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Summary
Polypyrimidine tract binding protein (PTB) regulates pre-mRNA splicing, having special relevance for determining gene expression in
the differentiating muscle. We have previously shown that PTB protein abundance is progressively reduced during heart development
without reduction of its own transcript. Simultaneous reduction of histone deacetylase (HDAC) expression prompted us to investigate

the potential link between these events. HDAC5-deficient mice have reduced cardiac PTB protein abundance, and HDAC inhibition in
myocytes causes a reduction in endogenous expression of cellular FLICE-like inhibitory protein (cFLIP) and caspase-dependent
cleavage of PTB. In agreement with this, cardiac PTB expression is abnormally high in mice with cardiac-specific executioner caspase
deficiency, and cFLIP overexpression prevents PTB cleavage in vitro. Caspase-dependent cleavage triggers further fragmentation of

PTB, and these fragments accumulate in the presence of proteasome inhibitors. Experimental modification of the above processes in vivo

and in vitro results in coherent changes in the alternative splicing of genes encoding tropomyosin-1 (TPM1), tropomyosin-2 (TPM2) and
myocyte enhancer factor-2 (MEF2). Thus, we report a pathway connecting HDAC, cFLIP and caspases regulating the progressive

disappearance of PTB, which enables the expression of the adult variants of proteins involved in the regulation of contraction and
transcription during cardiac muscle development.
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Introduction
Polypyrimidine tract binding protein (PTB) is an RNA-binding

protein well known for its role in the regulation of alternative

splicing of many transcripts (Keppetipola et al., 2012), including

those coding for sarcomeric proteins b-tropomyosin, a-

tropomyosin, a-actinin and troponin-T (Charlet-B et al., 2002;

Mulligan et al., 1992; Pérez et al., 1997; Southby et al., 1999).

Global profiling of PTB targets in HeLa cells confirmed that PTB

represses many neuronal and striated muscle specific exons in

genes encoding cytoskeletal and signaling proteins (Llorian et al.,

2010; Spellman et al., 2007; Xue et al., 2009). PTB is also

involved in cap-independent protein translation (Mitchell et al.,

2001; Sawicka et al., 2008) and our previous results showed that

PTB supports apoptotic protein translation in differentiating

cardiomyocytes (Zhang et al., 2009). All these results suggest an

important contribution of PTB in the post-transcriptional control

of gene expression during muscle differentiation. However,

regulation of PTB expression has been only partially elucidated.

PTB limits its own expression by inhibiting inclusion of exon 11

in its own mRNA inducing its degradation by nonsense-mediated

decay in HeLa cells (Wollerton et al., 2004). Downregulation of

PTB expression is important for orchestrating regulated splicing

programs during neurogenesis (Boutz et al., 2007b). The neuron-

specific microRNA miR-124 targets the PTB mRNA, reducing

PTB levels in differentiating neurons (Makeyev et al., 2007).

Likewise, in differentiating C2C12 myoblasts nPTB expression is

downregulated by miR-133 (Boutz et al., 2007a). Thus, it seems

that targeting PTB mRNA is important for the control of PTB

activity in cell lines and during neuronal development. However,

there has been little information regarding the regulation of PTB

levels in cardiac muscle. Here, we show that PTB levels in the

developing heart are reduced post-translationally by a pathway

involving histone deacetylases (HDAC) and the direct cleavage

of PTB by caspases.

Class IIa histone deacetylases (HDAC) are involved in the

control of gene expression in striated muscle (Haberland et al.,

2009). In particular, HDAC4 and 5 bind MEF2 transcription

factor, inhibiting its transcriptional activity (Lu et al., 2000).

Double deletion of HDAC5 and 9 is embryonic lethal in mice

accompanied by defects in the cardiac structure (Chang et al.,

2004). It was suggested that this phenotype could ensue from

precocious differentiation due to premature derepression of
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MEF2 activity (Chang et al., 2004), but the hypothesis remains

unexplored.

The caspase-dependent signaling machinery is expressed in
the embryonic myocardium but is repressed during heart
differentiation (Bahi et al., 2006; Zhang et al., 2009; Zhang

et al., 2007). Deficiency in caspase-8 (Varfolomeev et al., 1998),
Fas-associated death domain protein (FADD) (Yeh et al., 1998)
or cellular FLICE-like inhibitory protein (cFLIP) (Yeh et al.,

2000), which regulates the death receptor-dependent pathway, as
well as the double deletion of executioner caspases 3 and 7
(Lakhani et al., 2006) induced embryonic lethality with alteration

of the cardiac ventricular structure. Cardiac defects of caspase-8-
deficient mice including abnormal myocyte death were rescued
by ex vivo embryo culture and pointed to a role of caspase-8 in
the control of cell death during development (Sakamaki et al.,

2002). Strikingly, the rate of apoptosis in the FADD and cFLIP
mutant hearts was low and similar to wild type tissue but the
differentiation process of the ventricles was altered suggesting

that these factors have functions unrelated to cell death during
heart development (Yeh et al., 2000; Yeh et al., 1998). Despite
the relevant contribution of the caspase-dependent signaling to

cardiac morphogenesis, its precise function in the heart remains
unknown. Caspases have been shown to directly target PTB in
cell lines treated with toxic drugs (Back et al., 2002), but there

has been no previous indication of a role for such processing in a
normal physiological setting.

The MEF2 family of transcription factors, composed of four
members termed MEF2A–D, is involved in the transcription of

genes required for skeletal and heart muscle development as well
as for muscle adaptation to stress (Potthoff and Olson, 2007).
MEF2A is the most abundant MEF2 variant in the adult heart (Yu

et al., 1992) and its deletion in mice induces death during the first
week of life with alterations in cardiomyocyte ultrastructure
(Naya et al., 2002). Deletion of MEF2C induces profound
morphological defects in the heart (Lin et al., 1997). Finally,

deletion of MEF2D hampers cardiac hypertrophy in the adult
(Kim et al., 2008). Therefore, MEF2 activity is essential for heart
development and cardiac adaptation to stress. An alternative

splicing event in Mef2 transcripts involving the inclusion of a
short exon (exon b) occurs in striated muscle and brain, two
tissues with MEF2-regulated gene transcription (Yu et al., 1992).

Inclusion of exon b increases during C2C12 myoblast
differentiation in vitro (Yu et al., 1992; Zhu et al., 2005),
resulting in translation of a MEF2 variant with stronger

transcriptional activity (Yu et al., 1992; Zhu et al., 2005). In

vitro experiments in HeLa cells showed that PTB induces exon b
skipping in Mef2d (Llorian et al., 2010) and in cultured C2C12
myoblasts exon b inclusion in Mef2c seems to require PTB (Lin

and Tarn, 2011). In addition, exon b inclusion was detected in
RNA extracts of adult heart yet the timing and mechanisms
regulating the splicing of exon b in the heart have not yet been

characterized (Yu et al., 1992; Zhu et al., 2005).

Finally, although it is known that PTB is involved in the
alternative splicing of several genes encoding structural proteins
and, in particular for the actin-binding tropomyosin proteins

(Llorian et al., 2010; Mulligan et al., 1992) there was no previous
information about the regulation of the alternative splicing of the
tropomyosin transcripts during cardiomyocyte differentiation.

In this study, we present in vivo and in vitro data showing that
expression of the splicing repressor PTB in the developing
myocardium is reduced through its caspase-dependent cleavage.

Upstream control of the caspase activity is influenced by HDAC

activity, which in turn regulates the expression of the caspase

inhibitor cFLIP, while the downstream consequence of reduced

PTB levels is the inclusion of PTB-repressed exons in the

transcripts of the structural proteins a- and b-tropomyosin and the

MEF2 transcription factors to express the adult variants. These

findings reveal a new pathway of regulation of the splicing

repressor PTB during heart development.

Results
PTB expression is silenced perinatally during heart

development through post-transcriptional mechanisms

blocked by HDAC5

We examined the expression pattern of PTB in the rat heart at

different development stages. PTB protein levels were reduced

rapidly after birth (Fig. 1A), and by day 90, PTB was

undetectable. Interestingly, we did not detect significant

changes in the PTB mRNA level during the perinatal period of

development. In the adult, PTB mRNA levels had decreased by

only 40% while PTB protein had already disappeared (Fig. 1B),

suggesting post-transcriptional regulation.

Fig. 1. PTB expression during cardiomyocyte differentiation is regulated

post-transcriptionally by HDAC5. (A) Expression of PTB and HDAC

proteins in heart protein extracts from rats of different ages ranging from

embryos (E18) to 3-month-old adults. PTB was analyzed with antibodies

against the N-terminal region and C-terminal region. Two alternatively

spliced variants of PTB were detected (lower band, PTB1, and upper band,

PTB4, translated from a transcript including exon 9). (B) PTB transcript

abundance was quantified in quadruplicates by real time qRT-PCR in total

RNA extracts of the same hearts as in A and referred to the value of the

housekeeping gene Gapdh amplified in the same reaction. Error bars show

s.e.m. from three independent experiments. *P,0.05 versus embryo by two-

tailed Student’s t test. (C) PTB abundance in protein extracts from hearts of

wild type (WT) newborns, young and young adults and HDAC5-deficient

(KO) and HDAC9-deficient littermates as well as wild type and HDAC1 and

HDAC2 double deficient neonates. Similar results were obtained with two

independent sets of samples. (D) PTB total transcript abundance was

quantified by real time PCR from the hearts of 1-day-old neonatal wild type

and HDAC5-deficient mice. Error bars show s.e.m. from three

independent experiments.
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HDAC proteins are regulators of gene expression in many
tissues and, in particular, they have an essential function during

heart development (Chang et al., 2004; Montgomery et al., 2007).
Mice deficient for Class II HDAC 5 and 9 or Class I HDAC 1 and 2
show propensity to lethal cardiac defects (Chang et al., 2004;
Montgomery et al., 2007). Therefore, we measured the expression

of HDAC proteins in the heart and observed that HDAC 1, 2 and 5
were abundant in the embryonic myocardium and there was a
positive correlation in their temporal expression pattern to that of

PTB (Fig. 1A). Consistent with a causal relationship between the
decrease in expression of HDACs and PTB, we also observed
lower amounts of PTB in the hearts of neonatal mice deficient for

HDAC5 expression (Fig. 1C), although PTB transcript levels were
similar to wild type age-matched littermates (Fig. 1D). This effect
was specific for HDAC5 because neither lack of HDAC9 nor the
double deletion of Class I HDAC1 and 2 modified PTB expression

significantly in vivo (Fig. 1C). These results suggest that HDAC5
influences the post-transcriptional regulation of PTB in the heart in

vivo. However, given its molecular function as a histone

deacetylase it is unlikely that it acts directly as a positive
effector of PTB expression.

HDAC sustains PTB expression in cardiomyocytes
through inhibition of caspase-dependent PTB cleavage

To further explore the relationship between HDAC activity and
PTB expression, we investigated the effects of treating postnatal

rat cardiomyocytes with the HDAC inhibitors, sodium butyrate
(NaB) or trichostatin-A (TSA) (Fig. 2A,B). Both treatments led
to a reduction of full length PTB protein abundance, with no

effects upon PTB mRNA levels at 72 hours (Control: 1.060.0;
NaB:1.260.2; TSA:1.160.1; n53). However, the reduction in
full length PTB was accompanied by the appearance of faster

migrating doublet (Fig. 2A, left panel), as detected with an
antibody obtained against the C-terminal region of PTB. The size
of the faster migrating PTB doublet (,40 kDa) observed in

cardiomyocytes treated with HDAC inhibitors is consistent with
cleavage by caspases between the RRM1 and RRM2 domains of
PTB (Keppetipola et al., 2012). This effect was not observed in
human embryonic kidney 293 (HEK293) cells (Fig. 2A, right-

hand panel), which express high levels of Class I HDAC but lack
detectable expression of HDAC5. Consistent with PTB cleavage
by caspases in cardiomyocytes treated with HDAC inhibitors, the

pan-caspase inhibitor z-VAD-fmk abolished appearance of the
smaller PTB fragments, preserving the abundance of the full
length form (Fig. 2A). Caspase-dependent PTB cleavage induced

by HDAC inhibition was not associated with a significant
increase in cell death (Fig. 2B). If caspases play a physiological
role in PTB cleavage in vivo, caspase deficiency should lead to

increased abundance of PTB in the developing heart. Consistent
with this prediction, PTB was more abundant in the heart of
cardiac-specific caspase-3 and -7-deficient mice than in their
wild type age-matched controls (Fig. 2C), while the abundance of

the PTB transcript was unchanged (Fig. 2D).

The preceding data indicate that caspases are responsible for the
reduction in PTB levels during cardiac development. However, it

is not clear how the activity of caspases upon PTB is regulated.
Given that disruption of cFLIP, a natural inhibitor of caspase
activity, interferes with heart development (Yeh et al., 2000), we

next aimed to assess the contribution of cFLIP to HDAC inhibitor-
induced PTB cleavage in vitro. We found that cFLIP expression is
downregulated during cardiomyocyte differentiation (Fig. 3A, left

panel) and that the heart of HDAC5-deficient mice express lower

levels of cFLIP than age-matched wild type mice (Fig. 3A, right

panel). These results suggested that HDAC could be required for

cFLIP expression in the developing heart. cFLIP mRNA (Fig. 3B)

and protein (Fig. 3D) expression was reduced in cardiomyocytes

treated with HDAC inhibitors and cFLIP overexpression or

treatment with the caspase-8 inhibitor z-IETD-fmk prevented

HDAC inhibitor-induced PTB cleavage (Fig. 3C). cFLIP

overexpression also prevented fragmentation of PTB into a

smaller fragment of ,25 kDa (Fig. 3D). Taken together, our

results demonstrated a role of the extrinsic pathway of apoptosis,

unrelated to cell death and regulated by HDAC, in the control of

PTB expression in the myocardium.

Caspase-dependent cleavage of PTB triggers its
proteasome-dependent degradation

Upon performing a time course of PTB degradation in

cardiomyocytes treated with HDAC inhibitors, a small fragment of

Fig. 2. HDAC inhibition induces the caspase-dependent cleavage of PTB.

(A) Rat neonatal ventricular cardiomyocytes were treated with HDAC

inhibitors NaB (5 mM) or TSA (100 nM) for 48 or 72 h in the presence or

absence of the pan-caspase inhibitor z-VAD-fmk (50 mM). PTB abundance

was detected with an antibody against the C-terminal region. Right-hand

panel: HEK293 cells were treated for 3 days with TSA, and PTB was detected

in total protein amounts with the same antibody. The experiments were

repeated four times with comparable results. Prohib., prohibitin (used as a

loading control). (B) Cell survival was counted by the Trypan Blue exclusion

assay in cardiomyocyte cultures treated for 3 days with either TSA or NaB at

the doses reported above or cultured without drugs (Contr.). Values are

expressed as percentage of cell survival versus control plates processed before

addition of the drugs. Each experiment was performed in triplicate. n53, error

bars show s.e.m. ns, not significant changes versus controls (paired Student’s t

test). (C) PTB abundance was analyzed in total protein extracts of hearts from

young wild type (WT) and cardiac-specific caspase-3 and -7-deficient mice

(DKO). Lower panel: western blot densitometric analysis (AU, arbitrary

units). *P,0.05 versus WT by two-tailed Student’s t test. (D) Quantitative

real time PCR of PTB transcript in the same hearts as in C. n53, Error bars

show s.e.m. ns, not significant changes versus WT by two-tailed Student’s

t test.
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,25 kDa was observable at later time points (Fig. 4A). This suggests

that the caspase-dependent fragments of PTB previously observed

(Fig. 3) are being further processed. It has been reported that caspase-

dependent fragmentation could trigger the proteasome-dependent

degradation of the targeted protein (Demontis et al., 2006; Plesca et al.,

2008). Therefore, we assessed if PTB was degraded by the

proteasome. In the presence of the proteasome inhibitor lactacystin

we observed an accumulation of the smallest PTB fragments

produced during NaB treatment (Fig. 4B), suggesting that PTB

fragments generated by caspase activity were further degraded by the

proteasome.

Abundance of PTB determines the use of alternatively
regulated exons in the mRNA of the transcription factor
MEF2 and the structural protein tropomyosin during
cardiomyocyte differentiation

The reduction in PTB levels during cardiac development is likely
to be responsible for numerous changes in alternative splicing

(Llorian et al., 2010). We first assessed whether alternative
splicing of known PTB-regulated alternative splicing events were
coherently regulated in our different developmental, knockout

and overexpression experimental models. Mutually exclusive
alternative splicing of exons 6 and 7 in the Tpm2 gene, which
encodes b-tropomyosin, has long been known to be regulated by

PTB (Llorian and Smith, 2011; Mulligan et al., 1992), and is mis-
regulated upon knockdown of PTB in HeLa cells (Llorian et al.,
2010; Mulligan et al., 1992). Splicing of mutually exclusive
exons 8 and 9 in the Tpm1 gene, which codes for a-tropomyosin,

is also affected by PTB knockdown (Llorian et al., 2010;
Mulligan et al., 1992), and PTB CLIP tags are located between
the two exons of both genes indicating that PTB directly

regulates these events (Llorian et al., 2010; Spellman et al., 2007;
Xue et al., 2009). We therefore analyzed Tpm1 and Tpm2 splicing
in postnatal cardiomyocytes overexpressing PTB, in heart

extracts from different developmental stages and in hearts of
mice deficient for HDAC5 and caspases 3 and 7 (Fig. 5).
Expression of Tpm1 exon 9 and Tpm2 exon 7 was reduced in
cultured neonatal cardiomyocytes overexpressing PTB as

expected (Fig. 5B,G), while the expression of the alternatively
spliced exon was accordingly upregulated. During early postnatal
development of the heart, the expression of the PTB-repressed

exons of Tpm1 and Tpm2 increased in the myocardium
(Fig. 5C,H) in agreement with the reduction of PTB abundance
(Fig. 1A). Tpm2 exon 7 was later downregulated, coinciding with

the reduction of TPM2 expression in the myocardium (Marston
and Redwood, 2003). Consistent with the low expression of PTB
in the HDAC5-deficient heart, Tpm1 exon 9 and Tpm2 exon 7

were more abundantly expressed than in the hearts of age-
matched wild type mice (Fig. 5D,I). Conversely, these exons
were less abundant in the hearts of caspase-3- and -7-deficient
mice, which express high levels of PTB, than in the hearts of age-

matched wild type mice (Fig. 5E,J). Taken together, our results
showed that changes in the signaling pathway regulating PTB
expression influenced the alternative splicing of genes encoding

the cardiac structural proteins TPM1 and TPM2.

Finally, we were interested in exploring the possibility that the
MEF2 transcription factors may constitute important targets of

regulation by altered PTB levels. MEF2 proteins are expressed
abundantly in the developing heart, with MEF2A being most
highly expressed at later stages of development (Fig. 6A). In
muscle, brain and in differentiated C2C12 cells, Mef2 transcripts

may contain an alternatively spliced exon (b) encoding a short
glutamic acid-rich sequence (e.g. SEEEELEL in MEF2A) that
gives rise to MEF2 proteins with stronger transcriptional activity

(Yu et al., 1992; Zhu et al., 2005) (Fig. 6B; supplementary
material Fig. S1). Previous reports have shown that PTB can
regulate different members of the Mef2 family in HeLa, C2C12

and N2A cells (Boutz et al., 2007b; Lin and Tarn, 2011; Llorian
et al., 2010). Our results showed that during heart development,
exon b was progressively included in Mef2a and Mef2d

transcripts at the same time as PTB protein levels decreased in
the myocardium to form the transcript variants most abundant in
the adult heart (the rat sequence has been deposited in GenBank

Fig. 3. HDACs block caspase-dependent cleavage of PTB in cardiomyocytes

by supporting expression of the endogenous caspase inhibitor cFLIP. (A) Left-

hand panel: cFLIP abundance was detected in isolated rat neonatal (P2) and adult

(P90) cardiomyocytes (CM), neonatal fibroblasts (Fibr.) and neonatal

cardiomyocytes overexpressing FLAG-cFLIP (Over., overexpressed FLAG-cFLIP

band). Because fibroblasts express very low levels of prohibitin, GAPDH

expression is also shown as a loading control. Right-hand panel: cFLIP abundance

was detected in total cardiac protein extracts of neonatal (P1) and young (P30) wild

type (WT) and HDAC5-deficient (KO) mice. (B) Rat neonatal ventricular

cardiomyocytes were treated with the HDAC inhibitor NaB (5 mM) for 24 h and

cFLIP transcript abundance was analyzed by quantitative real time PCR. n53, error

bars show s.e.m. *P,0.05 versus control by two-tailed Student’s t test.

(C) PTB protein abundance was assessed with an antibody against the C-terminal

region of PTB in protein extracts from cardiomyocytes transduced with empty

viruses or viruses inducing cFLIP overexpression (cFLIP) treated or not with the

HDAC inhibitor NaB (5 mM) for 24 h in the presence or absence of the caspase-8

inhibitor z-IETD-fmk (IETD) (20 mM). (D) Cardiomyocytes were transduced with

empty viruses or viruses inducing cFLIP overexpression (cFLIPov) and were treated

or not with the HDAC inhibitor NaB (5 mM) for the last 24 h. Expression of cFLIP

(the white arrow shows overexpressed FLAG-cFLIP and the black arrow shows

endogenous cFLIP) and PTB was analyzed in total protein extracts. The bar graph

shows the densitometric analysis of PTB protein abundance from experiments

shown in D. Error bars show s.e.m of n54 experiments (upper band, full length

PTB; middle band, ,40 kDa fragment; bottom band, ,25 kDa fragment).

Control of cardiac PTB expression 1685



J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e

under accession no. GU646868), while the most abundant Mef2c

variant lacked this exon during the timescale of the experiment

(Fig. 6B). Overexpression of either PTB1 or PTB4 in neonatal

cardiomyocytes, which express low levels of these proteins,

induced exon b skipping in Mef2a and Mef2d, but not in Mef2c

(Fig. 6C). Moreover, deficiency of HDAC5, which induced

premature reduction in PTB abundance, caused increased exon b
inclusion in Mef2 (Fig. 6D), whereas cardiomyocyte-specific

deficiency of executioner caspase-3 and -7, which induced

abnormal abundance of PTB (Fig. 2C), caused reduced exon b
inclusion in Mef2 (Fig. 6E). There is therefore a good inverse

correlation between PTB abundance and inclusion of Mef2a and

Mef2d exon b. UV-crosslinking experiments in HeLa nuclear

extracts, where PTB is abundantly expressed and influenced exon

b splicing (supplementary material Fig. S2A), showed that PTB

crosslinked only weakly to human Mef2a and Mef2d RNAs

fragments containing exon b and their respective intronic

flanking regions (supplementary material Fig. S2B). This

suggests that PTB might act indirectly to influence Mef2

alternative splicing, or alternatively that PTB binding to Mef2

transcripts might be promoted by other factors in developing

mouse cardiomyocytes. However, taken together, these results

showed that PTB expression, controlled by HDAC and caspases,

determined the inclusion of exon b in Mef2a and Mef2d

transcripts in differentiating myocytes.

Discussion
This study reveals a novel signaling network that regulates the

progressive disappearance of the splicing repressor PTB during

cardiac muscle differentiation involving the action of caspases,

which influences alternative splicing of muscle-enriched

transcription factors MEF2A and MEF2D. The results

presented here show that HDAC regulate the caspase-

dependent cleavage of PTB inducing its degradation by the

Fig. 4. Caspase-dependent cleavage of PTB

triggers its proteasome-dependent degradation.

(A) Time course of PTB processing in rat neonatal

cardiomyocytes treated with the HDAC inhibitor

NaB (5 mM). The bar graph shows the

densitometric analysis of PTB protein abundance.

Error bars show s.e.m of n53 experiments (upper

band, full length PTB; middle band, ,40 kDa

fragment; bottom band, ,25 kDa fragment).

(B) Effect of the addition of the proteasome

inhibitor lactacystin (Lacta) (2 mM) on PTB

processing during treatment with the HDAC

inhibitor NaB (5 mM) for 72 h. Right-hand

panels: Densitometric analysis of PTB protein

abundance. b1, full length PTB; b2, ,40 kDa

band; b3, ,25 kDa band. Error bars show s.e.m of

n54 experiments performed in duplicate.

*P,0.05 versus control by two-tailed Student’s t

test. Prohib., prohibitin; ns, not significant.

Journal of Cell Science 126 (7)1686
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proteasome. The reduced PTB levels then lead to increased

inclusion of PTB-repressed exons (Fig. 7).

Though the importance of PTB in the regulation of relevant

splicing events influencing the expression and function of many

genes, including some coding for structural proteins relevant for

muscle cells, is well established (Charlet-B et al., 2002; Mulligan

et al., 1992; Pérez et al., 1997; Southby et al., 1999), knowledge

about the signaling pathways that control PTB expression in

muscle cells is more limited, and is mainly derived from studies

in the C2C12 myoblast cell line (Boutz et al., 2007a; Lin and

Tarn, 2011). In differentiating neurons a switch between

expression of PTB and the neuronal paralog nPTB is driven by

the neuronal micro-RNA miR-124, which downregulates PTB

expression leading to a series of neuronal specific alternative

splicing events (Boutz et al., 2007b; Makeyev et al., 2007). In

C2C12 cells, the protein RBM4 promotes skipping of PTB exon

11 and nPTB exon 10, leading to nonsense-mediated mRNA

decay (NMD) and reduced PTB and nPTB levels (Lin and Tarn,

2011). In addition, miR-133 reduces nPTB expression (Boutz

et al., 2007a).

Here, we demonstrate a novel mechanism for the control of

PTB expression in primary cardiomyocytes and in the rodent

heart in vivo. Caspase-dependent cleavage of PTB is

demonstrated in vitro in neonatal cardiomyocytes (Fig. 2A) and

is suggested to regulate PTB abundance in the heart in vivo,

because cardiac-specific caspase-3 and -7 null mice express more

PTB than wild type mice (Fig. 2B). Caspases were previously

shown to cleave PTB in cell lines treated with toxic drugs (Back

et al., 2002), but here we show that this cleavage occurs as part of

a normal developmental program. By reducing PTB abundance,

caspase activity could contribute to the control of many PTB-

dependent splicing events in the perinatal period of heart

development. This could be involved in the deleterious effects

caused by in vivo deletion of key regulators of the extrinsic

apoptotic signaling, which obstruct heart development without

affecting the rate of cardiac cell death (Yeh et al., 2000; Yeh

et al., 1998). The expression of the caspase-8 inhibitor cFLIP was

downregulated during cardiac perinatal development and also in

the heart of HDAC5-deficient mice compared with wild type

mice, suggesting that cFLIP expression could contribute to the

control of caspase-dependent PTB cleavage in vivo. Consistent

with this hypothesis, PTB cleavage induced by HDAC inhibitors

in cardiomyocytes was blocked by overexpressing cFLIP-L or by

adding a caspase-8 inhibitor, in agreement with the contribution

of the extrinsic pathway to PTB degradation. These results

together with previous reports showing that caspase-3 and

caspase-9 regulate differentiation of C2C12 myoblasts in vitro

(Fernando et al., 2002; Murray et al., 2008) support a role of the

caspase-dependent cell signaling during muscle differentiation.

Although PTB cleavage induced by HDAC inhibition produced

C-terminal fragments of ,40 kDa, we did not detect the presence

of these fragments in vivo in correlation to the reduction of full

length PTB in the developing heart. However, the increased

abundance of PTB proteins in the heart of cardiac-specific

caspase-3 and -7 double knockout strongly supports a role of

caspases in the control of PTB expression in vivo. The results

presented here also suggest that the initial cleavage of PTB by

caspases triggers further PTB degradation by the proteasome.

Caspase-dependent processing inducing further degradation of

the target has been demonstrated for other proteins (Demontis

et al., 2006; Plesca et al., 2008).

The regulated programs of alternative splicing in developing

heart involve numerous factors in addition to PTB; bioinformatic

analysis of exons that are co-regulated during cardiac

development indicated enrichment of binding sites for CELF,

MBNL and FOX proteins in addition to PTB (Kalsotra et al.,

Fig. 5. PTB regulates alternative splicing of

tropomyosin-1 and tropomyosin-2 in the developing

heart. (A) Diagram showing possible transcripts

generated by splicing of mutually exclusive exons in

Tpm1, indicating the PTB-repressed exon in red and the

position of the primers used for RT-PCR. (B) Inclusion

of exons 8 and 9 in the Tpm1 transcripts in empty virus-

transduced () and PTB1-overexpressing neonatal rat

cardiomyocytes. unr, upstream of n-ras (used as a

loading control). (C) Abundance of the Tpm1 variants

including the PTB-repressed exon 9 (red) or the

alternatively spliced exon 8 (blue) in reverse-transcribed

total cardiac RNA extracts of rats at different ages (from

embryonic day 16 to postnatal day 12). Bars show

relative values to embryonic day 16 (E16).

(D) Inclusion of Tpm1’s exons 8 and 9 in the hearts of

embryonic E18 wild type (WT) and HDAC5-deficient

(KO) mice, expressed as fold change versus WT.

(E) Inclusion of Tpm1’s exons 8 and 9 in the hearts of

neonatal wild type (WT) and caspase-3,7-deficient (KO)

mice, expressed as fold change versus WT. (F–J) Same

experiments as in (A–E) for Tpm2’s exons 6 and 7. Each

bar indicates the mean and error bars show s.e.m of

results obtained from three independent hearts.

*P,0.05 versus WT.
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2008). Indeed, all of these proteins were also implicated in the

computationally assembled muscle ‘splicing code’ (Barash et al.,

2010; Llorian and Smith, 2011). Curiously, while the preceding

report demonstrated changes in the levels of CELF, MBNL and

FOX proteins, no changes in levels of PTB expression were

observed during post-natal heart development in mouse (Kalsotra

et al., 2008). The reasons for this discrepancy between our

observations and those of Kalsotra et al. (Kalsotra et al., 2008)

are unclear. Nevertheless, we reproducibly observed a rapid

decrease in PTB protein abundance in mouse and rat hearts after

birth, using two independent PTB-specific antibodies against two

different regions of the protein, whose specificity has been

previously confirmed [Fig. 2A and (Zhang et al. (2009)].

In addition, our findings expand the current knowledge about

the relevance of PTB in the biology of striated muscle by

showing its role in Mef2 alternative splicing in the developing

heart. Thus, although it is known that PTB regulates splicing of

many genes involved in muscle contraction, our data reveal that

PTB is also involved in the splicing of Mef2a and Mef2d, which

encode transcription factors that are important for the control of

gene expression during cardiac muscle differentiation and for the

adaptation of the cardiac muscle to stress (Kim et al., 2008).

MEF2 and HDAC are mutually regulated factors involved in

the control of gene expression during heart development

(McKinsey and Olson, 2005; Potthoff and Olson, 2007).

Deficiency in either MEF2A or MEF2C induces profound

alterations in heart morphology, and MEF2D deficiency

hampers the normal response of the heart to stress in the adult

(Kim et al., 2008; Lin et al., 1997; Naya et al., 2002). Inclusion of

exon b in Mef2 transcripts generates mRNAs coding for MEF2

variants bearing an acidic peptide in the transcription activation

domain (Yu et al., 1992) (supplementary material Fig. S1) that

enhances transcriptional activity of MEF2 (Zhu et al., 2005). On

the other hand, mice deficient for Class II HDAC 5 and 9 or Class

I HDAC 1 and 2 show propensity to lethal cardiac defects (Chang

et al., 2004; Montgomery et al., 2007). Class II HDACs directly

bind to MEF2 and inhibit MEF2-dependent gene transcription

contributing to the regulation of muscle-specific gene expression

(Lu et al., 2000). Given the essential role of MEF2 in heart

development, it seems that adjusting MEF2 activity through

Fig. 6. PTB expression determines skipping of exon b in

Mef2a and Mef2d transcripts in cardiomyocytes.

(A) Expression of PTB and MEF2 (A,C,D) in cardiac

protein extracts of rat embryos (E18), 2-day-old neonates

and 2-month-old adults, with an antibody raised against the

N-terminal region of PTB. Similar results were obtained in

two analyses using independent samples. Prohibitin was

used as a loading control. (B) A Mef2 alternative splicing

event occurring during heart development (see a more

detailed explanation in supplementary material Fig. S1).

Exon b inclusion in Mef2a, Mef2c and Mef2d transcripts

was analyzed by radioactive qRT-PCR with primers

flanking the alternatively spliced exon in total mRNA

samples from hearts of rat embryos (E18), 2-day-old

neonates and 2-month-old adults. + b and 2 b indicate

inclusion or exclusion of exon b, respectively. Bar graph:

quantification of radioactive products obtained by qRT-

PCR. nd: not detected. Error bars show s.e.m. from three

independent samples. *P#0.05 versus E18 by two-tailed

Student’s t test. (C) Effects of PTB overexpression in

cardiomyocytes on Mef2 exon b splicing. Upper panels:

time course of PTB1 and PTB4 overexpression in P4

cardiomyocytes. Neonatal cardiomyocytes were transduced

with empty lentiviruses (Ø) or lentiviruses inducing

overexpression of PTB, and PTB abundance was monitored

by western blot analysis. Lower panels: Mef2 exon b

splicing. Total RNA was extracted at day 4 post-

transduction, and exon b inclusion in Mef2a, Mef2c and

Mef2d transcripts was analyzed by radioactive qRT-PCR.

Two independent experiments were performed with similar

results. (D) Analysis of exon b inclusion (2b, not included;

+b, included) in Mef2 transcripts was assessed in total RNA

extracts from hearts of 2-day-old wild type (WT) and

HDAC5-deficient mice (HDAC5 KO) and is expressed as

fold change compared with WT. (E) Analysis of exon b

inclusion (2b, not included; +b, included) in Mef2

transcripts was assessed in total RNA extracts from hearts

of 1-month-old wild type (WT) and cardiac-specific

caspase-3 and -7-deficient mice (KO) and is expressed as

fold change compared with WT. Error bars in D and E show

s.e.m. of data from three hearts per genotype. *P,0.05

versus WT by two-tailed Student’s t test.
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regulation of exon b splicing can be relevant for the correct

contribution of MEF2-dependent transcription, regulated by

Class II HDAC, during heart organogenesis. Our results

showed that exon b inclusion in Mef2a and Mef2d occurs

progressively during heart development. We also observed an

inverse relationship between exon b inclusion and PTB

expression and show reduced PTB expression perinatally in the

hearts of rats and mice. Furthermore, we show that PTB

expression is sustained by HDAC5, thus linking HDAC5 with

the regulation of MEF2A and MEF2D activity through the

control of mRNA splicing. These results unveil an additional new

pathway by which HDAC can influence MEF2 activity without

direct interaction.

The reason for exon b inclusion in the transcript of Mef2a and

Mef2d but not in Mef2c in the heart is unknown but our results

show that exon b inclusion in Mef2a and Mef2d is regulated by

PTB. MEF2C is essential for the heart only during early

development (Lin et al., 1997), and our results show that PTB is

abundant during that period. Intrigued by the lack of exon b
inclusion in Mef2c we verified the presence of this exon in the

Mef2c gene (Mef2c mRNA NCBI entries including exon b are:

human, NM_002397; mouse, NM_025282; and rat,

XM_001056692). Our in silico analysis of the sequences

flanking exon b in the Mef2 sequences showed putative PTB

binding motifs in all three genes; however, we found also a

potential Fox-1 binding motif GCAUG (Jin et al., 2003) near both

ends of exon b only in the Mef2c sequence. Fox-1 is abundant in

differentiated muscle and can induce exon skipping (Fukumura

et al., 2007). This could contribute to exon b skipping in Mef2c in

the absence of PTB. However the role of Fox-1 in Mef2c exon b
skipping is speculative and would require further investigation. On

the contrary, MEF2A plays a key role during the late phase of

myocardial differentiation (Naya et al., 2002), precisely coinciding

with the reduction of PTB expression and exon b inclusion, as we

show here. Exon b inclusion in MEF2A seems correlated to its

trans-activating activity (Yu et al., 1992) suggesting that it could

be essential for the correct function of MEF2A in vivo.

Furthermore, we showed that a significant fraction of the

transcript for MEF2D, which plays a relevant role in stress-

induced gene expression in the adult (Kim et al., 2008), includes

exon b in a PTB-inhibitable manner progressively after birth.

Interestingly, we have recently found increased expression of

MEF2A and MEF2D in myocytes treated with hypertrophic

agonists and the hypertrophied adult heart (Ye et al., 2012). It can

be hypothesized that, in the heart, exon b inclusion is important to

define the activity of MEF2A and MEF2D when they are essential,

but not in MEF2C, and that this splicing event is regulated by

different mechanisms depending on the gene, with PTB being a

relevant regulator of exon b splicing in Mef2a and Mef2d

transcripts.

In this work we also show that two splicing events affecting

the tropomyosin genes 1 and 2, which were known to be

regulated by PTB abundance in other cell types (Llorian and

Smith, 2011; Mulligan et al., 1992), are also influenced by

PTB in the developing myocardium in vivo and neonatal

cardiomyocytes in vitro. Furthermore, our results demonstrate

that experimental alteration of the novel signaling pathway

controlling PTB abundance in the heart consistently influences

PTB-dependent alternative splicing, adding experimental

evidences for the link between HDAC, caspases and PTB in

the control of alternative splicing in the heart.

In conclusion, our data show that abundance of PTB in

cardiomyocytes is dependent on HDAC5 through the regulation of

its FLIP-inhibitable, caspase-dependent cleavage and that

progressive reduction of PTB expression permits the inclusion of

PTB-repressed exons to change gene isoform expression in the heart

during cardiac muscle differentiation. These findings contribute to

the understanding of the role of caspases in myocyte differentiation,

revealing the involvement of HDAC5 in its regulation and

suggesting a previously unknown pathway for the control of gene

expression by HDAC, involving the splicing repressor PTB.

Materials and Methods
Animal, tissues and cell cultures

The investigation with experimental animals conforms to the Guide for the Care
and Use of Laboratory Animals published by the US National Institutes of Health
(NIH Publication No. 85-23, revised 1996) and was approved by our Experimental
Animal Ethic Committee. For analysis of protein expression we used hearts from
Sprague–Dawley rats (Charles-River) housed in our Experimental Animal Facility
at the University of Lleida. Full caspase-7-deficient, cardiac-specific caspase-3-
deficient mouse strain was generated by sequential crossing of caspase-7 null mice
(Lakhani et al., 2006) with caspase-3 floxed mice (a gift from Richard Flavell,
Yale University School of Medicine, New Haven, CT) and then with the Nkx2.5-
Cre mouse strain (a gift from Eric Olson, University of Texas Southwestern

Fig. 7. Model of the regulation of alternative splicing by HDAC and

caspases through the control of PTB abundance during heart

development. The expression of HDAC decreases during perinatal

cardiomyocyte differentiation. Developmental downregulation of HDAC

induces the reduction of cFLIP expression, allowing caspases to cleave the

splicing repressor PTB. Caspase expression is reduced at the transcriptional

level during heart development (Zhang et al., 2007). Caspase-dependent PTB

cleavage triggers its degradation by the proteasome. Low levels of PTB in the

postnatal heart permits inclusion of PTB-repressed exons in pre-mRNAs,

switching to the adult variants of genes such as those encoding the

transcription factor MEF2 and the structural protein a-tropomyosin.
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Medical Center, Dallas, TX). Genotypes were analyzed by PCR. HDAC5 and
HDAC9 strains (Chang et al., 2004) and a HDAC1 and HDAC2 double mutant
strain (Montgomery et al., 2007) were housed in their laboratories of origin. Hearts
were dissected minced into small cubes, rinsed with cold phosphate buffered saline
and snap-frozen into liquid nitrogen. Rat neonatal cardiomyocytes were obtained
from the ventricles of 2 to 4-day-old pups as described elsewhere (Bahi et al.,
2006). HEK293 cells were cultured and used both for experiments and for virus
production as reported previously (Bahi et al., 2006).

Pharmacological treatments, lentivirus production and cell transduction

The HDAC inhibitors NaB (cat. no. B5887) and TSA (cat. no. T8552) were
purchased from Sigma. The caspase inhibitors z-VAD-fmk (cat. no. 550377) and
z-IETD-fmk (cat. no. 550380) were from BD Pharmingen. The proteasome
inhibitor lactacystin (L6785) was from Sigma. Lentiviral particles empty or for
inducing overexpression of human PTB1 and PTB4 and mouse c-FLIP-L were
prepared as previously reported (Zhang et al., 2009) and cardiomyocytes were
treated after 3 days of transduction as described elsewhere (Bahi et al., 2006).

RNA extraction, and real time and quantitative RT-PCR

For heart and cardiomyocytes, total RNA was obtained from frozen tissues or cell
pellets with the RNeasy Mini Kit (Qiagen). RNA concentration measurements and
reverse transcription were done as described (Bahi et al., 2006; Zhang et al., 2009).
Quantitative real time PCR was performed in a iCycler iQ PCR detection system
and iQ v.3 and iQ v.5 software (BioRad), using the TaqMan Gene Expression
Master Mix (cat. no. 4369016) and the Gene Expression Assays Mm00943334_m1
and Rn00821112_m1 to amplify genes encoding mouse and rat PTB, respectively
and Rn00589205_m1 to amplify rat cFlip, with simultaneous amplification of
Gapdh as a loading control (Applied Biosystems). For radioactive quantitative
PCR, reverse transcriptase reactions were carried out using 1 mg of total RNA,
oligo dT and Superscript II (Invitrogen) following manufacturer’s instructions.
PCR reactions were carried out with 10 pmol of forward primer and 4 pmol of 32P-
labeled reverse primer (supplementary material Table S1) and 1 U/ml of Taq
polymerase, under the following conditions: 94 C̊ for 30 s, 55 C̊ for 30 s and 72 C̊
for 30 s, 25 or 30 cycles. 1/20 of the PCR was separated on 8% polyacrylamide
urea gel. Gels were dried and exposed in phosphorimager cassettes. PCR band
ratios were determined using a Molecular Dynamics PhosphorImager and shown
as a fraction of the total. Data shown are means6SD, n53.

Protein extraction, SDS-PAGE and western blot

Protein expression was analyzed in protein extracts diluted in Tris-buffered 2%
SDS solution at pH 6.8 and SDS-PAGE was performed as described (Bahi et al.,
2006). Antibody specifications are described in supplementary material Table S2.
Western blots were performed as reported previously (Bahi et al., 2006).
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