we have also shown the importance of topology connectivity in 
DVoD systems (in particular, in the Double P-Tree) in order to improve multicasting 
performance. The Double P-Tree using multicasting and similar resources clearly 
outperforms classical DVoD architectures, namely, Independent servers (by 38%) and 
one-level proxies (by 200%). 

Finally, we have demonstrated that full mirror replication in every local network 
(as in Independent servers) not only requires more storage but also achieves a poorer 
performance in comparison to distributed mirroring (Double P-Tree).  
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