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On the f¢-adic valuation of the cardinality of
elliptic curves over finite extensions of [,

Josep M. Miret Jordi Pujolas Javier Valera

Abstract. Let E be an elliptic curve defined over a finite field F, of odd
characteristic. Let £ # 2 be a prime number different from the charac-
teristic and dividing #FE(F,). We describe how the ¢-adic valuation of
the number of points grows by taking finite extensions of the base field.
We also investigate the group structure of the corresponding ¢-Sylow
subgroups.

1. Introduction

Let g be a power of a prime p # 2 and let E be an elliptic curve over a finite
field IF,. We compute the difference of valuations ve(#E(F)) —ve(#E(F,)),
where k is a natural number and ¢ # 2, p is a prime number dividing #E(F,)
(Theorems 1, 2). Our result agrees with the predictions of Iwasawa Theory.

Under the given assumptions, ve(#E(Fg)) — ve(#E(F,)) > 0 only if
ve(k) > 0 or if k is divisible by the multiplicative order d of ¢ in F; (see
Proposition 2). Hence we can reduce the proofs to the cases k = £ or k = d.
We also describe how the group structure of the £-Sylow subgroup E[¢(>°](IF )
changes with k. Namely, if

El>®|(Fy) =Z/0"Z x Z/¢°Z with 0<r<s and r+s>1,

we show how to determine integers ry, s such that E[(>°]|(F ) = Z/{™Z x
7./05+7.

On this regard, a partial answer appeared in [3, Proposition 6.3] for
k = ¢. The case of ordinary elliptic curves with &k = ¢, ¢ = 1 (mod ¢) and
t2—4q =0 (mod ¢?), for t the trace of Frobenius endomorphism, was covered
in [4, Proposition 4.2] using pairings. The case of supersingular elliptic curves
for k =d, ¢ # 1 (mod ¢) and for some other particular cases was set in [6,
Section 4].
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Notation. For us, g is the power of some prime number p # 2, F is an elliptic
curve over Fy, ¢ # 2, p is a prime number such that ¢ | #E(F,) and d is the
multiplicative order of ¢ in F}. We write the multiplication-by-m isogeny [m)]
as m

2. A recurrence formula for #E(F )
The cardinality of E over a finite extension of F is
#E(Fy) = deg(l - ¢") = ¢" +1 1, (1)

where ¢, is the trace of the Frobenius endomorphism ¢* of E over Fyx (see
[10, Theorem 2.3.1]), and

¢" ="k, ty=o" +F, (2)
where g?)z is the dual of ¢*. By varying k, the traces t; (we set t = t;) satisfy
the recurrence

to =12 —2q, tp=tty_1 —qtp_o for k>3. (3)
The first thing we do is to express (3) in terms of the cardinalities #E(Fgx ).

Proposition 1. Let k be a natural number. Then

k—i—1

k—1
#E(Fg) = #E(F qu—Z#E SN

=0

Proof. We have #E(F i) = deg(1 — ¢F) = #E(F,)deg(1+ ¢ + -+ + ¢*71).
The expansion of the rightmost factor is ij_:lo Pl =

k—1 k—2 k—3
D61+ (6+0) D ¢0i+ (67 + 1) D 610+ (¢ + gk,
=0 =0 =0
which by (1) and (2) reduces to
k—i—1 k—1 k—1 k—i—1 )
Zq +Zq +1—#EF,) > ¢ =k — Y #EFH) Y
§=0 i=0 i=1 §=0

O

Proposition 2. Let 7 = v,(k) and let d be the multiplicative order of q in F}.
Then

v(#EFger))  ifdtk,
’Ug(#E(]FqMT)) Zfd | k.

Proof. By Proposition 1 with k = £7k’, 04 k" and ¢* = (¢*")*', we have

k' —1 k' —1 k' —i—1

#E(F ) = #E(Fyr k/Zq — Y HEFur) Y @Y (4)

i=1 7=0

v (#EFgr)) = {
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at once. If d{ k then ¢ Z1 (mod ¢) and vy (Zf;]l qié") = (qqe’i—_11> —0
because the numerator is not 0 modulo £. Since
k' —1 i

Z#E Z I > v (#E(Fyer)) >0,

we see v (#E(Fyr)) = Uz(#E(Fq +)). Similarly, if d | k then (4) with k =
k' implies vy (#E(F 1)) = ve(#E(F jair ) since vy (k/z —1qzd4*) — 0.
U

Proposition 2 above reduces our problem to two cases: extensions of F,
of degree ¢ (see Section 3) and, only if ¢ # 1 (mod ¢), extensions of degree
equal to the multiplicative order d of ¢ in F} (see Section 4).

3. Increment of vy (#E(F))
In this section we consider field extensions of degree k = /.

Theorem 1. Unless { =3 and ¢ =1 (mod 3) and #E(F,) =3 (mod 9) hold,
we have

S W e et i
For¢{=3 and ¢ =1 (mod 3) and #E(F,;) =3 (mod 9), we have
vs(#E(Fgs)) — vs(#E(Fy)) = 2min{vs(q — 1),v3(t + 1)} > 4,
except if g — 1 =t + 1 (mod 3U=D+1) in which case we have
v (FE(F ) — va(#E(F,)) = 2us(q — 1) + 1> 3.

Proof. Let & be a primitive ¢-th root of unity. Then the ideal (¢) factors in
Z[¢] as (£) = (1—€)*7L, and by elementary number theory the corresponding
valuations satisfy ve() = ;;v1—¢(). Therefore, by (1) and the factorization

-1
deg(1+ ¢+ +¢"") = [0 — &) - &),
=1
U(HE(E,)) = vl #E(E i (0-16-¢). ©

Write ¢ = ¢ (mod £), so that § € {1, o= 1}. Then
(6= €D —&) =1 —&)a—E&)+th

for some k; € Z[¢]. Hence the second summand in (5) is 1 for ¢ # 1 or 2 for
g = 1, except possibly for £ =3 = (1 —&)?(1 +£). In this case, let ¢ — 1 = 3z
(mod 9), t+ 1 =3y (mod 9) for x,y € {0,1,2}. Then

(1 — €92+ 3k; = 3(x — y¢)  (mod 9).



4 Josep M. Miret  Jordi Pujolas  Javier Valera

Clearly v1_¢((1 — €)? + 3k;) = 2 if ¢ # y and v1_¢((1 — &% + 3k;) > 3 if
x =y (which is equivalent to #E(F,) =3 (mod 9)). More explicitly, let
g—1 = 3x1+ 92+ - +3%my + - -, z; € {0,1,2},
t+1 =+ @Bu+9p+ - +3"y+-), v {012}
Then
(0 —EN(B— &) =3(x1 Fy1&) + I wa F y26") + -+ + 3“ (T F Yu&') + -+ .
But if v3(q — 1) < v3(t + 1) with w = v3(¢ — 1) > 2, then z; = 0 for all
1 <i<w, zy #0and y; =0 for all 1 < i < w. Hence the increment is
2v3(q — 1). Similarly, if vs(t + 1) < v3(qg — 1) with w = v3(t + 1) > 2, then
yp =0for 1 <i<w, y, # 0and x; =0 for 1 < i < w, so the increment
is 2u3(t + 1). Finally, if v3(¢ — 1) = v3(t + 1) = w then x4,y # 0, and the
increment is 2vs(q — 1) + 1 if 2, F ¥ = 0 (mod 3) (which is equivalent to
q—1=t+1 (mod 3v*(4=Y+1)) and 2v3(q — 1) if not. O

Example 1. Let ¢ = p = 10099 = 1 (mod 3), and consider the following
elliptic curves over Fy:

Ei:y? =% + 10702 + 7959,  Es: y® = 2% + 9599z + 1000,

Es: y? = 2% 4 3690z + 2719, E,: y? = 2% 4 2828z + 4443.
Their numbers of points over F, satisfy #E;(F,;) = 3 (mod9), for ¢ =
1,2,3,4. From Theorem 1 we deduce the increment of the 3-adic valuation of

HE;(Fys):

E, E, E3 E,
v3(g —1) 3 3 3 3
vs(t+1) 2 3 3 4
q—1 (mod 3vs(a—1+1) 54 54 54 54
t+1 (mod 3vs(a—1+1) 72 27T 54 0
v3(#E(Fys)) — v3(#E(F)) 4 6 7 6

Lemma 1. For all our ¢,

0 ifg#£1 (mod?),

1 R
vell gt {1 ifq=1 (mod ).

Proof. Assume first ¢ Z 1 (mod ¢). Since 1 +¢q+---+¢°~! = ‘1;—_117 Fermat’s
Little Theorem implies our claim. If ¢ = 1 (mod ¢), then ¢ has the form
1+cl, hence 1+q+---+¢" 1 = £(1+cl(...)), and since vo(1+cl(...)) =0,
then vo(14+q+---+ ¢ 1) = ve(€) +ve(1 +cl(...) = 1. O

Let K = Q(+/t? — 4q), let di be the discriminant of K and let g, be the
conductor of the order Z[¢*]. It is well known (see [2, pg. 134] for instance)
that

th — 44" = gidx.
Lemma 2. Let E be ordinary and let n = vo(#E(F,)) > 1. Let ¢* be the

Frobenius endomorphism of E over Fyx and let oy, = Zi:ol (;5%’“/”\*1. Then
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i) 1 —4¢" = (t* — 4q)oi,
ii) op =1+ ---+¢"! (mod £m).

Proof. i) Clearly from (2) we have 2 — 4¢* = (¢* + @)2 — 4phgk = (pF —

OF)2 = (6= O)2(DF T + 9pk—2 + - 4 F72G 4 gh1)2 = (12 — dg)of.

1) From the definition of ok, we have o = tog_1 — qog—_o for k > 3.
Since 01 = 1 and 03 = 1+ ¢ (mod ¢*), o), = 1+ q+ -+ ¢* ! (mod (™)
follows by induction. O

Let f be the conductor of @ = End(E) in the ring of integers Ok.
From [5, 14] and [7] it follows that the smallest exponent ry in E[(*](Fx) =
LT X TR, s

B min{%w(#E(Fqk)),w(QTk)} if vo(#E(F,r)) is even,
k= ve (%) otherwise.

(6)

Proposition 3. Let E[¢(>®°|(F,) = Z/l"ZXZ/Z withr < s andn =r+s> 1.
For £ > 5 we have:

i) if ¢# 1 (mod ¢) then r =0 and E[(*°]|(F ) = Z/("T'Z,

ii) if g =1 (mod ¢) then E[{>®|(Fy ) = Z/0" 7 x L/ 15T L.
For £ = 3 the group structure variation is the same as above except if ¢ =1
(mod 3) and #E(F,) =3 (mod 9), in which case E[3°|(F,) = Z/3Z and

E3*|(Fy) = Z/3™7 x /37
with s3 =13 > 2 or s3=r3+1>3.

Proof. i) Clearly Theorem 1 follows if both E[¢>°](F,), E[¢>°](F,) are cyclic.
If (t,q) = 1, then by [8] or [11] neither  nor r, exceed vy(q—1) = vo(q* —1) =
0, so both subgroups are cyclic. If (t,q) # 1, then (t7,¢") # 1 by the trace
formula (3), and by [9] and [13] the only possibility is that both subgroups
are cyclic.

i1) Let (t,q) = 1. Assume first t> — 4q = 0 (mod ¢?). Since t? — 4q =
(q—1)? =2(q+ 1)#E(F,) + #E(F,)? and ve(q — 1) > 1, then n > 2. Hence
by Lemma 2 oy = 1+q+---+¢*~1 (mod ™). Since vy (1+q+---+¢* 1) =1
by Lemma 1, we see vg(op) = 1. Therefore, again by Lemma 2 we have

ve(tf —4q¢") = vt — 4q) + 2, (7)
which in terms of the conductors g; is
ve(ge) = ve(g1) + 1. (8)

In view of (6), it is easy to deduce ry = r + 1 from Theorem 1 and (8). Then
by Theorem 1 we conclude s, = s + 1 as desired.

In case t2 — 4g # 0 (mod £2), (7) holds as well. Indeed, since t* — 4q =
(g —1)2 =2(q+ 1)#E(F,) + #E(F,)? then v,(t* — 4¢g) = 1 and n = 1. Then
ve(#E(F,)) = 3 by Theorem 1 and we deduce v,(t7 —4¢*) = 3. At this point
the proof is the same as above.
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If (t,q) # 1 then as in i) above the only possibility is E(F,) = (Z/(\/qF1)Z)?
and E(F ) = (Z/( \/>:Fl )2 respectively. Then v ( \/>:Fl ) =ve(\/qF1)+1
by Theorem 1.

Assume now ¢ = 3. If some of the conditions ¢ = 1 (mod 3), #E(F,) =
(mod 9) do not hold, then the proof follows as above. In the exceptional case,
if (t,q) # 1 the result appears in [6, Table 1] for t = £,/q. If (t,q) = 1, by
Theorem 1 we have two possibilities: vg(#E(Fgs)) = 14 2c for 2 < ¢ <
v3(q — 1) or else v3(#E(Fys)) = 2 + 2v3(q — 1) with v3(¢ — 1) > 1. In both
cases one easily deduces v3(g1) = v3(f) = 0 and v3(dx) = 1. In the first case,
then vs((¢®—1)?) > v3(#E(F,2)) by Lemma 1, and then vs(t3 —4¢3) = 1+2c.
Therefore v3(g3) = ¢ and r3 = v3(g3/f) = ¢, s3 = ¢+ 1. In the second case,
then v3((¢® — 1)?) = v3(#E(F,2)) and vs(t3 — 4¢) > v3(#E(F,z)). Thus
v3(93/f) =2 vs(g —1) + 1, and by (6), 3 =1+ v3(q — 1), hence s3 =r3. [

4. Increment of vy(# E(Fq)) for d = ordy;(q)

In this section ¢ £ 1 (mod ¢) and k is equal to the multiplicative order d
of ¢ modulo 4. In this case, our problem for supersingular elliptic curves is
solved in [6, Table 1] (where necessarily d = 2 and t = 0, d = 3 and t* = ¢,
or d = 6 and t> = 3q). Therefore we assume F is ordinary. Then by [8] or
[11], E[¢>°](F,) is cyclic. We let wy = ve(g? — 1).

Proposition 4. Let E be ordinary, let ¢ Z 1 (mod £) and let n = vy(#E(Fy)) >
1. If E[¢>)|(F,) = (P,) then

E[l®])(Fga) = (Pn, Qu),
where Q,, € E(Fya) is a point of order £, > 1. If n. > p then p = wq.

Proof. 1t is well known that E[(*°](F,4) has rank 2 (see [1, Theorem 1]). Let
¢# be the order of a generator @, of E[¢*°](F,a) independent of P,.

We next show that P, has the property that Ve < £ there cannot exist P €
E(F ) such that /P = P,. By Proposition 3, ¢ such points P € E(F,) do exist
in E( ¢). Assume there exists T' € E(FF4) such that {T' = P,. By Proposition
2 we can assume e = d. Let P, = (" 'P, and let @; = ¢#7'Q,. Then
T = P+ aP; + BQ, for some integers «, 3 and clearly aPy + Q1 € E(Fga).
Hence P € E(Fy) N E(F,a) and therefore £ | d, which is a contradiction.
Because of this property, if n < u then P, is a generator over [F 4. Indeed, the
property above extends to the set {P,, + T, | £“T. = 0,c¢ < n} by elementary
group theory, and this implies P, is a generator of E(Fya). If n > p, P, is
a generator over IF,a by other reasons. We first show the precise order of @,
is given by u = vi(04). Let f, gi, dx be as above. Since t? — 4q = gidyx # 0
(mod ¢) then ve(f) = 0. Since n > p then p = wve(gq/f) in (6), and then
p = ve(ga). Similarly, since t2 — 4¢? = g2dx = g¢?dxo? by Lemma 2 and
ve(g3dx) = 0, then vy(oq) = vi(gq) = p. But also by Lemma 2 we have
0g =1+ -+ ¢¥ ! (mod "), and since n > p, we deduce p = wq. Now
Proposition 1 implies vg(#E(Fa)) = n+wgq, hence P, and @, generate. [J
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Theorem 2. Let E be ordinary and let ¢ 21 (mod £).

1) If wg < ve(#E(Fy)) then vg(#E(F 1)) = ve(#E(Fy)) + wa.
ii) If Wq = ’Ug(#E(Fq)) then U@(#E(qu» Z 2U@<#E(Fq>).
iii) If wg > ve(#E(Fq)) then vy (#E(Fya)) = 20(#E(F,)).

Proof. Let n = v (#E(F,)). i) and 4) follow from Proposition 1. The same
argument for 4ii) implies ve(#E(Fga)) > 2n. Assume vy (#E(Fya)) = 2n +
1. Then t2 — 4¢% = (¢¢ — 1)2 + H#E(F,a)(#E([F ) — 2(qg% + 1)), therefore
ve(t2 — 4g%) = 2n + 1. But this is not possible: by Lemma 2, v,(t2 — 4¢%) =
ve(t2—4q)+2v4(0q) = 2ve(04) is even. Finally, by Proposition 4 we can assume
E[>°)(F,a) = Z/{" L x 7/ 0" 7 with ¢ > 2. Then ve(t3—4q%) > 2n+2, hence
ve(ga) > m+1 as in the proof of Proposition 4 above. But then, since vy(f) =0
the value of n contradicts (6). O

The structure of E[¢(*°](F ) now follows.

Corollary 1. Let E be ordinary, let ¢ # 1 (mod ¢), and let E[¢>](F,)
Z/0"Z withn > 1.
i) If wa < n then BI(=)(Fya) = Z/0¥7 x T/("T.
ii) If wg = n then E[>®)(Fyu) = Z/0"Z x Z/0"' 7 with n' > n.
iii) If wg > n then E[0>®°|(F,a) = Z/I"Z x L/ L.

I

In the following example we illustrate i) of Theorem 2 and Corollary 1.

Example 2. Let ¢ = p = 10'° + 19, ¢ = 7 and d = 3. Consider the elliptic
curves

Ep :y? = 2% 4129113198 + 9741773623,

B, :y? = 23 4 48002451522 + 399509715

over F,. For both of them v, (#E;(F,)) = wq = 1, but E; satisfies
v (#E1(Fpa)) =2 and  E[(*)(Fya) = Z/lZ x L/ VL,
while Fy satisfies

Ve (#E2(Fpa)) =5 and Ey[t™)(Fa) = Z/IZ x Z/(*Z.

5. Conclusions

In this section we summarize our data for £ > 5 and for an arbitrary degree
k. As above, n = v (#E(F,)), wa = ve(q? — 1) and we write the exponents
of E[¢><](F,) as (r,s) with 0 < r < sand r+s > 1. We set k = m{7d?
with m a natural number prime to ¢ and d, and 7,y > 0. Our results relative
to #E(F,x) are shown in Table 1. The case k = {7 can be seen as a simple
instance of Iwasawa Theory for function fields of elliptic curves over F, and
the Zg-extension U,F e~. In [12, Theorem 13.13 and pg. 130] one finds the
prediction vy (#E(F e~ )) = A7 +v for 7 sufficiently large, with 0 < A <2 and
v a constant.
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E ordinary
Increment Exponents Condition

27 (r+7,8+7) ¢g=1 (mod ¢)

T (0,n + 1) g#% 1 (mod ¢) and v =10
2r+wg | (wg+71,m+7) | ¢#1 (mod ¢) and wg <mn and v > 1
21 +n (n+7,n+7) | ¢#1 (mod ¥) and wg >n and v > 1
>274+n | (n+7,>n+7) otherwise

E supersingular
Increment Exponents Condition

27 (r+71,s+7) g=1 (mod ?¢)

T (0,n+ 1) ¢g#1 (mod¥¢) and y=0
21 +n (n+71,n+71) otherwise

TABLE 1. Increment and exponents over an extension of I,
of degree k = mt™d".
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