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On the `-adic valuation of the cardinality of
elliptic curves over finite extensions of Fq

Josep M. Miret Jordi Pujolàs Javier Valera

Abstract. Let E be an elliptic curve defined over a finite field Fq of odd
characteristic. Let ` 6= 2 be a prime number different from the charac-
teristic and dividing #E(Fq). We describe how the `-adic valuation of
the number of points grows by taking finite extensions of the base field.
We also investigate the group structure of the corresponding `-Sylow
subgroups.

1. Introduction

Let q be a power of a prime p 6= 2 and let E be an elliptic curve over a finite
field Fq. We compute the difference of valuations v`(#E(Fqk))−v`(#E(Fq)),
where k is a natural number and ` 6= 2, p is a prime number dividing #E(Fq)
(Theorems 1, 2). Our result agrees with the predictions of Iwasawa Theory.

Under the given assumptions, v`(#E(Fqk)) − v`(#E(Fq)) > 0 only if
v`(k) > 0 or if k is divisible by the multiplicative order d of q in F∗` (see
Proposition 2). Hence we can reduce the proofs to the cases k = ` or k = d.
We also describe how the group structure of the `-Sylow subgroup E[`∞](Fqk)
changes with k. Namely, if

E[`∞](Fq) ∼= Z/`rZ× Z/`sZ with 0 ≤ r ≤ s and r + s ≥ 1,

we show how to determine integers rk, sk such that E[`∞](Fqk) ∼= Z/`rkZ ×
Z/`skZ.

On this regard, a partial answer appeared in [3, Proposition 6.3] for
k = `. The case of ordinary elliptic curves with k = `, q ≡ 1 (mod `) and
t2−4q ≡ 0 (mod `2), for t the trace of Frobenius endomorphism, was covered
in [4, Proposition 4.2] using pairings. The case of supersingular elliptic curves
for k = d, q 6≡ 1 (mod `) and for some other particular cases was set in [6,
Section 4].



2 Josep M. Miret Jordi Pujolàs Javier Valera

Notation. For us, q is the power of some prime number p 6= 2, E is an elliptic
curve over Fq, ` 6= 2, p is a prime number such that ` | #E(Fq) and d is the
multiplicative order of q in F∗` . We write the multiplication-by-m isogeny [m]
as m.

2. A recurrence formula for #E(Fqk)

The cardinality of E over a finite extension of Fq is

#E(Fqk) = deg(1− φk) = qk + 1− tk, (1)

where tk is the trace of the Frobenius endomorphism φk of E over Fqk (see
[10, Theorem 2.3.1]), and

qk = φkφ̂k, tk = φk + φ̂k, (2)

where φ̂k is the dual of φk. By varying k, the traces tk (we set t = t1) satisfy
the recurrence

t2 = t2 − 2q, tk = ttk−1 − qtk−2 for k ≥ 3. (3)

The first thing we do is to express (3) in terms of the cardinalities #E(Fqk).

Proposition 1. Let k be a natural number. Then

#E(Fqk) = #E(Fq)

k k−1∑
i=0

qi −
k−1∑
i=1

#E(Fqi)
k−i−1∑
j=0

qj

 .

Proof. We have #E(Fqk) = deg(1 − φk) = #E(Fq) deg(1 + φ + · · ·+ φk−1).

The expansion of the rightmost factor is
∑k−1
i,j=0 φ

iφ̂j =

k−1∑
i=0

φiφ̂i + (φ+ φ̂)

k−2∑
i=0

φiφ̂i + (φ2 + φ̂2)

k−3∑
i=0

φiφ̂i + · · ·+ (φk−1 + φ̂k−1),

which by (1) and (2) reduces to

k−1∑
i=0

qi +

k−1∑
i=1

(qi + 1−#E(Fqi))
k−i−1∑
j=0

qj = k

k−1∑
i=0

qi −
k−1∑
i=1

#E(Fqi)
k−i−1∑
j=0

qj .

�

Proposition 2. Let τ = v`(k) and let d be the multiplicative order of q in F∗` .
Then

v`(#E(Fqk)) =

{
v`(#E(Fq`τ )) if d - k,
v`(#E(Fqd`τ )) if d | k.

Proof. By Proposition 1 with k = `τk′, ` - k′ and qk = (q`
τ

)k
′
, we have

#E(Fqk) = #E(Fq`τ )

k′ k′−1∑
i=0

qi`
τ

−
k′−1∑
i=1

#E(Fqi`τ )

k′−i−1∑
j=0

qj`
τ

 (4)
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at once. If d - k then q 6≡ 1 (mod `) and v`

(∑k′−1
i=0 qi`

τ
)

= v`

(
qk−1
q`τ−1

)
= 0

because the numerator is not 0 modulo `. Since

v`

k′−1∑
i=1

#E(Fqi`τ )

k′−i−1∑
j=0

qj`
τ

 ≥ v`(#E(Fq`τ )) > 0,

we see v`(#E(Fqk)) = v`(#E(Fq`τ )). Similarly, if d | k then (4) with k =

d`τk′ implies v`(#E(Fqk)) = v`(#E(Fqd`τ )) since v`

(
k′
∑k′−1
i=0 qid`

τ
)

= 0.

�

Proposition 2 above reduces our problem to two cases: extensions of Fq
of degree ` (see Section 3) and, only if q 6≡ 1 (mod `), extensions of degree
equal to the multiplicative order d of q in F∗` (see Section 4).

3. Increment of v`(#E(Fq`))

In this section we consider field extensions of degree k = `.

Theorem 1. Unless ` = 3 and q ≡ 1 (mod 3) and #E(Fq) ≡ 3 (mod 9) hold,
we have

v`(#E(Fq`)) =

{
v`(#E(Fq)) + 1 if q 6≡ 1 (mod `),

v`(#E(Fq)) + 2 if q ≡ 1 (mod `).

For ` = 3 and q ≡ 1 (mod 3) and #E(Fq) ≡ 3 (mod 9), we have

v3(#E(Fq3))− v3(#E(Fq)) = 2 min{v3(q − 1), v3(t+ 1)} ≥ 4,

except if q − 1 ≡ t+ 1 (mod 3v3(q−1)+1), in which case we have

v3(#E(Fq3))− v3(#E(Fq)) = 2v3(q − 1) + 1 ≥ 3.

Proof. Let ξ be a primitive `-th root of unity. Then the ideal (`) factors in
Z[ξ] as (`) = (1− ξ)`−1, and by elementary number theory the corresponding
valuations satisfy v`() = 1

`−1v1−ξ(). Therefore, by (1) and the factorization

deg(1 + φ+ · · ·+ φ`−1) =

`−1∏
i=1

(φ− ξi)(φ̂− ξi),

v`(#E(Fq`)) = v`(#E(Fq)) +
1

`− 1

`−1∑
i=1

v1−ξ

(
(φ− ξi)(φ̂− ξi)

)
. (5)

Write q ≡ q̄ (mod `), so that q̄ ∈ {1, . . . , `− 1}. Then

(φ− ξi)(φ̂− ξi) = (1− ξi)(q̄ − ξi) + `ki

for some ki ∈ Z[ξ]. Hence the second summand in (5) is 1 for q̄ 6= 1 or 2 for
q̄ = 1, except possibly for ` = 3 = (1− ξ)2(1 + ξ). In this case, let q− 1 ≡ 3x
(mod 9), t+ 1 ≡ 3y (mod 9) for x, y ∈ {0, 1, 2}. Then

(1− ξi)2 + 3ki ≡ 3(x− yξi) (mod 9).
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Clearly v1−ξ((1 − ξi)2 + 3ki) = 2 if x 6= y and v1−ξ((1 − ξi)2 + 3ki) ≥ 3 if
x = y (which is equivalent to #E(Fq) ≡ 3 (mod 9)). More explicitly, let

q − 1 = 3x1 + 9x2 + · · ·+ 3wxw + · · · , xi ∈ {0, 1, 2},
t+ 1 = ± (3y1 + 9y2 + · · ·+ 3wyw + · · · ), yi ∈ {0, 1, 2}.

Then

(φ− ξi)(φ̂− ξi) = 3(x1 ∓ y1ξi) + 9(x2 ∓ y2ξi) + · · ·+ 3w(xw ∓ ywξi) + · · · .
But if v3(q − 1) < v3(t + 1) with w = v3(q − 1) ≥ 2, then xi = 0 for all
1 ≤ i < w, xw 6= 0 and yi = 0 for all 1 ≤ i ≤ w. Hence the increment is
2v3(q − 1). Similarly, if v3(t + 1) < v3(q − 1) with w = v3(t + 1) ≥ 2, then
yi = 0 for 1 ≤ i < w, yw 6= 0 and xi = 0 for 1 ≤ i ≤ w, so the increment
is 2v3(t + 1). Finally, if v3(q − 1) = v3(t + 1) = w then xw, yw 6= 0, and the
increment is 2v3(q − 1) + 1 if xw ∓ yw ≡ 0 (mod 3) (which is equivalent to
q − 1 ≡ t+ 1 (mod 3v3(q−1)+1)) and 2v3(q − 1) if not. �

Example 1. Let q = p = 10099 ≡ 1 (mod 3), and consider the following
elliptic curves over Fq:

E1 : y2 = x3 + 1070x+ 7959, E2 : y2 = x3 + 9599x+ 1000,
E3 : y2 = x3 + 3690x+ 2719, E4 : y2 = x3 + 2828x+ 4443.

Their numbers of points over Fq satisfy #Ei(Fq) ≡ 3 (mod 9), for i =
1, 2, 3, 4. From Theorem 1 we deduce the increment of the 3-adic valuation of
#Ei(Fq3):

E1 E2 E3 E4

v3(q − 1) 3 3 3 3
v3(t+ 1) 2 3 3 4
q − 1 (mod 3v3(q−1)+1) 54 54 54 54
t+ 1 (mod 3v3(q−1)+1) 72 27 54 0
v3(#E(Fq3))− v3(#E(Fq)) 4 6 7 6

Lemma 1. For all our `,

v`(1 + q + · · ·+ q`−1) =

{
0 if q 6≡ 1 (mod `),

1 if q ≡ 1 (mod `).

Proof. Assume first q 6≡ 1 (mod `). Since 1 + q+ · · ·+ q`−1 = q`−1
q−1 , Fermat’s

Little Theorem implies our claim. If q ≡ 1 (mod `), then q has the form
1 + c`, hence 1 + q+ · · ·+ q`−1 = `(1 + c`(. . .)), and since v`(1 + c`(. . .)) = 0,
then v`(1 + q + · · ·+ q`−1) = v`(`) + v`(1 + c`(. . .)) = 1. �

Let K = Q(
√
t2 − 4q), let dK be the discriminant of K and let gk be the

conductor of the order Z[φk]. It is well known (see [2, pg. 134] for instance)
that

t2k − 4qk = g2kdK .

Lemma 2. Let E be ordinary and let n = v`(#E(Fq)) ≥ 1. Let φk be the

Frobenius endomorphism of E over Fqk and let σk =
∑k−1
i=0 φ

iφ̂k−i−1. Then
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i) t2k − 4qk = (t2 − 4q)σ2
k,

ii) σk ≡ 1 + · · ·+ qk−1 (mod `n).

Proof. i) Clearly from (2) we have t2k − 4qk = (φk + φ̂k)2 − 4φkφ̂k = (φk −
φ̂k)2 = (φ− φ̂)2(φ̂k−1 + φφ̂k−2 + · · ·+ φk−2φ̂+ φk−1)2 = (t2 − 4q)σ2

k.
ii) From the definition of σk, we have σk = tσk−1 − qσk−2 for k ≥ 3.

Since σ1 = 1 and σ2 ≡ 1 + q (mod `n), σk ≡ 1 + q + · · · + qk−1 (mod `n)
follows by induction. �

Let f be the conductor of O = End(E) in the ring of integers OK .
From [5, 14] and [7] it follows that the smallest exponent rk in E[`∞](Fqk) ∼=
Z/`rkZ× Z/`skZ is

rk =

{
min{ 12v`(#E(Fqk)), v`(

gk
f )} if v`(#E(Fqk)) is even,

v`(
gk
f ) otherwise.

(6)

Proposition 3. Let E[`∞](Fq) ∼= Z/`rZ×Z/`sZ with r ≤ s and n = r+s ≥ 1.
For ` ≥ 5 we have:

i) if q 6≡ 1 (mod `) then r = 0 and E[`∞](Fq`) ∼= Z/`n+1Z,
ii) if q ≡ 1 (mod `) then E[`∞](Fq`) ∼= Z/`r+1Z× Z/`s+1Z.

For ` = 3 the group structure variation is the same as above except if q ≡ 1
(mod 3) and #E(Fq) ≡ 3 (mod 9), in which case E[3∞](Fq) ∼= Z/3Z and

E[3∞](Fq3) ∼= Z/3r3Z× Z/3s3Z

with s3 = r3 ≥ 2 or s3 = r3 + 1 ≥ 3.

Proof. i) Clearly Theorem 1 follows if both E[`∞](Fq), E[`∞](Fq`) are cyclic.

If (t, q) = 1, then by [8] or [11] neither r nor r` exceed v`(q−1) = v`(q
`−1) =

0, so both subgroups are cyclic. If (t, q) 6= 1, then (t`, q
`) 6= 1 by the trace

formula (3), and by [9] and [13] the only possibility is that both subgroups
are cyclic.

ii) Let (t, q) = 1. Assume first t2 − 4q ≡ 0 (mod `2). Since t2 − 4q =
(q − 1)2 − 2(q + 1)#E(Fq) + #E(Fq)2 and v`(q − 1) ≥ 1, then n ≥ 2. Hence
by Lemma 2 σ` ≡ 1+q+ · · ·+q`−1 (mod `n). Since v`(1+q+ · · ·+q`−1) = 1
by Lemma 1, we see v`(σ`) = 1. Therefore, again by Lemma 2 we have

v`(t
2
` − 4q`) = v`(t

2 − 4q) + 2, (7)

which in terms of the conductors gi is

v`(g`) = v`(g1) + 1. (8)

In view of (6), it is easy to deduce r` = r+ 1 from Theorem 1 and (8). Then
by Theorem 1 we conclude s` = s+ 1 as desired.
In case t2 − 4q 6≡ 0 (mod `2), (7) holds as well. Indeed, since t2 − 4q =
(q − 1)2 − 2(q + 1)#E(Fq) + #E(Fq)2 then v`(t

2 − 4q) = 1 and n = 1. Then
v`(#E(Fq`)) = 3 by Theorem 1 and we deduce v`(t

2
` −4q`) = 3. At this point

the proof is the same as above.
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If (t, q) 6= 1, then as in i) above the only possibility is E(Fq) ∼= (Z/(√q∓1)Z)2

and E(Fq`) ∼= (Z/(
√
q`∓1)Z)2 respectively. Then v`(

√
q`∓1) = v`(

√
q∓1)+1

by Theorem 1.
Assume now ` = 3. If some of the conditions q ≡ 1 (mod 3), #E(Fq) ≡ 3

(mod 9) do not hold, then the proof follows as above. In the exceptional case,
if (t, q) 6= 1 the result appears in [6, Table 1] for t = ±√q. If (t, q) = 1, by
Theorem 1 we have two possibilities: v3(#E(Fq3)) = 1 + 2c for 2 ≤ c ≤
v3(q − 1) or else v3(#E(Fq3)) = 2 + 2v3(q − 1) with v3(q − 1) ≥ 1. In both
cases one easily deduces v3(g1) = v3(f) = 0 and v3(dK) = 1. In the first case,
then v3((q3−1)2) > v3(#E(Fq3)) by Lemma 1, and then v3(t23−4q3) = 1+2c.
Therefore v3(g3) = c and r3 = v3(g3/f) = c, s3 = c + 1. In the second case,
then v3((q3 − 1)2) = v3(#E(Fq3)) and v3(t23 − 4q3) > v3(#E(Fq3)). Thus
v3(g3/f) ≥ v3(q − 1) + 1, and by (6), r3 = 1 + v3(q − 1), hence s3 = r3. �

4. Increment of v`(#E(Fqd)) for d = ordF∗
`
(q)

In this section q 6≡ 1 (mod `) and k is equal to the multiplicative order d
of q modulo `. In this case, our problem for supersingular elliptic curves is
solved in [6, Table 1] (where necessarily d = 2 and t = 0, d = 3 and t2 = q,
or d = 6 and t2 = 3q). Therefore we assume E is ordinary. Then by [8] or
[11], E[`∞](Fq) is cyclic. We let wd = v`(q

d − 1).

Proposition 4. Let E be ordinary, let q 6≡ 1 (mod `) and let n = v`(#E(Fq)) ≥
1. If E[`∞](Fq) = 〈Pn〉 then

E[`∞](Fqd) = 〈Pn, Qµ〉,
where Qµ ∈ E(Fqd) is a point of order `µ, µ ≥ 1. If n > µ then µ = wd.

Proof. It is well known that E[`∞](Fqd) has rank 2 (see [1, Theorem 1]). Let
`µ be the order of a generator Qµ of E[`∞](Fqd) independent of Pn.
We next show that Pn has the property that ∀e < ` there cannot exist P ∈
E(Fqe) such that `P = Pn. By Proposition 3, ` such points P ∈ E(Fq) do exist
in E(Fq`). Assume there exists T ∈ E(Fqe) such that `T = Pn. By Proposition

2 we can assume e = d. Let P1 = `n−1Pn and let Q1 = `µ−1Qµ. Then
T = P + αP1 + βQ1 for some integers α, β and clearly αP1 + βQ1 ∈ E(Fqd).
Hence P ∈ E(Fq`) ∩ E(Fqd) and therefore ` | d, which is a contradiction.
Because of this property, if n ≤ µ then Pn is a generator over Fqd . Indeed, the
property above extends to the set {Pn + Tc | `cTc = 0, c < n} by elementary
group theory, and this implies Pn is a generator of E(Fqd). If n > µ, Pn is
a generator over Fqd by other reasons. We first show the precise order of Qµ
is given by µ = v`(σd). Let f , gi, dK be as above. Since t2 − 4q = g21dK 6≡ 0
(mod `) then v`(f) = 0. Since n > µ then µ = v`(gd/f) in (6), and then
µ = v`(gd). Similarly, since t2d − 4qd = g2ddK = g21dKσ

2
d by Lemma 2 and

v`(g
2
1dK) = 0, then v`(σd) = v`(gd) = µ. But also by Lemma 2 we have

σd ≡ 1 + · · · + qd−1 (mod `n), and since n > µ, we deduce µ = wd. Now
Proposition 1 implies v`(#E(Fqd)) = n+wd, hence Pn and Qwd generate. �
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Theorem 2. Let E be ordinary and let q 6≡ 1 (mod `).

i) If wd < v`(#E(Fq)) then v`(#E(Fqd)) = v`(#E(Fq)) + wd.
ii) If wd = v`(#E(Fq)) then v`(#E(Fqd)) ≥ 2v`(#E(Fq)).
iii) If wd > v`(#E(Fq)) then v`(#E(Fqd)) = 2v`(#E(Fq)).

Proof. Let n = v`(#E(Fq)). i) and ii) follow from Proposition 1. The same
argument for iii) implies v`(#E(Fqd)) ≥ 2n. Assume v`(#E(Fqd)) = 2n +

1. Then t2d − 4qd = (qd − 1)2 + #E(Fqd)(#E(Fqd) − 2(qd + 1)), therefore

v`(t
2
d − 4qd) = 2n + 1. But this is not possible: by Lemma 2, v`(t

2
d − 4qd) =

v`(t
2−4q)+2v`(σd) = 2v`(σd) is even. Finally, by Proposition 4 we can assume

E[`∞](Fqd) = Z/`nZ×Z/`n+cZ with c ≥ 2. Then v`(t
2
d−4qd) ≥ 2n+2, hence

v`(gd) ≥ n+1 as in the proof of Proposition 4 above. But then, since v`(f) = 0
the value of n contradicts (6). �

The structure of E[`∞](Fqd) now follows.

Corollary 1. Let E be ordinary, let q 6≡ 1 (mod `), and let E[`∞](Fq) ∼=
Z/`nZ with n ≥ 1.

i) If wd < n then E[`∞](Fqd) ∼= Z/`wdZ× Z/`nZ.
ii) If wd = n then E[`∞](Fqd) ∼= Z/`nZ× Z/`n′Z with n′ ≥ n.

iii) If wd > n then E[`∞](Fqd) ∼= Z/`nZ× Z/`nZ.

In the following example we illustrate ii) of Theorem 2 and Corollary 1.

Example 2. Let q = p = 1010 + 19, ` = 7 and d = 3. Consider the elliptic
curves

E1 : y2 = x3 + 129113198x+ 9741773623,
E2 : y2 = x3 + 4800245152x+ 399509715

over Fq. For both of them v`(#Ei(Fq)) = wd = 1, but E1 satisfies

v`(#E1(Fqd)) = 2 and E1[`∞](Fqd) = Z/`Z× Z/`Z,

while E2 satisfies

v`(#E2(Fqd)) = 5 and E2[`∞](Fqd) = Z/`Z× Z/`4Z.

5. Conclusions

In this section we summarize our data for ` ≥ 5 and for an arbitrary degree
k. As above, n = v`(#E(Fq)), wd = v`(q

d − 1) and we write the exponents
of E[`∞](Fq) as (r, s) with 0 ≤ r ≤ s and r + s ≥ 1. We set k = m`τdγ

with m a natural number prime to ` and d, and τ, γ ≥ 0. Our results relative
to #E(Fqk) are shown in Table 1. The case k = `τ can be seen as a simple
instance of Iwasawa Theory for function fields of elliptic curves over Fq and
the Z`-extension ∪τFq`τ . In [12, Theorem 13.13 and pg. 130] one finds the
prediction v`(#E(Fq`τ )) = λτ +ν for τ sufficiently large, with 0 ≤ λ ≤ 2 and
ν a constant.
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E ordinary
Increment Exponents Condition

2τ (r + τ, s+ τ) q ≡ 1 (mod `)
τ (0, n+ τ) q 6≡ 1 (mod `) and γ = 0

2τ + wd (wd + τ, n+ τ) q 6≡ 1 (mod `) and wd < n and γ ≥ 1
2τ + n (n+ τ, n+ τ) q 6≡ 1 (mod `) and wd > n and γ ≥ 1
≥ 2τ + n (n+ τ,≥ n+ τ) otherwise

E supersingular
Increment Exponents Condition

2τ (r + τ, s+ τ) q ≡ 1 (mod `)
τ (0, n+ τ) q 6≡ 1 (mod `) and γ = 0

2τ + n (n+ τ, n+ τ) otherwise

Table 1. Increment and exponents over an extension of Fq
of degree k = m`τdγ .
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