$\rightarrow \underbrace{\frac{1}{2}}$

Universitat de Lleida

Document downloaded from:
http://hdl.handle.net/10459.1/62671

The final publication is available at:
https://doi.org/10.1007/s00013-015-0798-6

Copyright
(c) Springer Basel, 2015

On the ℓ-adic valuation of the cardinality of elliptic curves over finite extensions of \mathbb{F}_{q}

Josep M. Miret Jordi Pujolàs Javier Valera

Abstract

Let E be an elliptic curve defined over a finite field \mathbb{F}_{q} of odd characteristic. Let $\ell \neq 2$ be a prime number different from the characteristic and dividing $\# E\left(\mathbb{F}_{q}\right)$. We describe how the ℓ-adic valuation of the number of points grows by taking finite extensions of the base field. We also investigate the group structure of the corresponding ℓ-Sylow subgroups.

1. Introduction

Let q be a power of a prime $p \neq 2$ and let E be an elliptic curve over a finite field \mathbb{F}_{q}. We compute the difference of valuations $v_{\ell}\left(\# E\left(\mathbb{F}_{q^{k}}\right)\right)-v_{\ell}\left(\# E\left(\mathbb{F}_{q}\right)\right)$, where k is a natural number and $\ell \neq 2, p$ is a prime number dividing $\# E\left(\mathbb{F}_{q}\right)$ (Theorems 1, 2). Our result agrees with the predictions of Iwasawa Theory.

Under the given assumptions, $v_{\ell}\left(\# E\left(\mathbb{F}_{q^{k}}\right)\right)-v_{\ell}\left(\# E\left(\mathbb{F}_{q}\right)\right)>0$ only if $v_{\ell}(k)>0$ or if k is divisible by the multiplicative order d of q in \mathbb{F}_{ℓ}^{*} (see Proposition 2). Hence we can reduce the proofs to the cases $k=\ell$ or $k=d$. We also describe how the group structure of the ℓ-Sylow subgroup $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q^{k}}\right)$ changes with k. Namely, if

$$
E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q}\right) \cong \mathbb{Z} / \ell^{r} \mathbb{Z} \times \mathbb{Z} / \ell^{s} \mathbb{Z} \quad \text { with } \quad 0 \leq r \leq s \quad \text { and } \quad r+s \geq 1
$$

we show how to determine integers r_{k}, s_{k} such that $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q^{k}}\right) \cong \mathbb{Z} / \ell^{r_{k}} \mathbb{Z} \times$ $\mathbb{Z} / \ell^{s_{k}} \mathbb{Z}$.

On this regard, a partial answer appeared in [3, Proposition 6.3] for $k=\ell$. The case of ordinary elliptic curves with $k=\ell, q \equiv 1(\bmod \ell)$ and $t^{2}-4 q \equiv 0\left(\bmod \ell^{2}\right)$, for t the trace of Frobenius endomorphism, was covered in [4, Proposition 4.2] using pairings. The case of supersingular elliptic curves for $k=d, q \not \equiv 1(\bmod \ell)$ and for some other particular cases was set in [6, Section 4].

Notation. For us, q is the power of some prime number $p \neq 2, E$ is an elliptic curve over $\mathbb{F}_{q}, \ell \neq 2, p$ is a prime number such that $\ell \mid \# E\left(\mathbb{F}_{q}\right)$ and d is the multiplicative order of q in \mathbb{F}_{ℓ}^{*}. We write the multiplication-by- m isogeny $[m]$ as m.

2. A recurrence formula for $\# \boldsymbol{E}\left(\mathbb{F}_{\boldsymbol{q}^{k}}\right)$

The cardinality of E over a finite extension of \mathbb{F}_{q} is

$$
\begin{equation*}
\# E\left(\mathbb{F}_{q^{k}}\right)=\operatorname{deg}\left(1-\phi^{k}\right)=q^{k}+1-t_{k} \tag{1}
\end{equation*}
$$

where t_{k} is the trace of the Frobenius endomorphism ϕ^{k} of E over $\mathbb{F}_{q^{k}}$ (see [10, Theorem 2.3.1]), and

$$
\begin{equation*}
q^{k}=\phi^{k} \widehat{\phi^{k}}, \quad t_{k}=\phi^{k}+\widehat{\phi^{k}} \tag{2}
\end{equation*}
$$

where $\widehat{\phi^{k}}$ is the dual of ϕ^{k}. By varying k, the traces t_{k} (we set $t=t_{1}$) satisfy the recurrence

$$
\begin{equation*}
t_{2}=t^{2}-2 q, \quad t_{k}=t t_{k-1}-q t_{k-2} \quad \text { for } \quad k \geq 3 \tag{3}
\end{equation*}
$$

The first thing we do is to express (3) in terms of the cardinalities $\# E\left(\mathbb{F}_{q^{k}}\right)$.
Proposition 1. Let k be a natural number. Then

$$
\# E\left(\mathbb{F}_{q^{k}}\right)=\# E\left(\mathbb{F}_{q}\right)\left(k \sum_{i=0}^{k-1} q^{i}-\sum_{i=1}^{k-1} \# E\left(\mathbb{F}_{q^{i}}\right) \sum_{j=0}^{k-i-1} q^{j}\right)
$$

Proof. We have $\# E\left(\mathbb{F}_{q^{k}}\right)=\operatorname{deg}\left(1-\phi^{k}\right)=\# E\left(\mathbb{F}_{q}\right) \operatorname{deg}\left(1+\phi+\cdots+\phi^{k-1}\right)$. The expansion of the rightmost factor is $\sum_{i, j=0}^{k-1} \phi^{i} \widehat{\phi^{j}}=$

$$
\sum_{i=0}^{k-1} \phi^{i} \widehat{\phi^{i}}+(\phi+\widehat{\phi}) \sum_{i=0}^{k-2} \phi^{i} \widehat{\phi^{i}}+\left(\phi^{2}+\widehat{\phi^{2}}\right) \sum_{i=0}^{k-3} \phi^{i} \widehat{\phi^{i}}+\cdots+\left(\phi^{k-1}+\widehat{\phi^{k-1}}\right)
$$

which by (1) and (2) reduces to

$$
\sum_{i=0}^{k-1} q^{i}+\sum_{i=1}^{k-1}\left(q^{i}+1-\# E\left(\mathbb{F}_{q^{i}}\right)\right) \sum_{j=0}^{k-i-1} q^{j}=k \sum_{i=0}^{k-1} q^{i}-\sum_{i=1}^{k-1} \# E\left(\mathbb{F}_{q^{i}}\right) \sum_{j=0}^{k-i-1} q^{j}
$$

Proposition 2. Let $\tau=v_{\ell}(k)$ and let d be the multiplicative order of q in \mathbb{F}_{ℓ}^{*}. Then

$$
v_{\ell}\left(\# E\left(\mathbb{F}_{q^{k}}\right)\right)= \begin{cases}v_{\ell}\left(\# E\left(\mathbb{F}_{q^{\ell^{\tau}}}\right)\right) & \text { if } d \nmid k \\ v_{\ell}\left(\# E\left(\mathbb{F}_{q^{d \ell^{\tau}}}\right)\right) & \text { if } d \mid k\end{cases}
$$

Proof. By Proposition 1 with $k=\ell^{\tau} k^{\prime}, \ell \nmid k^{\prime}$ and $q^{k}=\left(q^{\ell^{\tau}}\right)^{k^{\prime}}$, we have

$$
\begin{equation*}
\# E\left(\mathbb{F}_{q^{k}}\right)=\# E\left(\mathbb{F}_{q^{\ell^{\tau}}}\right)\left(k^{\prime} \sum_{i=0}^{k^{\prime}-1} q^{i \ell^{\tau}}-\sum_{i=1}^{k^{\prime}-1} \# E\left(\mathbb{F}_{q^{i \ell \tau}}\right) \sum_{j=0}^{k^{\prime}-i-1} q^{j \ell^{\tau}}\right) \tag{4}
\end{equation*}
$$

at once. If $d \nmid k$ then $q \not \equiv 1(\bmod \ell)$ and $v_{\ell}\left(\sum_{i=0}^{k^{\prime}-1} q^{i \ell^{\tau}}\right)=v_{\ell}\left(\frac{q^{k}-1}{q^{q^{\tau}}-1}\right)=0$ because the numerator is not 0 modulo ℓ. Since

$$
v_{\ell}\left(\sum_{i=1}^{k^{\prime}-1} \# E\left(\mathbb{F}_{q^{i \ell \tau}}\right) \sum_{j=0}^{k^{\prime}-i-1} q^{j \ell^{\tau}}\right) \geq v_{\ell}\left(\# E\left(\mathbb{F}_{q^{\ell \tau}}\right)\right)>0
$$

we see $v_{\ell}\left(\# E\left(\mathbb{F}_{q^{k}}\right)\right)=v_{\ell}\left(\# E\left(\mathbb{F}_{q^{e^{\tau}}}\right)\right)$. Similarly, if $d \mid k$ then (4) with $k=$ $d \ell^{\tau} k^{\prime}$ implies $v_{\ell}\left(\# E\left(\mathbb{F}_{q^{k}}\right)\right)=v_{\ell}\left(\# E\left(\mathbb{F}_{q^{d \ell^{\tau}}}\right)\right)$ since $v_{\ell}\left(k^{\prime} \sum_{i=0}^{k^{\prime}-1} q^{i d \ell^{\tau}}\right)=0$.

Proposition 2 above reduces our problem to two cases: extensions of \mathbb{F}_{q} of degree ℓ (see Section 3) and, only if $q \not \equiv 1(\bmod \ell)$, extensions of degree equal to the multiplicative order d of q in \mathbb{F}_{ℓ}^{*} (see Section 4).

3. Increment of $\boldsymbol{v}_{\ell}\left(\# \boldsymbol{E}\left(\mathbb{F}_{q^{\ell}}\right)\right)$

In this section we consider field extensions of degree $k=\ell$.
Theorem 1. Unless $\ell=3$ and $q \equiv 1(\bmod 3)$ and $\# E\left(\mathbb{F}_{q}\right) \equiv 3(\bmod 9)$ hold, we have

$$
v_{\ell}\left(\# E\left(\mathbb{F}_{q^{\ell}}\right)\right)= \begin{cases}v_{\ell}\left(\# E\left(\mathbb{F}_{q}\right)\right)+1 & \text { if } q \not \equiv 1(\bmod \ell) \\ v_{\ell}\left(\# E\left(\mathbb{F}_{q}\right)\right)+2 & \text { if } q \equiv 1(\bmod \ell)\end{cases}
$$

For $\ell=3$ and $q \equiv 1(\bmod 3)$ and $\# E\left(\mathbb{F}_{q}\right) \equiv 3(\bmod 9)$, we have

$$
v_{3}\left(\# E\left(\mathbb{F}_{q^{3}}\right)\right)-v_{3}\left(\# E\left(\mathbb{F}_{q}\right)\right)=2 \min \left\{v_{3}(q-1), v_{3}(t+1)\right\} \geq 4,
$$

except if $q-1 \equiv t+1\left(\bmod 3^{v_{3}(q-1)+1}\right)$, in which case we have

$$
v_{3}\left(\# E\left(\mathbb{F}_{q^{3}}\right)\right)-v_{3}\left(\# E\left(\mathbb{F}_{q}\right)\right)=2 v_{3}(q-1)+1 \geq 3 .
$$

Proof. Let ξ be a primitive ℓ-th root of unity. Then the ideal (ℓ) factors in $\mathbb{Z}[\xi]$ as $(\ell)=(1-\xi)^{\ell-1}$, and by elementary number theory the corresponding valuations satisfy $v_{\ell}()=\frac{1}{\ell-1} v_{1-\xi}()$. Therefore, by (1) and the factorization

$$
\begin{gather*}
\operatorname{deg}\left(1+\phi+\cdots+\phi^{\ell-1}\right)=\prod_{i=1}^{\ell-1}\left(\phi-\xi^{i}\right)\left(\widehat{\phi}-\xi^{i}\right) \\
v_{\ell}\left(\# E\left(\mathbb{F}_{q^{\ell}}\right)\right)=v_{\ell}\left(\# E\left(\mathbb{F}_{q}\right)\right)+\frac{1}{\ell-1} \sum_{i=1}^{\ell-1} v_{1-\xi}\left(\left(\phi-\xi^{i}\right)\left(\widehat{\phi}-\xi^{i}\right)\right) . \tag{5}
\end{gather*}
$$

Write $q \equiv \bar{q}(\bmod \ell)$, so that $\bar{q} \in\{1, \ldots, \ell-1\}$. Then

$$
\left(\phi-\xi^{i}\right)\left(\widehat{\phi}-\xi^{i}\right)=\left(1-\xi^{i}\right)\left(\bar{q}-\xi^{i}\right)+\ell k_{i}
$$

for some $k_{i} \in \mathbb{Z}[\xi]$. Hence the second summand in (5) is 1 for $\bar{q} \neq 1$ or 2 for $\bar{q}=1$, except possibly for $\ell=3=(1-\xi)^{2}(1+\xi)$. In this case, let $q-1 \equiv 3 x$ $(\bmod 9), t+1 \equiv 3 y(\bmod 9)$ for $x, y \in\{0,1,2\}$. Then

$$
\left(1-\xi^{i}\right)^{2}+3 k_{i} \equiv 3\left(x-y \xi^{i}\right) \quad(\bmod 9)
$$

Clearly $v_{1-\xi}\left(\left(1-\xi^{i}\right)^{2}+3 k_{i}\right)=2$ if $x \neq y$ and $v_{1-\xi}\left(\left(1-\xi^{i}\right)^{2}+3 k_{i}\right) \geq 3$ if $x=y\left(\right.$ which is equivalent to $\left.\# E\left(\mathbb{F}_{q}\right) \equiv 3(\bmod 9)\right)$. More explicitly, let

$$
\begin{array}{lll}
q-1=3 x_{1}+9 x_{2}+\cdots+3^{w} x_{w}+\cdots, & & x_{i} \in\{0,1,2\} \\
t+1= \pm\left(3 y_{1}+9 y_{2}+\cdots+3^{w} y_{w}+\cdots\right), & & y_{i} \in\{0,1,2\}
\end{array}
$$

Then

$$
\left(\phi-\xi^{i}\right)\left(\widehat{\phi}-\xi^{i}\right)=3\left(x_{1} \mp y_{1} \xi^{i}\right)+9\left(x_{2} \mp y_{2} \xi^{i}\right)+\cdots+3^{w}\left(x_{w} \mp y_{w} \xi^{i}\right)+\cdots
$$

But if $v_{3}(q-1)<v_{3}(t+1)$ with $w=v_{3}(q-1) \geq 2$, then $x_{i}=0$ for all $1 \leq i<w, x_{w} \neq 0$ and $y_{i}=0$ for all $1 \leq i \leq w$. Hence the increment is $2 v_{3}(q-1)$. Similarly, if $v_{3}(t+1)<v_{3}(q-1)$ with $w=v_{3}(t+1) \geq 2$, then $y_{i}=0$ for $1 \leq i<w, y_{w} \neq 0$ and $x_{i}=0$ for $1 \leq i \leq w$, so the increment is $2 v_{3}(t+1)$. Finally, if $v_{3}(q-1)=v_{3}(t+1)=w$ then $x_{w}, y_{w} \neq 0$, and the increment is $2 v_{3}(q-1)+1$ if $x_{w} \mp y_{w} \equiv 0(\bmod 3)$ (which is equivalent to $\left.q-1 \equiv t+1\left(\bmod 3^{v_{3}(q-1)+1}\right)\right)$ and $2 v_{3}(q-1)$ if not.

Example 1. Let $q=p=10099 \equiv 1(\bmod 3)$, and consider the following elliptic curves over \mathbb{F}_{q} :

$$
\begin{array}{ll}
E_{1}: y^{2}=x^{3}+1070 x+7959, & E_{2}: y^{2}=x^{3}+9599 x+1000 \\
E_{3}: y^{2}=x^{3}+3690 x+2719, & E_{4}: y^{2}=x^{3}+2828 x+4443
\end{array}
$$

Their numbers of points over \mathbb{F}_{q} satisfy $\# E_{i}\left(\mathbb{F}_{q}\right) \equiv 3(\bmod 9)$, for $i=$ $1,2,3,4$. From Theorem 1 we deduce the increment of the 3 -adic valuation of $\# E_{i}\left(\mathbb{F}_{q^{3}}\right)$:

$$
\begin{aligned}
& v_{3}(q-1) \\
& v_{3}(t+1) \\
& q-1 \quad\left(\bmod 3^{v_{3}(q-1)+1}\right) \\
& t+1 \quad\left(\bmod 3^{v_{3}(q-1)+1}\right) \\
& v_{3}\left(\# E\left(\mathbb{F}_{q^{3}}\right)\right)-v_{3}\left(\# E\left(\mathbb{F}_{q}\right)\right)
\end{aligned}
$$

E_{1}	E_{2}	E_{3}	E_{4}
3	3	3	3
2	3	3	4
54	54	54	54
72	27	54	0
4	6	7	6

Lemma 1. For all our ℓ,

$$
v_{\ell}\left(1+q+\cdots+q^{\ell-1}\right)=\left\{\begin{array}{lll}
0 & \text { if } q \not \equiv 1 & (\bmod \ell) \\
1 & \text { if } q \equiv 1 & (\bmod \ell)
\end{array}\right.
$$

Proof. Assume first $q \not \equiv 1(\bmod \ell)$. Since $1+q+\cdots+q^{\ell-1}=\frac{q^{\ell}-1}{q-1}$, Fermat's Little Theorem implies our claim. If $q \equiv 1(\bmod \ell)$, then q has the form $1+c \ell$, hence $1+q+\cdots+q^{\ell-1}=\ell(1+c \ell(\ldots))$, and since $v_{\ell}(1+c \ell(\ldots))=0$, then $v_{\ell}\left(1+q+\cdots+q^{\ell-1}\right)=v_{\ell}(\ell)+v_{\ell}(1+c \ell(\ldots))=1$.

Let $K=\mathbb{Q}\left(\sqrt{t^{2}-4 q}\right)$, let d_{K} be the discriminant of K and let g_{k} be the conductor of the order $\mathbb{Z}\left[\phi^{k}\right]$. It is well known (see [2, pg. 134] for instance) that

$$
t_{k}^{2}-4 q^{k}=g_{k}^{2} d_{K}
$$

Lemma 2. Let E be ordinary and let $n=v_{\ell}\left(\# E\left(\mathbb{F}_{q}\right)\right) \geq 1$. Let ϕ^{k} be the Frobenius endomorphism of E over $\mathbb{F}_{q^{k}}$ and let $\sigma_{k}=\sum_{i=0}^{k-1} \phi^{i} \widehat{\phi^{k-i-1}}$. Then
i) $t_{k}^{2}-4 q^{k}=\left(t^{2}-4 q\right) \sigma_{k}^{2}$,
ii) $\sigma_{k} \equiv 1+\cdots+q^{k-1}\left(\bmod \ell^{n}\right)$.

Proof. i) Clearly from (2) we have $t_{k}^{2}-4 q^{k}=\left(\phi^{k}+\widehat{\phi^{k}}\right)^{2}-4 \phi^{k} \widehat{\phi^{k}}=\left(\phi^{k}-\right.$ $\left.\widehat{\phi^{k}}\right)^{2}=(\phi-\widehat{\phi})^{2}\left(\widehat{\phi^{k-1}}+\phi \widehat{\phi^{k-2}}+\cdots+\phi^{k-2} \widehat{\phi}+\phi^{k-1}\right)^{2}=\left(t^{2}-4 q\right) \sigma_{k}^{2}$.
ii) From the definition of σ_{k}, we have $\sigma_{k}=t \sigma_{k-1}-q \sigma_{k-2}$ for $k \geq 3$. Since $\sigma_{1}=1$ and $\sigma_{2} \equiv 1+q\left(\bmod \ell^{n}\right), \sigma_{k} \equiv 1+q+\cdots+q^{k-1}\left(\bmod \ell^{n}\right)$ follows by induction.

Let f be the conductor of $\mathcal{O}=\operatorname{End}(E)$ in the ring of integers \mathcal{O}_{K}. From [5,14] and [7] it follows that the smallest exponent r_{k} in $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q^{k}}\right) \cong$ $\mathbb{Z} / \ell^{r_{k}} \mathbb{Z} \times \mathbb{Z} / \ell^{s_{k}} \mathbb{Z}$ is

$$
r_{k}= \begin{cases}\min \left\{\frac{1}{2} v_{\ell}\left(\# E\left(\mathbb{F}_{q^{k}}\right)\right), v_{\ell}\left(\frac{g_{k}}{f}\right)\right\} & \text { if } v_{\ell}\left(\# E\left(\mathbb{F}_{q^{k}}\right)\right) \text { is even } \tag{6}\\ v_{\ell}\left(\frac{g_{k}}{f}\right) & \text { otherwise }\end{cases}
$$

Proposition 3. Let $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q}\right) \cong \mathbb{Z} / \ell^{r} \mathbb{Z} \times \mathbb{Z} / \ell^{s} \mathbb{Z}$ with $r \leq s$ and $n=r+s \geq 1$. For $\ell \geq 5$ we have:
i) if $q \not \equiv 1(\bmod \ell)$ then $r=0$ and $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q^{\ell}}\right) \cong \mathbb{Z} / \ell^{n+1} \mathbb{Z}$,
ii) if $q \equiv 1(\bmod \ell)$ then $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q^{\ell}}\right) \cong \mathbb{Z} / \ell^{r+1} \mathbb{Z} \times \mathbb{Z} / \ell^{s+1} \mathbb{Z}$.

For $\ell=3$ the group structure variation is the same as above except if $q \equiv 1$ $(\bmod 3)$ and $\# E\left(\mathbb{F}_{q}\right) \equiv 3(\bmod 9)$, in which case $E\left[3^{\infty}\right]\left(\mathbb{F}_{q}\right) \cong \mathbb{Z} / 3 \mathbb{Z}$ and

$$
E\left[3^{\infty}\right]\left(\mathbb{F}_{q^{3}}\right) \cong \mathbb{Z} / 3^{r_{3}} \mathbb{Z} \times \mathbb{Z} / 3^{s_{3}} \mathbb{Z}
$$

with $s_{3}=r_{3} \geq 2$ or $s_{3}=r_{3}+1 \geq 3$.
Proof. i) Clearly Theorem 1 follows if both $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q}\right), E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q^{\ell}}\right)$ are cyclic. If $(t, q)=1$, then by [8] or [11] neither r nor r_{ℓ} exceed $v_{\ell}(q-1)=v_{\ell}\left(q^{\ell}-1\right)=$ 0 , so both subgroups are cyclic. If $(t, q) \neq 1$, then $\left(t_{\ell}, q^{\ell}\right) \neq 1$ by the trace formula (3), and by [9] and [13] the only possibility is that both subgroups are cyclic.
ii) Let $(t, q)=1$. Assume first $t^{2}-4 q \equiv 0\left(\bmod \ell^{2}\right)$. Since $t^{2}-4 q=$ $(q-1)^{2}-2(q+1) \# E\left(\mathbb{F}_{q}\right)+\# E\left(\mathbb{F}_{q}\right)^{2}$ and $v_{\ell}(q-1) \geq 1$, then $n \geq 2$. Hence by Lemma $2 \sigma_{\ell} \equiv 1+q+\cdots+q^{\ell-1}\left(\bmod \ell^{n}\right)$. Since $v_{\ell}\left(1+q+\cdots+q^{\ell-1}\right)=1$ by Lemma 1 , we see $v_{\ell}\left(\sigma_{\ell}\right)=1$. Therefore, again by Lemma 2 we have

$$
\begin{equation*}
v_{\ell}\left(t_{\ell}^{2}-4 q^{\ell}\right)=v_{\ell}\left(t^{2}-4 q\right)+2 \tag{7}
\end{equation*}
$$

which in terms of the conductors g_{i} is

$$
\begin{equation*}
v_{\ell}\left(g_{\ell}\right)=v_{\ell}\left(g_{1}\right)+1 \tag{8}
\end{equation*}
$$

In view of (6), it is easy to deduce $r_{\ell}=r+1$ from Theorem 1 and (8). Then by Theorem 1 we conclude $s_{\ell}=s+1$ as desired.
In case $t^{2}-4 q \not \equiv 0\left(\bmod \ell^{2}\right)$, (7) holds as well. Indeed, since $t^{2}-4 q=$ $(q-1)^{2}-2(q+1) \# E\left(\mathbb{F}_{q}\right)+\# E\left(\mathbb{F}_{q}\right)^{2}$ then $v_{\ell}\left(t^{2}-4 q\right)=1$ and $n=1$. Then $v_{\ell}\left(\# E\left(\mathbb{F}_{q^{\ell}}\right)\right)=3$ by Theorem 1 and we deduce $v_{\ell}\left(t_{\ell}^{2}-4 q^{\ell}\right)=3$. At this point the proof is the same as above.

If $(t, q) \neq 1$, then as in i) above the only possibility is $E\left(\mathbb{F}_{q}\right) \cong(\mathbb{Z} /(\sqrt{q} \mp 1) \mathbb{Z})^{2}$ and $E\left(\mathbb{F}_{q^{\ell}}\right) \cong\left(\mathbb{Z} /\left(\sqrt{q^{\ell}} \mp 1\right) \mathbb{Z}\right)^{2}$ respectively. Then $v_{\ell}\left(\sqrt{q^{\ell}} \mp 1\right)=v_{\ell}(\sqrt{q} \mp 1)+1$ by Theorem 1.

Assume now $\ell=3$. If some of the conditions $q \equiv 1(\bmod 3), \# E\left(\mathbb{F}_{q}\right) \equiv 3$ $(\bmod 9)$ do not hold, then the proof follows as above. In the exceptional case, if $(t, q) \neq 1$ the result appears in [6, Table 1] for $t= \pm \sqrt{q}$. If $(t, q)=1$, by Theorem 1 we have two possibilities: $v_{3}\left(\# E\left(\mathbb{F}_{q^{3}}\right)\right)=1+2 c$ for $2 \leq c \leq$ $v_{3}(q-1)$ or else $v_{3}\left(\# E\left(\mathbb{F}_{q^{3}}\right)\right)=2+2 v_{3}(q-1)$ with $v_{3}(q-1) \geq 1$. In both cases one easily deduces $v_{3}\left(g_{1}\right)=v_{3}(f)=0$ and $v_{3}\left(d_{K}\right)=1$. In the first case, then $v_{3}\left(\left(q^{3}-1\right)^{2}\right)>v_{3}\left(\# E\left(\mathbb{F}_{q^{3}}\right)\right)$ by Lemma 1 , and then $v_{3}\left(t_{3}^{2}-4 q^{3}\right)=1+2 c$. Therefore $v_{3}\left(g_{3}\right)=c$ and $r_{3}=v_{3}\left(g_{3} / f\right)=c, s_{3}=c+1$. In the second case, then $v_{3}\left(\left(q^{3}-1\right)^{2}\right)=v_{3}\left(\# E\left(\mathbb{F}_{q^{3}}\right)\right)$ and $v_{3}\left(t_{3}^{2}-4 q^{3}\right)>v_{3}\left(\# E\left(\mathbb{F}_{q^{3}}\right)\right)$. Thus $v_{3}\left(g_{3} / f\right) \geq v_{3}(q-1)+1$, and by $(6), r_{3}=1+v_{3}(q-1)$, hence $s_{3}=r_{3}$.

4. Increment of $\boldsymbol{v}_{\ell}\left(\# E\left(\mathbb{F}_{\boldsymbol{q}^{d}}\right)\right)$ for $\boldsymbol{d}=\operatorname{ord}_{\mathbb{F}_{\ell}^{*}}(\boldsymbol{q})$

In this section $q \not \equiv 1(\bmod \ell)$ and k is equal to the multiplicative order d of q modulo ℓ. In this case, our problem for supersingular elliptic curves is solved in [6, Table 1] (where necessarily $d=2$ and $t=0, d=3$ and $t^{2}=q$, or $d=6$ and $t^{2}=3 q$). Therefore we assume E is ordinary. Then by [8] or $[11], E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q}\right)$ is cyclic. We let $w_{d}=v_{\ell}\left(q^{d}-1\right)$.
Proposition 4. Let E be ordinary, let $q \not \equiv 1(\bmod \ell)$ and let $n=v_{\ell}\left(\# E\left(\mathbb{F}_{q}\right)\right) \geq$ 1. If $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q}\right)=\left\langle P_{n}\right\rangle$ then

$$
E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q^{d}}\right)=\left\langle P_{n}, Q_{\mu}\right\rangle
$$

where $Q_{\mu} \in E\left(\mathbb{F}_{q^{d}}\right)$ is a point of order $\ell^{\mu}, \mu \geq 1$. If $n>\mu$ then $\mu=w_{d}$.
Proof. It is well known that $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q^{d}}\right)$ has rank 2 (see [1, Theorem 1]). Let ℓ^{μ} be the order of a generator Q_{μ} of $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q^{d}}\right)$ independent of P_{n}.
We next show that P_{n} has the property that $\forall e<\ell$ there cannot exist $P \in$ $E\left(\mathbb{F}_{q^{e}}\right)$ such that $\ell P=P_{n}$. By Proposition $3, \ell$ such points $P \in E\left(\overline{\mathbb{F}_{q}}\right)$ do exist in $E\left(\mathbb{F}_{q^{\ell}}\right)$. Assume there exists $T \in E\left(\mathbb{F}_{q^{e}}\right)$ such that $\ell T=P_{n}$. By Proposition 2 we can assume $e=d$. Let $P_{1}=\ell^{n-1} P_{n}$ and let $Q_{1}=\ell^{\mu-1} Q_{\mu}$. Then $T=P+\alpha P_{1}+\beta Q_{1}$ for some integers α, β and clearly $\alpha P_{1}+\beta Q_{1} \in E\left(\mathbb{F}_{q^{d}}\right)$. Hence $P \in E\left(\mathbb{F}_{q^{\ell}}\right) \cap E\left(\mathbb{F}_{q^{d}}\right)$ and therefore $\ell \mid d$, which is a contradiction.
Because of this property, if $n \leq \mu$ then P_{n} is a generator over $\mathbb{F}_{q^{d}}$. Indeed, the property above extends to the set $\left\{P_{n}+T_{c} \mid \ell^{c} T_{c}=0, c<n\right\}$ by elementary group theory, and this implies P_{n} is a generator of $E\left(\mathbb{F}_{q^{d}}\right)$. If $n>\mu, P_{n}$ is a generator over $\mathbb{F}_{q^{d}}$ by other reasons. We first show the precise order of Q_{μ} is given by $\mu=v_{\ell}\left(\sigma_{d}\right)$. Let f, g_{i}, d_{K} be as above. Since $t^{2}-4 q=g_{1}^{2} d_{K} \not \equiv 0$ $(\bmod \ell)$ then $v_{\ell}(f)=0$. Since $n>\mu$ then $\mu=v_{\ell}\left(g_{d} / f\right)$ in (6), and then $\mu=v_{\ell}\left(g_{d}\right)$. Similarly, since $t_{d}^{2}-4 q^{d}=g_{d}^{2} d_{K}=g_{1}^{2} d_{K} \sigma_{d}^{2}$ by Lemma 2 and $v_{\ell}\left(g_{1}^{2} d_{K}\right)=0$, then $v_{\ell}\left(\sigma_{d}\right)=v_{\ell}\left(g_{d}\right)=\mu$. But also by Lemma 2 we have $\sigma_{d} \equiv 1+\cdots+q^{d-1}\left(\bmod \ell^{n}\right)$, and since $n>\mu$, we deduce $\mu=w_{d}$. Now Proposition 1 implies $v_{\ell}\left(\# E\left(\mathbb{F}_{q^{d}}\right)\right)=n+w_{d}$, hence P_{n} and $Q_{w_{d}}$ generate.

Theorem 2. Let E be ordinary and let $q \not \equiv 1(\bmod \ell)$.
i) If $w_{d}<v_{\ell}\left(\# E\left(\mathbb{F}_{q}\right)\right)$ then $v_{\ell}\left(\# E\left(\mathbb{F}_{q^{d}}\right)\right)=v_{\ell}\left(\# E\left(\mathbb{F}_{q}\right)\right)+w_{d}$.
ii) If $w_{d}=v_{\ell}\left(\# E\left(\mathbb{F}_{q}\right)\right)$ then $v_{\ell}\left(\# E\left(\mathbb{F}_{q^{d}}\right)\right) \geq 2 v_{\ell}\left(\# E\left(\mathbb{F}_{q}\right)\right)$.
iii) If $w_{d}>v_{\ell}\left(\# E\left(\mathbb{F}_{q}\right)\right)$ then $v_{\ell}\left(\# E\left(\mathbb{F}_{q^{d}}\right)\right)=2 v_{\ell}\left(\# E\left(\mathbb{F}_{q}\right)\right)$.

Proof. Let $\left.n=v_{\ell}\left(\# E\left(\mathbb{F}_{q}\right)\right) . i\right)$ and $\left.i i\right)$ follow from Proposition 1. The same argument for $i i i)$ implies $v_{\ell}\left(\# E\left(\mathbb{F}_{q^{d}}\right)\right) \geq 2 n$. Assume $v_{\ell}\left(\# E\left(\mathbb{F}_{q^{d}}\right)\right)=2 n+$ 1. Then $t_{d}^{2}-4 q^{d}=\left(q^{d}-1\right)^{2}+\# E\left(\mathbb{F}_{q^{d}}\right)\left(\# E\left(\mathbb{F}_{q^{d}}\right)-2\left(q^{d}+1\right)\right)$, therefore $v_{\ell}\left(t_{d}^{2}-4 q^{d}\right)=2 n+1$. But this is not possible: by Lemma 2, $v_{\ell}\left(t_{d}^{2}-4 q^{d}\right)=$ $v_{\ell}\left(t^{2}-4 q\right)+2 v_{\ell}\left(\sigma_{d}\right)=2 v_{\ell}\left(\sigma_{d}\right)$ is even. Finally, by Proposition 4 we can assume $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q^{d}}\right)=\mathbb{Z} / \ell^{n} \mathbb{Z} \times \mathbb{Z} / \ell^{n+c} \mathbb{Z}$ with $c \geq 2$. Then $v_{\ell}\left(t_{d}^{2}-4 q^{d}\right) \geq 2 n+2$, hence $v_{\ell}\left(g_{d}\right) \geq n+1$ as in the proof of Proposition 4 above. But then, since $v_{\ell}(f)=0$ the value of n contradicts (6).

The structure of $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q^{d}}\right)$ now follows.
Corollary 1. Let E be ordinary, let $q \not \equiv 1(\bmod \ell)$, and let $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q}\right) \cong$ $\mathbb{Z} / \ell^{n} \mathbb{Z}$ with $n \geq 1$.
i) If $w_{d}<n$ then $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q^{d}}\right) \cong \mathbb{Z} / \ell^{w_{d}} \mathbb{Z} \times \mathbb{Z} / \ell^{n} \mathbb{Z}$.
ii) If $w_{d}=n$ then $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q^{d}}\right) \cong \mathbb{Z} / \ell^{n} \mathbb{Z} \times \mathbb{Z} / \ell^{n^{\prime}} \mathbb{Z}$ with $n^{\prime} \geq n$.
iii) If $w_{d}>n$ then $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q^{d}}\right) \cong \mathbb{Z} / \ell^{n} \mathbb{Z} \times \mathbb{Z} / \ell^{n} \mathbb{Z}$.

In the following example we illustrate $i i$) of Theorem 2 and Corollary 1.
Example 2. Let $q=p=10^{10}+19, \ell=7$ and $d=3$. Consider the elliptic curves

$$
\begin{aligned}
& E_{1}: y^{2}=x^{3}+129113198 x+9741773623, \\
& E_{2}: y^{2}=x^{3}+4800245152 x+399509715
\end{aligned}
$$

over \mathbb{F}_{q}. For both of them $v_{\ell}\left(\# E_{i}\left(\mathbb{F}_{q}\right)\right)=w_{d}=1$, but E_{1} satisfies

$$
v_{\ell}\left(\# E_{1}\left(\mathbb{F}_{q^{d}}\right)\right)=2 \quad \text { and } \quad E_{1}\left[\ell^{\infty}\right]\left(\mathbb{F}_{q^{d}}\right)=\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell \mathbb{Z}
$$

while E_{2} satisfies

$$
v_{\ell}\left(\# E_{2}\left(\mathbb{F}_{q^{d}}\right)\right)=5 \quad \text { and } \quad E_{2}\left[\ell^{\infty}\right]\left(\mathbb{F}_{q^{d}}\right)=\mathbb{Z} / \ell \mathbb{Z} \times \mathbb{Z} / \ell^{4} \mathbb{Z}
$$

5. Conclusions

In this section we summarize our data for $\ell \geq 5$ and for an arbitrary degree k. As above, $n=v_{\ell}\left(\# E\left(\mathbb{F}_{q}\right)\right), w_{d}=v_{\ell}\left(q^{d}-1\right)$ and we write the exponents of $E\left[\ell^{\infty}\right]\left(\mathbb{F}_{q}\right)$ as (r, s) with $0 \leq r \leq s$ and $r+s \geq 1$. We set $k=m \ell^{\tau} d^{\gamma}$ with m a natural number prime to ℓ and d, and $\tau, \gamma \geq 0$. Our results relative to $\# E\left(\mathbb{F}_{q^{k}}\right)$ are shown in Table 1 . The case $k=\ell^{\tau}$ can be seen as a simple instance of Iwasawa Theory for function fields of elliptic curves over \mathbb{F}_{q} and the $\mathbb{Z}_{\ell^{-}}$-extension $\cup_{\tau} \mathbb{F}_{q^{\ell^{\tau}}}$. In [12, Theorem 13.13 and pg. 130] one finds the prediction $v_{\ell}\left(\# E\left(\mathbb{F}_{q^{\ell \tau}}\right)\right)=\lambda \tau+\nu$ for τ sufficiently large, with $0 \leq \lambda \leq 2$ and ν a constant.

E ordinary		
Increment	Exponents	Condition
2τ	$(r+\tau, s+\tau)$	$q \equiv 1(\bmod \ell)$
τ	$(0, n+\tau)$	$q \not \equiv 1(\bmod \ell)$ and $\gamma=0$
$2 \tau+w_{d}$	$\left(w_{d}+\tau, n+\tau\right)$	$q \not \equiv 1(\bmod \ell)$ and $w_{d}<n$ and $\gamma \geq 1$
$2 \tau+n$	$(n+\tau, n+\tau)$	$q \not \equiv 1(\bmod \ell)$ and $w_{d}>n$ and $\gamma \geq 1$
$\geq 2 \tau+n$	$(n+\tau, \geq n+\tau)$	otherwise
E supersingular		
Increment	Exponents	Condition
2τ	$(r+\tau, s+\tau)$	$q \equiv 1(\bmod \ell)$
τ	$(0, n+\tau)$	$q \not \equiv 1(\bmod \ell)$ and $\gamma=0$
$2 \tau+n$	$(n+\tau, n+\tau)$	otherwise

Table 1. Increment and exponents over an extension of \mathbb{F}_{q} of degree $k=m \ell^{\tau} d^{\gamma}$.

Acknowledgments

The authors would like to thank the anonymous referee, whose comments highly improved the quality of this publication. Research of the authors was supported in part by grants MTM2013-46949-P (Spanish Ministerio de Ciencia e Innovación), 2014SGR-1666 (Generalitat de Catalunya).

References

[1] R. Balasubramanian and N. Koblitz. The improbability that an elliptic curve has subexponential discrete log problem under the Menezes - Okamoto - Vanstone algorithm, J. Cryptology, 11 no. 2, pp. 141-145, 1998.
[2] D. A. Cox. Primes of the form $x^{2}+n y^{2}$, Wiley-Interscience, 1989.
[3] D. Freeman and K. Lauter. Computing endomorphism rings of Jacobians of genus 2 curves over finite fields, Proceedings of the First SAGA Conference, World Sci. Publ., pp. 29-66, 2008.
[4] S. Ionica and A. Joux. Pairing the volcano, Mathematics of Computation, 82 no. 281, pp. 581-603, 2013.
[5] H. W. Lenstra, Jr. Complex multiplication structure of elliptic curves, Journal of Number Theory, 56 no. 2, pp. 227-241, 1996.
[6] A. J. Menezes, T. Okamoto and S. A. Vanstone. Reducing elliptic curve logarithms to logarithms in a finite field, IEEE Trans. Inform. Theory, 39 no. 5, pp. 1639-1646, 1993.
[7] J. Miret, D. Sadornil, J. Tena, R. Tomàs and M. Valls. Volcanoes of ℓ-isogenies of elliptic curves over finite fields: the case $\ell=3$, Proceedings of the Primeras Jornadas de Teoría de Números, Publicacions Matemàtiques, pp. 165-180, 2007.
[8] H.-G. Rück. A note on elliptic curves over finite fields, Mathematics of Computation, 49 no. 179, pp. 301-304, 1987.
[9] R. Schoof. Nonsingular plane cubic curves over finite fields, Journal of Combinatorial Theory, Series A, 46 no. 2, pp. 183-211, 1987.
[10] J. H. Silverman. The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts in Mathematics 106, Springer, 2009.
[11] J. F. Voloch. A note on elliptic curves over finite fields, Bulletin de la S.M.F., 116 no. 4, pp. 455-458, 1988.
[12] L. C. Washington. Introduction to Cyclotomic Fields, Second Edition, Graduate Texts in Mathematics 83, Springer, 1997.
[13] W. C. Waterhouse. Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4), 2 no. 4, pp. 521-560, 1969.
[14] C. Wittmann. Group structure of elliptic curves over finite fields, Journal of Number Theory, 88 no. 2, pp. 335-344, 2001.

Josep M. Miret Jordi Pujolàs Javier Valera
Departament de Matemàtica, Universitat de Lleida, 25001 Lleida, Spain
\{miret, jpujolas, jvalera\}@matematica.udl.cat

