

Document downloaded from: http://hdl.handle.net/10459.1/62671

The final publication is available at:

https://doi.org/10.1007/s00013-015-0798-6

Copyright

(c) Springer Basel, 2015

On the ℓ -adic valuation of the cardinality of elliptic curves over finite extensions of \mathbb{F}_q

Josep M. Miret Jordi Pujolàs Javier Valera

Abstract. Let E be an elliptic curve defined over a finite field \mathbb{F}_q of odd characteristic. Let $\ell \neq 2$ be a prime number different from the characteristic and dividing $\#E(\mathbb{F}_q)$. We describe how the ℓ -adic valuation of the number of points grows by taking finite extensions of the base field. We also investigate the group structure of the corresponding ℓ -Sylow subgroups.

1. Introduction

Let q be a power of a prime $p \neq 2$ and let E be an elliptic curve over a finite field \mathbb{F}_q . We compute the difference of valuations $v_{\ell}(\#E(\mathbb{F}_{q^k})) - v_{\ell}(\#E(\mathbb{F}_q))$, where k is a natural number and $\ell \neq 2$, p is a prime number dividing $\#E(\mathbb{F}_q)$ (Theorems 1, 2). Our result agrees with the predictions of Iwasawa Theory.

Under the given assumptions, $v_{\ell}(\#E(\mathbb{F}_{q^k})) - v_{\ell}(\#E(\mathbb{F}_q)) > 0$ only if $v_{\ell}(k) > 0$ or if k is divisible by the multiplicative order d of q in \mathbb{F}_{ℓ}^* (see Proposition 2). Hence we can reduce the proofs to the cases $k = \ell$ or k = d. We also describe how the group structure of the ℓ -Sylow subgroup $E[\ell^{\infty}](\mathbb{F}_{q^k})$ changes with k. Namely, if

 $E[\ell^{\infty}](\mathbb{F}_q) \cong \mathbb{Z}/\ell^r \mathbb{Z} \times \mathbb{Z}/\ell^s \mathbb{Z}$ with $0 \le r \le s$ and $r+s \ge 1$,

we show how to determine integers r_k, s_k such that $E[\ell^{\infty}](\mathbb{F}_{q^k}) \cong \mathbb{Z}/\ell^{r_k}\mathbb{Z} \times \mathbb{Z}/\ell^{s_k}\mathbb{Z}$.

On this regard, a partial answer appeared in [3, Proposition 6.3] for $k = \ell$. The case of ordinary elliptic curves with $k = \ell$, $q \equiv 1 \pmod{\ell}$ and $t^2 - 4q \equiv 0 \pmod{\ell^2}$, for t the trace of Frobenius endomorphism, was covered in [4, Proposition 4.2] using pairings. The case of supersingular elliptic curves for k = d, $q \not\equiv 1 \pmod{\ell}$ and for some other particular cases was set in [6, Section 4].

Notation. For us, q is the power of some prime number $p \neq 2$, E is an elliptic curve over \mathbb{F}_q , $\ell \neq 2$, p is a prime number such that $\ell \mid \#E(\mathbb{F}_q)$ and d is the multiplicative order of q in \mathbb{F}_{ℓ}^* . We write the multiplication-by-m isogeny [m] as m.

2. A recurrence formula for $\#E(\mathbb{F}_{q^k})$

The cardinality of E over a finite extension of \mathbb{F}_q is

$$#E(\mathbb{F}_{q^k}) = \deg(1 - \phi^k) = q^k + 1 - t_k,$$
(1)

where t_k is the trace of the Frobenius endomorphism ϕ^k of E over \mathbb{F}_{q^k} (see [10, Theorem 2.3.1]), and

$$q^{k} = \phi^{k} \widehat{\phi^{k}}, \quad t_{k} = \phi^{k} + \widehat{\phi^{k}}, \tag{2}$$

where $\widehat{\phi^k}$ is the dual of ϕ^k . By varying k, the traces t_k (we set $t = t_1$) satisfy the recurrence

$$t_2 = t^2 - 2q, \quad t_k = tt_{k-1} - qt_{k-2} \quad \text{for} \quad k \ge 3.$$
 (3)

The first thing we do is to express (3) in terms of the cardinalities $\#E(\mathbb{F}_{q^k})$.

Proposition 1. Let k be a natural number. Then

$$#E(\mathbb{F}_{q^k}) = #E(\mathbb{F}_q) \left(k \sum_{i=0}^{k-1} q^i - \sum_{i=1}^{k-1} #E(\mathbb{F}_{q^i}) \sum_{j=0}^{k-i-1} q^j \right).$$

Proof. We have $#E(\mathbb{F}_{q^k}) = \deg(1 - \phi^k) = #E(\mathbb{F}_q) \deg(1 + \phi + \dots + \phi^{k-1}).$ The expansion of the rightmost factor is $\sum_{i,j=0}^{k-1} \phi^i \widehat{\phi^j} =$

$$\sum_{i=0}^{k-1} \phi^i \widehat{\phi^i} + (\phi + \widehat{\phi}) \sum_{i=0}^{k-2} \phi^i \widehat{\phi^i} + (\phi^2 + \widehat{\phi^2}) \sum_{i=0}^{k-3} \phi^i \widehat{\phi^i} + \dots + (\phi^{k-1} + \widehat{\phi^{k-1}}),$$

which by (1) and (2) reduces to

$$\sum_{i=0}^{k-1} q^i + \sum_{i=1}^{k-1} (q^i + 1 - \#E(\mathbb{F}_{q^i})) \sum_{j=0}^{k-i-1} q^j = k \sum_{i=0}^{k-1} q^i - \sum_{i=1}^{k-1} \#E(\mathbb{F}_{q^i}) \sum_{j=0}^{k-i-1} q^j.$$

Proposition 2. Let $\tau = v_{\ell}(k)$ and let d be the multiplicative order of q in \mathbb{F}_{ℓ}^* . Then

$$v_{\ell}(\#E(\mathbb{F}_{q^{k}})) = \begin{cases} v_{\ell}(\#E(\mathbb{F}_{q^{\ell^{\tau}}})) & \text{if } d \nmid k, \\ v_{\ell}(\#E(\mathbb{F}_{q^{d\ell^{\tau}}})) & \text{if } d \mid k. \end{cases}$$

Proof. By Proposition 1 with $k = \ell^{\tau} k'$, $\ell \nmid k'$ and $q^k = (q^{\ell^{\tau}})^{k'}$, we have

$$#E(\mathbb{F}_{q^k}) = #E(\mathbb{F}_{q^{\ell^{\tau}}}) \left(k' \sum_{i=0}^{k'-1} q^{i\ell^{\tau}} - \sum_{i=1}^{k'-1} #E(\mathbb{F}_{q^{i\ell^{\tau}}}) \sum_{j=0}^{k'-i-1} q^{j\ell^{\tau}} \right)$$
(4)

at once. If $d \nmid k$ then $q \not\equiv 1 \pmod{\ell}$ and $v_{\ell} \left(\sum_{i=0}^{k'-1} q^{i\ell^{\tau}} \right) = v_{\ell} \left(\frac{q^{k}-1}{q^{\ell^{\tau}}-1} \right) = 0$ because the numerator is not 0 modulo ℓ . Since

$$v_{\ell}\left(\sum_{i=1}^{k'-1} \#E(\mathbb{F}_{q^{i\ell^{\tau}}})\sum_{j=0}^{k'-i-1} q^{j\ell^{\tau}}\right) \ge v_{\ell}(\#E(\mathbb{F}_{q^{\ell^{\tau}}})) > 0,$$

we see $v_{\ell}(\#E(\mathbb{F}_{q^k})) = v_{\ell}(\#E(\mathbb{F}_{q^{\ell^{\tau}}}))$. Similarly, if $d \mid k$ then (4) with $k = d\ell^{\tau}k'$ implies $v_{\ell}(\#E(\mathbb{F}_{q^k})) = v_{\ell}(\#E(\mathbb{F}_{q^{d\ell^{\tau}}}))$ since $v_{\ell}\left(k'\sum_{i=0}^{k'-1}q^{id\ell^{\tau}}\right) = 0$.

Proposition 2 above reduces our problem to two cases: extensions of \mathbb{F}_q of degree ℓ (see Section 3) and, only if $q \not\equiv 1 \pmod{\ell}$, extensions of degree equal to the multiplicative order d of q in \mathbb{F}_{ℓ}^* (see Section 4).

3. Increment of $v_{\ell}(\#E(\mathbb{F}_{q^{\ell}}))$

In this section we consider field extensions of degree $k = \ell$.

Theorem 1. Unless $\ell = 3$ and $q \equiv 1 \pmod{3}$ and $\#E(\mathbb{F}_q) \equiv 3 \pmod{9}$ hold, we have

$$v_{\ell}(\#E(\mathbb{F}_{q^{\ell}})) = \begin{cases} v_{\ell}(\#E(\mathbb{F}_{q})) + 1 & \text{if } q \not\equiv 1 \pmod{\ell}, \\ v_{\ell}(\#E(\mathbb{F}_{q})) + 2 & \text{if } q \equiv 1 \pmod{\ell}. \end{cases}$$

For $\ell = 3$ and $q \equiv 1 \pmod{3}$ and $\#E(\mathbb{F}_q) \equiv 3 \pmod{9}$, we have

$$v_3(\#E(\mathbb{F}_{q^3})) - v_3(\#E(\mathbb{F}_q)) = 2\min\{v_3(q-1), v_3(t+1)\} \ge 4,$$

except if $q - 1 \equiv t + 1 \pmod{3^{v_3(q-1)+1}}$, in which case we have

$$v_3(\#E(\mathbb{F}_{q^3})) - v_3(\#E(\mathbb{F}_q)) = 2v_3(q-1) + 1 \ge 3.$$

Proof. Let ξ be a primitive ℓ -th root of unity. Then the ideal (ℓ) factors in $\mathbb{Z}[\xi]$ as $(\ell) = (1-\xi)^{\ell-1}$, and by elementary number theory the corresponding valuations satisfy $v_{\ell}() = \frac{1}{\ell-1}v_{1-\xi}()$. Therefore, by (1) and the factorization

$$\deg(1 + \phi + \dots + \phi^{\ell-1}) = \prod_{i=1}^{\ell-1} (\phi - \xi^i)(\widehat{\phi} - \xi^i),$$
$$v_{\ell}(\#E(\mathbb{F}_{q^{\ell}})) = v_{\ell}(\#E(\mathbb{F}_{q})) + \frac{1}{\ell-1} \sum_{i=1}^{\ell-1} v_{1-\xi} \left((\phi - \xi^i)(\widehat{\phi} - \xi^i) \right).$$
(5)
$$a = \bar{a} \pmod{\ell} \text{ so that } \bar{a} \in \{1, \dots, \ell-1\} \text{ Then}$$

Write $q \equiv \bar{q} \pmod{\ell}$, so that $\bar{q} \in \{1, \dots, \ell - 1\}$. Then

$$(\phi - \xi^i)(\widehat{\phi} - \xi^i) = (1 - \xi^i)(\overline{q} - \xi^i) + \ell k$$

for some $k_i \in \mathbb{Z}[\xi]$. Hence the second summand in (5) is 1 for $\bar{q} \neq 1$ or 2 for $\bar{q} = 1$, except possibly for $\ell = 3 = (1 - \xi)^2 (1 + \xi)$. In this case, let $q - 1 \equiv 3x \pmod{9}$, $t + 1 \equiv 3y \pmod{9}$ for $x, y \in \{0, 1, 2\}$. Then

$$(1-\xi^i)^2 + 3k_i \equiv 3(x-y\xi^i) \pmod{9}.$$

Clearly $v_{1-\xi}((1-\xi^i)^2+3k_i)=2$ if $x \neq y$ and $v_{1-\xi}((1-\xi^i)^2+3k_i)\geq 3$ if x=y (which is equivalent to $\#E(\mathbb{F}_q)\equiv 3 \pmod{9}$). More explicitly, let

$$\begin{array}{rcl} q-1 & = & 3x_1+9x_2+\dots+3^w x_w+\dots, & x_i \in \{0,1,2\}, \\ t+1 & = \pm & (3y_1+9y_2+\dots+3^w y_w+\dots), & y_i \in \{0,1,2\}. \end{array}$$

Then

$$(\phi - \xi^i)(\widehat{\phi} - \xi^i) = 3(x_1 \mp y_1\xi^i) + 9(x_2 \mp y_2\xi^i) + \dots + 3^w(x_w \mp y_w\xi^i) + \dots$$

But if $v_3(q-1) < v_3(t+1)$ with $w = v_3(q-1) \ge 2$, then $x_i = 0$ for all $1 \le i < w, x_w \ne 0$ and $y_i = 0$ for all $1 \le i \le w$. Hence the increment is $2v_3(q-1)$. Similarly, if $v_3(t+1) < v_3(q-1)$ with $w = v_3(t+1) \ge 2$, then $y_i = 0$ for $1 \le i < w, y_w \ne 0$ and $x_i = 0$ for $1 \le i \le w$, so the increment is $2v_3(t+1)$. Finally, if $v_3(q-1) = v_3(t+1) = w$ then $x_w, y_w \ne 0$, and the increment is $2v_3(q-1) + 1$ if $x_w \mp y_w \equiv 0 \pmod{3}$ (which is equivalent to $q-1 \equiv t+1 \pmod{3^{v_3(q-1)+1}}$) and $2v_3(q-1)$ if not.

Example 1. Let $q = p = 10099 \equiv 1 \pmod{3}$, and consider the following elliptic curves over \mathbb{F}_q :

$$\begin{split} E_1 &: y^2 = x^3 + 1070x + 7959, \\ E_3 &: y^2 = x^3 + 3690x + 2719, \end{split} \\ E_4 &: y^2 = x^3 + 2828x + 4443. \end{split}$$

Their numbers of points over \mathbb{F}_q satisfy $\#E_i(\mathbb{F}_q) \equiv 3 \pmod{9}$, for i = 1, 2, 3, 4. From Theorem 1 we deduce the increment of the 3-adic valuation of $\#E_i(\mathbb{F}_{q^3})$:

	E_1	E_2	E_3	E_4
$v_3(q-1)$	3	3	3	3
$v_3(t+1)$	2	3	3	4
$q-1 \pmod{3^{v_3(q-1)+1}}$	54	54	54	54
$t+1 \pmod{3^{v_3(q-1)+1}}$	72	27	54	0
$v_3(\#E(\mathbb{F}_{q^3})) - v_3(\#E(\mathbb{F}_q))$	4	6	7	6

Lemma 1. For all our ℓ ,

$$v_{\ell}(1+q+\dots+q^{\ell-1}) = \begin{cases} 0 & \text{if } q \not\equiv 1 \pmod{\ell}, \\ 1 & \text{if } q \equiv 1 \pmod{\ell}. \end{cases}$$

Proof. Assume first $q \not\equiv 1 \pmod{\ell}$. Since $1 + q + \dots + q^{\ell-1} = \frac{q^{\ell}-1}{q-1}$, Fermat's Little Theorem implies our claim. If $q \equiv 1 \pmod{\ell}$, then q has the form $1 + c\ell$, hence $1 + q + \dots + q^{\ell-1} = \ell(1 + c\ell(\dots))$, and since $v_{\ell}(1 + c\ell(\dots)) = 0$, then $v_{\ell}(1 + q + \dots + q^{\ell-1}) = v_{\ell}(\ell) + v_{\ell}(1 + c\ell(\dots)) = 1$.

Let $K = \mathbb{Q}(\sqrt{t^2 - 4q})$, let d_K be the discriminant of K and let g_k be the conductor of the order $\mathbb{Z}[\phi^k]$. It is well known (see [2, pg. 134] for instance) that

$$t_k^2 - 4q^k = g_k^2 d_K.$$

Lemma 2. Let E be ordinary and let $n = v_{\ell}(\#E(\mathbb{F}_q)) \geq 1$. Let ϕ^k be the Frobenius endomorphism of E over \mathbb{F}_{q^k} and let $\sigma_k = \sum_{i=0}^{k-1} \phi^i \widehat{\phi^{k-i-1}}$. Then

i) $t_k^2 - 4q^k = (t^2 - 4q)\sigma_k^2$, *ii*) $\sigma_k \equiv 1 + \dots + q^{k-1} \pmod{\ell^n}$.

Proof. i) Clearly from (2) we have $t_k^2 - 4q^k = (\phi^k + \widehat{\phi^k})^2 - 4\phi^k \widehat{\phi^k} = (\phi^k - \varphi^k)^2 - 4\phi^k \widehat{\phi^k}$ $\widehat{\phi^{k}})^{2} = (\phi - \widehat{\phi})^{2} (\widehat{\phi^{k-1}} + \widehat{\phi^{k-2}} + \dots + \phi^{k-2} \widehat{\phi} + \phi^{k-1})^{2} = (t^{2} - 4q)\sigma_{k}^{2}.$

ii) From the definition of σ_k , we have $\sigma_k = t\sigma_{k-1} - q\sigma_{k-2}$ for $k \ge 3$. Since $\sigma_1 = 1$ and $\sigma_2 \equiv 1 + q \pmod{\ell^n}$, $\sigma_k \equiv 1 + q + \cdots + q^{k-1} \pmod{\ell^n}$ follows by induction.

Let f be the conductor of $\mathcal{O} = \operatorname{End}(E)$ in the ring of integers \mathcal{O}_K . From [5, 14] and [7] it follows that the smallest exponent r_k in $E[\ell^{\infty}](\mathbb{F}_{q^k}) \cong$ $\mathbb{Z}/\ell^{r_k}\mathbb{Z}\times\mathbb{Z}/\ell^{s_k}\mathbb{Z}$ is

$$r_{k} = \begin{cases} \min\{\frac{1}{2}v_{\ell}(\#E(\mathbb{F}_{q^{k}})), v_{\ell}(\frac{g_{k}}{f})\} & \text{if } v_{\ell}(\#E(\mathbb{F}_{q^{k}})) \text{ is even,} \\ v_{\ell}(\frac{g_{k}}{f}) & \text{otherwise.} \end{cases}$$
(6)

Proposition 3. Let $E[\ell^{\infty}](\mathbb{F}_q) \cong \mathbb{Z}/\ell^r \mathbb{Z} \times \mathbb{Z}/\ell^s \mathbb{Z}$ with $r \leq s$ and $n = r + s \geq 1$. For $\ell > 5$ we have:

- i) if $q \not\equiv 1 \pmod{\ell}$ then r = 0 and $E[\ell^{\infty}](\mathbb{F}_{q^{\ell}}) \cong \mathbb{Z}/\ell^{n+1}\mathbb{Z}$, ii) if $q \equiv 1 \pmod{\ell}$ then $E[\ell^{\infty}](\mathbb{F}_{q^{\ell}}) \cong \mathbb{Z}/\ell^{r+1}\mathbb{Z} \times \mathbb{Z}/\ell^{s+1}\mathbb{Z}$.

For $\ell = 3$ the group structure variation is the same as above except if $q \equiv 1$ (mod 3) and $\#E(\mathbb{F}_q) \equiv 3 \pmod{9}$, in which case $E[3^{\infty}](\mathbb{F}_q) \cong \mathbb{Z}/3\mathbb{Z}$ and

$$E[3^{\infty}](\mathbb{F}_{q^3}) \cong \mathbb{Z}/3^{r_3}\mathbb{Z} \times \mathbb{Z}/3^{s_3}\mathbb{Z}$$

with $s_3 = r_3 \ge 2$ or $s_3 = r_3 + 1 \ge 3$.

Proof. i) Clearly Theorem 1 follows if both $E[\ell^{\infty}](\mathbb{F}_q), E[\ell^{\infty}](\mathbb{F}_{q^{\ell}})$ are cyclic. If (t,q) = 1, then by [8] or [11] neither r nor r_{ℓ} exceed $v_{\ell}(q-1) = v_{\ell}(q^{\ell}-1) =$ 0, so both subgroups are cyclic. If $(t,q) \neq 1$, then $(t_{\ell},q^{\ell}) \neq 1$ by the trace formula (3), and by [9] and [13] the only possibility is that both subgroups are cyclic.

ii) Let (t,q) = 1. Assume first $t^2 - 4q \equiv 0 \pmod{\ell^2}$. Since $t^2 - 4q \equiv 0$ $(q-1)^2 - 2(q+1) \# E(\mathbb{F}_q) + \# E(\mathbb{F}_q)^2$ and $v_\ell(q-1) \ge 1$, then $n \ge 2$. Hence by Lemma 2 $\sigma_{\ell} \equiv 1 + q + \cdots + q^{\ell-1} \pmod{\ell^n}$. Since $v_{\ell}(1 + q + \cdots + q^{\ell-1}) = 1$ by Lemma 1, we see $v_{\ell}(\sigma_{\ell}) = 1$. Therefore, again by Lemma 2 we have

$$v_{\ell}(t_{\ell}^2 - 4q^{\ell}) = v_{\ell}(t^2 - 4q) + 2, \tag{7}$$

which in terms of the conductors g_i is

$$v_{\ell}(g_{\ell}) = v_{\ell}(g_1) + 1.$$
 (8)

In view of (6), it is easy to deduce $r_{\ell} = r + 1$ from Theorem 1 and (8). Then by Theorem 1 we conclude $s_{\ell} = s + 1$ as desired.

In case $t^2 - 4q \not\equiv 0 \pmod{\ell^2}$, (7) holds as well. Indeed, since $t^2 - 4q \equiv$ $(q-1)^2 - 2(q+1) \# E(\mathbb{F}_q) + \# E(\mathbb{F}_q)^2$ then $v_\ell(t^2 - 4q) = 1$ and n = 1. Then $v_{\ell}(\#E(\mathbb{F}_{q^{\ell}})) = 3$ by Theorem 1 and we deduce $v_{\ell}(t_{\ell}^2 - 4q^{\ell}) = 3$. At this point the proof is the same as above.

If $(t,q) \neq 1$, then as in *i*) above the only possibility is $E(\mathbb{F}_q) \cong (\mathbb{Z}/(\sqrt{q} \mp 1)\mathbb{Z})^2$ and $E(\mathbb{F}_{q^\ell}) \cong (\mathbb{Z}/(\sqrt{q^\ell} \mp 1)\mathbb{Z})^2$ respectively. Then $v_\ell(\sqrt{q^\ell} \mp 1) = v_\ell(\sqrt{q} \mp 1) + 1$ by Theorem 1.

Assume now $\ell = 3$. If some of the conditions $q \equiv 1 \pmod{3}, \#E(\mathbb{F}_q) \equiv 3 \pmod{9}$ do not hold, then the proof follows as above. In the exceptional case, if $(t,q) \neq 1$ the result appears in [6, Table 1] for $t = \pm \sqrt{q}$. If (t,q) = 1, by Theorem 1 we have two possibilities: $v_3(\#E(\mathbb{F}_{q^3})) = 1 + 2c$ for $2 \leq c \leq v_3(q-1)$ or else $v_3(\#E(\mathbb{F}_{q^3})) = 2 + 2v_3(q-1)$ with $v_3(q-1) \geq 1$. In both cases one easily deduces $v_3(g_1) = v_3(f) = 0$ and $v_3(d_K) = 1$. In the first case, then $v_3((q^3-1)^2) > v_3(\#E(\mathbb{F}_{q^3}))$ by Lemma 1, and then $v_3(t_3^2-4q^3) = 1+2c$. Therefore $v_3(g_3) = c$ and $r_3 = v_3(g_3/f) = c$, $s_3 = c+1$. In the second case, then $v_3((q^3-1)^2) = v_3(\#E(\mathbb{F}_{q^3}))$ and $v_3(t_3^2-4q^3) > v_3(\#E(\mathbb{F}_{q^3}))$. Thus $v_3(g_3/f) \geq v_3(q-1) + 1$, and by (6), $r_3 = 1 + v_3(q-1)$, hence $s_3 = r_3$. \Box

4. Increment of $v_{\ell}(\#E(\mathbb{F}_{q^d}))$ for $d = ord_{\mathbb{F}_{\ell}^*}(q)$

In this section $q \neq 1 \pmod{\ell}$ and k is equal to the multiplicative order d of q modulo ℓ . In this case, our problem for supersingular elliptic curves is solved in [6, Table 1] (where necessarily d = 2 and t = 0, d = 3 and $t^2 = q$, or d = 6 and $t^2 = 3q$). Therefore we assume E is ordinary. Then by [8] or [11], $E[\ell^{\infty}](\mathbb{F}_q)$ is cyclic. We let $w_d = v_\ell(q^d - 1)$.

Proposition 4. Let E be ordinary, let $q \not\equiv 1 \pmod{\ell}$ and let $n = v_{\ell}(\#E(\mathbb{F}_q)) \geq 1$. If $E[\ell^{\infty}](\mathbb{F}_q) = \langle P_n \rangle$ then

$$E[\ell^{\infty}](\mathbb{F}_{q^d}) = \langle P_n, Q_\mu \rangle,$$

where $Q_{\mu} \in E(\mathbb{F}_{q^d})$ is a point of order ℓ^{μ} , $\mu \geq 1$. If $n > \mu$ then $\mu = w_d$.

Proof. It is well known that $E[\ell^{\infty}](\mathbb{F}_{q^d})$ has rank 2 (see [1, Theorem 1]). Let ℓ^{μ} be the order of a generator Q_{μ} of $E[\ell^{\infty}](\mathbb{F}_{q^d})$ independent of P_n .

We next show that P_n has the property that $\forall e < \ell$ there cannot exist $P \in E(\mathbb{F}_{q^e})$ such that $\ell P = P_n$. By Proposition 3, ℓ such points $P \in E(\overline{\mathbb{F}_q})$ do exist in $E(\mathbb{F}_{q^\ell})$. Assume there exists $T \in E(\mathbb{F}_{q^e})$ such that $\ell T = P_n$. By Proposition 2 we can assume e = d. Let $P_1 = \ell^{n-1}P_n$ and let $Q_1 = \ell^{\mu-1}Q_{\mu}$. Then $T = P + \alpha P_1 + \beta Q_1$ for some integers α, β and clearly $\alpha P_1 + \beta Q_1 \in E(\mathbb{F}_{q^d})$. Hence $P \in E(\mathbb{F}_{q^\ell}) \cap E(\mathbb{F}_{q^d})$ and therefore $\ell \mid d$, which is a contradiction.

Because of this property, if $n \leq \mu$ then P_n is a generator over \mathbb{F}_{q^d} . Indeed, the property above extends to the set $\{P_n + T_c \mid \ell^c T_c = 0, c < n\}$ by elementary group theory, and this implies P_n is a generator of $E(\mathbb{F}_{q^d})$. If $n > \mu$, P_n is a generator over \mathbb{F}_{q^d} by other reasons. We first show the precise order of Q_{μ} is given by $\mu = v_{\ell}(\sigma_d)$. Let f, g_i, d_K be as above. Since $t^2 - 4q = g_1^2 d_K \neq 0$ (mod ℓ) then $v_{\ell}(f) = 0$. Since $n > \mu$ then $\mu = v_{\ell}(g_d/f)$ in (6), and then $\mu = v_{\ell}(g_d)$. Similarly, since $t_d^2 - 4q^d = g_d^2 d_K = g_1^2 d_K \sigma_d^2$ by Lemma 2 and $v_{\ell}(g_1^2 d_K) = 0$, then $v_{\ell}(\sigma_d) = v_{\ell}(g_d) = \mu$. But also by Lemma 2 we have $\sigma_d \equiv 1 + \cdots + q^{d-1} \pmod{\ell^n}$, and since $n > \mu$, we deduce $\mu = w_d$. Now Proposition 1 implies $v_{\ell}(\#E(\mathbb{F}_{q^d})) = n + w_d$, hence P_n and Q_{w_d} generate. \Box

Theorem 2. Let E be ordinary and let $q \not\equiv 1 \pmod{\ell}$.

- i) If $w_d < v_\ell(\#E(\mathbb{F}_q))$ then $v_\ell(\#E(\mathbb{F}_{q^d})) = v_\ell(\#E(\mathbb{F}_q)) + w_d$.
- ii) If $w_d = v_\ell(\#E(\mathbb{F}_q))$ then $v_\ell(\#E(\mathbb{F}_{q^d})) \ge 2v_\ell(\#E(\mathbb{F}_q))$.
- iii) If $w_d > v_\ell(\#E(\mathbb{F}_q))$ then $v_\ell(\#E(\mathbb{F}_{q^d})) = 2v_\ell(\#E(\mathbb{F}_q)).$

Proof. Let $n = v_{\ell}(\#E(\mathbb{F}_q))$. *i*) and *ii*) follow from Proposition 1. The same argument for *iii*) implies $v_{\ell}(\#E(\mathbb{F}_{q^d})) \geq 2n$. Assume $v_{\ell}(\#E(\mathbb{F}_{q^d})) = 2n + 1$. Then $t_d^2 - 4q^d = (q^d - 1)^2 + \#E(\mathbb{F}_{q^d})(\#E(\mathbb{F}_{q^d}) - 2(q^d + 1))$, therefore $v_{\ell}(t_d^2 - 4q^d) = 2n + 1$. But this is not possible: by Lemma 2, $v_{\ell}(t_d^2 - 4q^d) = v_{\ell}(t^2 - 4q) + 2v_{\ell}(\sigma_d) = 2v_{\ell}(\sigma_d)$ is even. Finally, by Proposition 4 we can assume $E[\ell^{\infty}](\mathbb{F}_{q^d}) = \mathbb{Z}/\ell^n \mathbb{Z} \times \mathbb{Z}/\ell^{n+c} \mathbb{Z}$ with $c \geq 2$. Then $v_{\ell}(t_d^2 - 4q^d) \geq 2n+2$, hence $v_{\ell}(g_d) \geq n+1$ as in the proof of Proposition 4 above. But then, since $v_{\ell}(f) = 0$ the value of n contradicts (6).

The structure of $E[\ell^{\infty}](\mathbb{F}_{q^d})$ now follows.

Corollary 1. Let E be ordinary, let $q \not\equiv 1 \pmod{\ell}$, and let $E[\ell^{\infty}](\mathbb{F}_q) \cong \mathbb{Z}/\ell^n\mathbb{Z}$ with $n \geq 1$.

- i) If $w_d < n$ then $E[\ell^{\infty}](\mathbb{F}_{q^d}) \cong \mathbb{Z}/\ell^{w_d}\mathbb{Z} \times \mathbb{Z}/\ell^n\mathbb{Z}$.
- ii) If $w_d = n$ then $E[\ell^{\infty}](\mathbb{F}_{q^d}) \cong \mathbb{Z}/\ell^n \mathbb{Z} \times \mathbb{Z}/\ell^{n'} \mathbb{Z}$ with $n' \ge n$.
- iii) If $w_d > n$ then $E[\ell^{\infty}](\mathbb{F}_{q^d}) \cong \mathbb{Z}/\ell^n \mathbb{Z} \times \mathbb{Z}/\ell^n \mathbb{Z}$.

In the following example we illustrate ii) of Theorem 2 and Corollary 1.

Example 2. Let $q = p = 10^{10} + 19$, $\ell = 7$ and d = 3. Consider the elliptic curves

$$E_1 : y^2 = x^3 + 129113198x + 9741773623,$$

$$E_2 : y^2 = x^3 + 4800245152x + 399509715$$

over \mathbb{F}_q . For both of them $v_\ell(\#E_i(\mathbb{F}_q)) = w_d = 1$, but E_1 satisfies

$$v_{\ell}(\#E_1(\mathbb{F}_{q^d})) = 2$$
 and $E_1[\ell^{\infty}](\mathbb{F}_{q^d}) = \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell\mathbb{Z},$

while E_2 satisfies

$$v_{\ell}(\#E_2(\mathbb{F}_{q^d})) = 5$$
 and $E_2[\ell^{\infty}](\mathbb{F}_{q^d}) = \mathbb{Z}/\ell\mathbb{Z} \times \mathbb{Z}/\ell^4\mathbb{Z}$.

5. Conclusions

In this section we summarize our data for $\ell \geq 5$ and for an arbitrary degree k. As above, $n = v_{\ell}(\#E(\mathbb{F}_q))$, $w_d = v_{\ell}(q^d - 1)$ and we write the exponents of $E[\ell^{\infty}](\mathbb{F}_q)$ as (r, s) with $0 \leq r \leq s$ and $r + s \geq 1$. We set $k = m\ell^{\tau}d^{\gamma}$ with m a natural number prime to ℓ and d, and $\tau, \gamma \geq 0$. Our results relative to $\#E(\mathbb{F}_{q^k})$ are shown in Table 1. The case $k = \ell^{\tau}$ can be seen as a simple instance of Iwasawa Theory for function fields of elliptic curves over \mathbb{F}_q and the \mathbb{Z}_{ℓ} -extension $\cup_{\tau} \mathbb{F}_{q^{\ell^{\tau}}}$. In [12, Theorem 13.13 and pg. 130] one finds the prediction $v_{\ell}(\#E(\mathbb{F}_{q^{\ell^{\tau}}})) = \lambda \tau + \nu$ for τ sufficiently large, with $0 \leq \lambda \leq 2$ and ν a constant.

E ordinary			
Increment	Exponents	Condition	
2τ	$(r+\tau,s+\tau)$	$q \equiv 1 \pmod{\ell}$	
τ	$(0, n+\tau)$	$q \not\equiv 1 \pmod{\ell}$ and $\gamma = 0$	
$2\tau + w_d$	$(w_d + \tau, n + \tau)$	$q \not\equiv 1 \pmod{\ell}$ and $w_d < n$ and $\gamma \ge 1$	
$2\tau + n$	$(n+\tau, n+\tau)$	$q \not\equiv 1 \pmod{\ell}$ and $w_d > n$ and $\gamma \ge 1$	
$\geq 2\tau + n$	$(n+\tau, \ge n+\tau)$	otherwise	
E supersingular			
Increment	Exponents	Condition	
2τ	$(r+\tau,s+\tau)$	$q \equiv 1 \pmod{\ell}$	
τ	$(0, n+\tau)$	$q \not\equiv 1 \pmod{\ell}$ and $\gamma = 0$	
$2\tau + n$	$(n+\tau, n+\tau)$	otherwise	

TABLE 1. Increment and exponents over an extension of \mathbb{F}_q of degree $k = m\ell^{\tau} d^{\gamma}$.

Acknowledgments

The authors would like to thank the anonymous referee, whose comments highly improved the quality of this publication. Research of the authors was supported in part by grants MTM2013-46949-P (Spanish Ministerio de Ciencia e Innovación), 2014SGR-1666 (Generalitat de Catalunya).

References

- R. Balasubramanian and N. Koblitz. The improbability that an elliptic curve has subexponential discrete log problem under the Menezes - Okamoto - Vanstone algorithm, J. Cryptology, 11 no. 2, pp. 141-145, 1998.
- [2] D. A. Cox. Primes of the form $x^2 + ny^2$, Wiley-Interscience, 1989.
- [3] D. Freeman and K. Lauter. Computing endomorphism rings of Jacobians of genus 2 curves over finite fields, Proceedings of the *First SAGA Conference*, World Sci. Publ., pp. 29-66, 2008.
- [4] S. Ionica and A. Joux. Pairing the volcano, *Mathematics of Computation*, 82 no. 281, pp. 581-603, 2013.
- [5] H. W. Lenstra, Jr. Complex multiplication structure of elliptic curves, *Journal* of Number Theory, 56 no. 2, pp. 227-241, 1996.
- [6] A. J. Menezes, T. Okamoto and S. A. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite field, *IEEE Trans. Inform. Theory*, 39 no. 5, pp. 1639-1646, 1993.
- [7] J. Miret, D. Sadornil, J. Tena, R. Tomàs and M. Valls. Volcanoes of ℓ -isogenies of elliptic curves over finite fields: the case $\ell = 3$, Proceedings of the *Primeras Jornadas de Teoría de Números*, Publicacions Matemàtiques, pp. 165-180, 2007.
- [8] H.-G. Rück. A note on elliptic curves over finite fields, *Mathematics of Compu*tation, 49 no. 179, pp. 301-304, 1987.
- [9] R. Schoof. Nonsingular plane cubic curves over finite fields, Journal of Combinatorial Theory, Series A, 46 no. 2, pp. 183-211, 1987.

- [10] J. H. Silverman. *The Arithmetic of Elliptic Curves, Second Edition*, Graduate Texts in Mathematics 106, Springer, 2009.
- [11] J. F. Voloch. A note on elliptic curves over finite fields, *Bulletin de la S.M.F.*, 116 no. 4, pp. 455-458, 1988.
- [12] L. C. Washington. Introduction to Cyclotomic Fields, Second Edition, Graduate Texts in Mathematics 83, Springer, 1997.
- [13] W. C. Waterhouse. Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4), 2 no. 4, pp. 521-560, 1969.
- [14] C. Wittmann. Group structure of elliptic curves over finite fields, *Journal of Number Theory*, 88 no. 2, pp. 335-344, 2001.

Josep M. Miret Jordi Pujolàs Javier Valera Departament de Matemàtica, Universitat de Lleida, 25001 Lleida, Spain {miret, jpujolas, jvalera}@matematica.udl.cat