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Abstract  

In order to enable a wider use of voltammetric methods in speciation analysis, it is 

convenient not to be restricted by ligand excess conditions. This work assumes labile 

ideal complexation of a metal ion by a ligand, planar electrode, no electrodic adsorption 

and equal diffusion coefficients for the complex and the ligand, but very different from 

the metal ion. It is shown that the system of non-linear equations describing the 

diffusion of the species in a potentiostatic experiment for any ligand to metal ratio can 

be reduced to only one ordinary differential equation by means of a change of variable. 

Standard numerical methods can then be used in the computation of the solution with a 
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great saving of computational time and resources in comparison with other existing 

methods. Some properties of the currents are also proved: i) cottrellian behaviour for 

any current in normal pulse polarography (NPP) and for limiting currents in reverse 

pulse polarography (RPP), ii) the dependence of the normalised limiting current ( φ ) on 

just 3 parameters and iii) the equality of limiting NPP and RPP currents. The normalised 

current for high stability constant values depend on just 2 parameters, one of which is 

the ratio of total metal / total ligand concentrations, and can be found from an implicit 

algebraic equation. A new representation for the normalised limiting currents is 

suggested: the iso-φ  diagram, which for each ratio of diffusion coefficients, ε , 

describes the currents for any stability constant in a unique drawing. A new graphical 

procedure arising from this diagram is suggested and then applied to data corresponding 

to Zn / poly(methacrylic) acid at pH=6 and fixed ionic strength . 

 

 

Keywords: voltammetry, macromolecular complexation, speciation, non-linear 

diffusion, pulse polarography, stability constant, concentration profiles.  

 

1. Introduction   

Voltammetric measurements are widely used in the speciation studies of systems 

containing macromolecules and metal ions, the major advantages being the reduced 

perturbation of the natural sample by the analytical procedure and the low detection 

limit of these techniques  [1]. Both the shift of the half wave potential or the decrease of 

the limiting current can be suitable to obtain the stability constants. However, the 

determination of the binding curves from voltammetric data encounters some 

difficulties, among which the indirect determination of the free metal ions 
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concentration, the presence of transport steps and adsorption phenomena onto the 

electrode surface have been reported [2-4]. 

 

Up to now, most of the work concerning complexation has been done using a 

large excess of ligand [2,5] [6], because of the linearization of the problem. Recently, it 

has been pointed out that in excess ligand conditions any complexation model behaves 

like the ideal complexation  model characterised by identical and independent sites 

(occupation or vacancy of one site does not affect the affinity of any other site) [4,7,7]. 

This supports the interpretation of ligand excess experimental results assuming ideal 

complexation for any system. The stability constant so obtained corresponds to an 

average of the intrinsic affinities of the sites. However, many other models of 

complexation can arise: intrinsically different sites (heterogeneity), chelates, lateral 

interactions,... and one must move away from the excess ligand conditions if any 

specific characteristic of the model has to be found. Thus, to deal with non-ideal 

complexation cases or to improve the determination of K in the ideal case, it is 

convenient to study the voltammetric responses beyond the ligand excess framework. 

 

For any metal-to-ligand ratio, a non-linear system of equations arising from the 

transport of the metal (M), ligand (L) and complex (ML) has to be solved [4,8-10]. A 

finite difference scheme was used to compute the limiting current in a general case in 

which the kinetics of the complexation process are not sufficiently fast to reach quasi-

equilibrium [11]. In this case, the effect of unfulfilment of lability on the titration curves 

has also been assessed [12]. When fully labile conditions are assumed, an equilibrium  

relationship for the concentrations of the formal species M, ML, and L can be written 

and the system can be reformulated in terms of only three differential equations, 
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corresponding to the total metal, the total ligand and the reduced metal, plus the 

algebraic equation coming from the equilibrium relationship that arises from full 

lability. Although finite difference schemes are applicable in this case, finite element 

methods (FEM) have also been applied [8,10,13], the major advantage of these latter 

techniques in the present problem being the natural use of unequal spatial grids, adapted 

to the  physical viewpoint of the problem. 

 

Recently, a discussion of the effects of ligand and complex adsorption on the 

limiting currents of the pulse polarographic techniques has been published [10]. For 

labile systems, no influence on the limiting RPP current can be found from complex 

adsorption, and if the ligand concentration is chosen for maximum sensitivity, the 

remaining effect of the ligand adsorption in limiting RPP currents leads to a bias in the 

stability constant, determined from the limiting current at zero metal concentration, less 

than 14%, provided that the complex and ligand are 20-fold slower than the metal. 

Moreover, for the case without adsorption, reference [10] suggests that limiting NPP 

currents do not differ from limiting RPP currents. So, the simpler expressions developed 

for NPP limiting currents can be used for the interpretation of results obtained from 

both techniques, even in systems with adsorption phenomena provided that limiting 

RPP currents are recorded. 

 

 The aim of this work is to point out that, for any ligand to metal ratio in labile 

metal-macromolecular complexation, the current produced in a potentiostatic step (e.g. 

direct current or dc polarography) can be obtained via a change of variables that 

transforms the partial differential equation into an ordinary differential equation (ODE). 

The process of reformulation of the original problem together with requirements for the 
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change to be valid are presented in section 3. The solution of the resulting equation 

requires much less computational effort and can be obtained using standard numerical 

methods, such as those based on Runge-Kutta algorithms. A practical implementation of 

the calculations needed is described in section 4. Taking advantage of this formulation, 

some general properties of the pulse polarographic currents are also deduced in section 

5, proving, in particular, that Ilim,RPP = Ilim,NPP. Finally, these properties lead to the 

introduction, in section 6, of a new representation of the results, labelled as the iso-φ 

diagram. For a given ratio of diffusion coefficients ε, this diagram describes the 

(limiting) normalised currents for any stability constant in a unique drawing. A 

graphical procedure to estimate the stability constant from the iso-φ diagram is 

presented in section 7 and tested with experimental data from Zn / poly(methacrylic) 

acid. 

 

2. Mathematical formulation  

Let us consider the simple binding scheme in which an electroactive metal ion 

(M) forms a complex (ML) with a ligand (L) . When complexation and electron transfer 

kinetics are fast enough, equilibrium relationships for both the homogeneous reaction 

and the heterogeneous electron transfer processes can be assumed. This problem can be 

depicted as 

K
+

± n e-

MLLM

M0

 (1) 

with K being the stability constant for the complexation reaction 
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K c c c= ML M Lb g  (2) 

The assumption of instantaneous adaptation of cML to the equilibrium relationship is 

known as fully labile behaviour and allows a gradient of ML to develop close to the 

electrode when a step is applied. We assume that the diffusion coefficient for the metal 

in solution (DM ) is much greater than the diffusion coefficient for the complex or the 

ligand, whose common value is labelled DL  

 

 Scheme (1) can also be seen as the reduced formulation [7,14] of a fully labile 

macromolecular system, with all the macromolecular species having the same fixed 

number of independent and homogeneous sites and the same diffusion coefficient  [15]. 

In this case, cML is the concentration of bound metal, cL the concentration of free sites 

and DL is the diffusion coefficient of any macromolecular species. 

 

When there is neither complex nor ligand adsorption and L and ML have the 

same diffusion coefficient, it can be seen [10,11] that, irrespective of the technique,  

c x t c x t c x t c c cT,L L ML L ML T,L, , ,b g b g b g≡ + = + =∗ ∗ ∗  (3) 

(where the asterisk superscript denotes bulk concentrations) since boundary conditions 

are fulfilled by the initial distribution of total ligand concentration and, at no time, there 

is any physical phenomenon modifying the total ligand concentration at any point.  

 

Assuming planar symmetry, the total metal diffusion can be written as 

∂
∂

+
∂

∂
=

∂
∂

+
∂

∂
c x t

t

c x t

t
D

c x t

x
D

c x t

x

M ML
M

M
L

, , , ,MLb g b g b g b g2

2

2

2
 (4) 
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and the diffusion of the reduced metal M0  (either inside the amalgam or away from it, 

which is irrelevant in planar geometry) as  

∂
∂

=
∂

∂
c x t

t
D

c x t

x

M
M

M0

0

0

2

2

, ,b g b g
 (5) 

 

The initial conditions are given by: 

c x c c x c c x xM M ML ML M
, ; , ; ,0 0 0 0 00b g b g b g= = = ∀ >∗ ∗  (6) 

and the boundary value problem, given by semi-infinite diffusion, reads 

c x t c c x t c c x t t xM M ML M
, ; , ; ,MLb g b g b g= = = ∀ > → ∞∗ ∗

0 0 0  (7) 

and for x = 0,  

D
c

x
D

c

x
D

c

x
x x x

M
M

L
ML

M

M∂
∂
F
HG
I
KJ +

∂
∂
F
HG
I
KJ +

∂
∂
F
HG
I
KJ =

= = =0 0 0

0

0

0  (8)   

and       

c t

c t

nF

RT
E E

D

D

M

M

M

M

0

0

0

0
0

,

,
exp

b g
b g c h= − −L

NM
O
QP ≡ δ  (9)   

arising respectively from a metal flux balance and from the electrochemical 

reversibility. Notice that the inclusion of D DM M0 in the definition of δ  is convenient 

for the planar electrode and other functionalities could arise in other geometries. 

 

Equations (2)-(9) determine the four unknowns cM, cL, cML and cM0 . In previous 

work [4,8,10,13,16,17] dealing with several pulse polarographic techniques, we have 

solved numerically the  system of equations (2)-(9) using the Galerkin finite element 

method [18]. Here, we adopt a very different approach.  
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3. Transformation of the non-linear system of diffusion equations 

 Through the similarity method [19,20], a new variable  

z x D t≡ M  (10) 

is introduced. This kind of change of variable is typical in the solution of non-uniform 

diffusion coefficients [21] and has also been used in the electrochemical field [22,23].  

The inclusion of the constant value DM is convenient in order to render z a 

dimentionless magnitude, which can be then thought as a normalised distance to the 

planar electrode. Using this new variable, equation (5) rewrites as 

z c z

z

D

D

c z

z2
0

0 0 0

2

2

d

d

d

d
M M

M

M
b g b g

+ =  (11) 

and equation (4) becomes  

z c z

z

c z

z

c z

z

c z

z2
0

2

2

2

2

d

d

d

d

d

d

d

d
M ML M MLb g b g b g b g+

F
HG

I
KJ + + =ε  (12) 

where ε ≡ D DL M . 

 

Both equations (11) and (12) are ordinary differential equations in terms of z. 

We turn now our interest to their boundary value problem. Initial and boundary 

conditions at x→∞ reduce (without conflict) to only one condition at z→∞  when using 

the new variable z:  

c z c c z c c z zM M ML ML M
b g b g b g= = = → ∞* *

0 0  (13) 

 

 The boundary conditions at x = 0, now z = 0, become  
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D
c

z
D

c

z
D

c

z
z z z

M
M

L
ML

M
Md

d

d

d

d

d

F
HG
I
KJ +

F
HG
I
KJ +

F
HG
I
KJ =

= = =0 0 0

0

0

0   (14) 

c
D

D
c

M

M

M

M0

0

0 0b g b g= δ   (15) 

 

 Equations (11)-(15) determine the unknown functions cM(z),  cML(z) and cM0 (z). 

Thus, the original system (given by eqns. (2)-(9)) has been successfully re-formulated 

using only the z variable provided that δ is kept constant (dc experiment), thus 

indicating that the spatial and time dependence of the unknowns is reduced to a 

combined dependence on x t . This reduction results in a great advantage in saving 

time and resources in the numerical computation of the solution of the system.  

 

 Another consequence of this combined dependence is the time independent 

value reached by the concentrations at the electrode surface for a given constant 

potential. In effect, as the concentrations depend only on z,  and, as z does not change 

with time for x =0, concentrations at the electrode surface cannot be dependent on time 

during a dc experiment. Then, eqn. (11) can be straightforwardly integrated leading to 

the typical erfc functional dependence for the concentration profile of M0 (see page 161 

in ref. [24]). 

 

 Moreover, the profile of cM in terms of z summarises any profile in terms of x at 

any time, i.e., any profile of the metal at any time collapses, by means of the change of 

variable,  into this unique profile cM vs. z which can be seen as the profile in terms of x 

at t = 1s. The collapse of the metal profiles (obtained via FEM calculation under limit 
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diffusion conditions) for different times and spatial positions into a unique profile is 

illustrated in Fig. 1. This correspondence of profiles also holds for any other species. 

 

Through the equilibrium relationship (2) and equation (3), cML can be written in 

terms of cM . Then, the only remaining differential equation (12) can be expressed in 

terms of only one unknown, such as cM. But, for purposes that will be seen below, it is 

convenient to consider the product K c zM b g  as the unknown function. Multiplying (12) 

by K, one obtains 

z

z
K c

K c

K c z
K c

K c

K c2 1 1
0

2

2

d

d

d

d
T,L

M
M

T,L

M
M −

+
F
HG

I
KJ + −

+
F
HG

I
KJ =

∗ ∗

ε  (16) 

The bulk boundary condition (13) and the initial condition (6) become 

K c z K c zM M
*b g = → ∞  (17) 

Recast in terms of K cM and z , the remaining boundary condition (14) becomes  

d

d
M

T,L
*

M

M

M

M

K c

z K c

K c

D

D
K c

z

b g

b gc h

b gF
HG

I
KJ =

+
+

=0
21

1 0

0
0

δ
ε π

  (18) 

where (15) has been used. 

 

Thus, the problem has been reduced to solving just the non-linear ordinary 

differential equation (16) subject to the boundary conditions (17) and (18). Once 

K c zM b g is known, any other characteristic of the system can be computed, such as the 

concentration profiles or the current. In the latter case, we write the x-gradients of cML 

and cM in terms of the z-gradients of K c zM b g , and finally obtain: 
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I t n F A D
c

x
D

c

x

n F A D
D K c

K c

K D t

K c

z
x x z

b g b gc h
= ∂

∂
F
HG
I
KJ + ∂

∂
F
HG
I
KJ

R
S|
T|

U
V|
W|

=

+
+

F
H
GG

I
K
JJ F
HG

I
KJ= =

∗

=
M

d ( )

d
M

L
ML

M
L T,L

M

M

M

0 0

2

0

1 0

  (19) 

  

One necessary condition for re-writing the differential equation in terms of just 

the new variable is that the boundary conditions cannot be time dependent (see ref. [21], 

page 38). For instance, adsorption processes at the electrode will generally prevent such 

change, one obvious exception being such a strong adsorption that the concentration of 

the adsorbate at the electrode falls to zero permanently. In the framework of the present 

work, the requirement of time independent boundary conditions means that δ  in (15) is 

kept constant along the experiment, as in dc polarography, where there is only one step 

potential applied to each drop. However, since in the NPP technique (with no 

adsorption) there is no faradaic current during the first step (0 0≤ <t t ), the initial 

uniform profile is not distorted, c x t t cM M, < = ∗
0b g , the system behaves equivalently to 

the dc experiment with just a shift in time by t0, and so the change of variable is valid. 

In other pulse polarographic techniques (such as DPP), the change of variables will be 

possible only during the first pulse. Usually this is the longest interval, lasting almost all 

drop life, so a great saving of computing time and resources will be obtained if this 

change of variables is used for the first period. Finite differences or finite element 

methods  could then be used for the rest of time.  
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4. Numerical solution 

Among the methods available to perform a numerical integration of an ODE, we 

have used a shooting method [25] to solve equation (16) with boundary conditions (17) 

and (18). 

 

The calculation starts by introducing a first trial for K cM(0), which is used to 

find, through  (18), the corresponding trial for the gradient of K cM(z) at z=0. With both 

trial values, numerical integration of (16) with a Runge-Kutta algorithm allows us to 

compute K cM(z →∞) which is compared with K cM
*  and allows us to correct the 

previous trial for K cM(0). The procedure is repeated until the required accuracy is 

obtained. 

 

As an example, an NPP wave obtained using this method is plotted in Fig. 2.  

The typical behaviour corresponding to excess of metal is observed: the first wave 

which develops around E0 corresponds to the reduction of free metal before a noticeable 

reduction of the complex (through the instantaneous dissociation assumed in eqn. (2)) 

takes place. A detailed discussion of NPP and RPP waves obtained for any ligand to 

metal ratio with the finite element method is given elsewhere [8,10]. 

 

5. Properties 

5.1 The current is cottrellian  

The values of cM and its x-gradient, at a given x, depend on t (see Fig. 1a). 

However, the value of cM and its z-gradient, at a given z, is unique (see Fig. 1b). If x = 0, 

it follows that z = 0 regardless of the time and, so, there are unique values for cM and its 
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z-gradient at z=0. Thus, equation (19) proves that the current has cottrellian behaviour 

(i.e. depends on time as t-1/2), which is equivalent to the property given in page 37 of 

reference [21].  

5.2 φ dc and φ NPP depend on K cT,M
∗  , K cT,L

∗  , ε  and δ.   

The normalised current φ [2] can be obtained dividing (19) by the current 

obtained when there is only metal[24]. We have, 

φ φ δ
δ

π δ π
δ

ε

dc NPP
d p

M

= ≡
+

=
+

+
+

F
H
GG

I
K
JJ F
HG

I
KJ∗

∗

=
1 1

1
1 0

2

0b g
b g

b g
b gc hI t

n F Ac

t

D

K c

K c

K c

K c

z
zT,M

T,L

M

T,M
*

Md ( )

d
 (20)   

 

where δ, given by equation (9), depends on the potential E applied during the pulse and 

cT,M stands for the total metal concentration c c cT,M M ML≡ + . Notice that, upon 

normalisation, the cottrellian time-dependence has cancelled out.: 

 

 Moreover, K cM(z) and its z-gradient at z=0, depend on the parameters affecting 

the differential equation (16) and its boundary conditions (17) and (18). It is clear that in 

(16) and (17), the parameters K, cT,M
∗ and cT,L

∗  do not appear separately but always as the 

products K cT,M
∗  and K cT,L

∗ . If we turn to the boundary condition (17),  putting K cM
∗  in 

terms of the products K cT,M
∗  and K cT,L

∗ : 

K c z K c z

K c K c K c K c K c

M M

T,L T,M T,L T,M T,M

b g
c h

= = → ∞

=
− − + + + − +∗ ∗ ∗ ∗ ∗

*

1 1 4

2

2  (21) 
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we see that the combined dependence on K cT,M
∗  and K cT,L

∗  also holds. Thus we can 

ensure that K cM(z) and its gradient at z=0 depend on K cT,M
∗ , K cT,L

∗ , ε and δ. And, as no 

new parameters appear in (20), we can conclude φ φ ε δdc dc T,M T,L= ∗ ∗K c K c, , ,c h   and 

φ φ ε δNPP NPP T,M T,L= ∗ ∗K c K c, , ,c h . 

5.3 Limiting NPP current 

The limiting NPP current can be deduced as a particular case of the general 

framework developed above by restricting ourselves to the case where the potential 

becomes so negative that the arrival of M to the electrode is diffusion limited 

c t t c t tM ML0 0 00 0, ,> = > =b g b g . Thus, the only difference in the solution of  (16) is the 

simplified form of the boundary condition replacing (18), which now readsK cM 0 0b g =  

and, so, the previous properties hold: 

i) The limiting current is cottrellian 

ii) φ φ εlim,NPP lim,NPP T,M T,L= ∗ ∗K c K c, ,c h . In particular, eqn. (20) becomes 

φ φ
π ε

lim, lim,NPP

T,L

T,M

Md

ddc = =
+ F

HG
I
KJ

∗

∗
=

1

0

K c

K c

K c

z
z

c h b g
 (22) 

5.4 Ilim,NPP =I lim,RPP  

The equality of the limiting NPP and RPP currents is a well known result for a 

single diffusing electroactive species (or equivalent systems such as the excess ligand 

conditions) in planar geometry [24]. But the equality might not hold in other conditions. 

For instance, it is also well known that the equality does not hold in spherical geometry 

(see [26] and references therein) or in the presence of adsorption [10,27]. 
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Now, we aim to prove the identical value of limiting RPP and NPP currents for 

the case analysed in this work: planar geometry, no adsorption and labile complexation 

with any ligand-to-metal ratio. For NPP without adsorption, the system does not evolve 

until the pulse application; so we need to consider just the second step as if it were the 

only one. The current can be written in terms of the z-gradient of M0 and, then, 

expressed in terms of the concentration of c
M0  at the electrode surface: 

I t nFAD
c

x
nFA

D

D t

c

z
nFA

D

t
c

x z

lim,NPP d M
M M

M p

M M

p
M

b g b g= −
∂
∂
F
HG
I
KJ = −

∂
∂
F
HG
I
KJ =

= =

0

0 0 0 0

0

0 0

0
π

  (23) 

because only the pulse time tp is relevant in the NPP expression (without adsorption). 

We point out that c
M0 (0) could be written as c t t

M0 0 0, >b g  which is a constant during 

the application of this step producing diffusion limited conditions. 

 

In RPP, the electrode is held at a base potential in the diffusion limited region of 

the reactant, c t tM 0 00, < =b g  and, at t = t0,  pulses are applied to reverse the 

electrochemical reaction. To measure the limiting current, Ilim,RPP, at least 2 drops are 

needed [28]. One of them, held at extremely negative potential during the drop time td , 

allows the determination of Idc. The application of the diffusion limited potential step, 

according to what we have shown in (23), yields 

I t nFA
D

t
cdc d

M

d
M

b g b g= 0

0 0
π

  (24) 

 

In another drop, to measure IRP, the first potential step is extremely negative. 

During its application (0<t<t0), the typical erfc functional dependence for cM0  holds. At 

t=t0, as we seek to measure the limiting RPP current, an extremely positive value of E 
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with respect to E0 is applied. Thus, c x t t
M0 0 0, > =b g . The linear nature of the diffusion 

eqn (5) for the product M0 allows the treatment of the second step (during the pulse time 

tp) with the superposition principle (see page 178 in ref. [24]). The corresponding 

current is 

I t nFA
D

c t t
t t

RP d
M

M
d p

b g b g= − < −
R
S|
T|

U
V|
W|

0

0 0
1 1

0π
,   (25) 

and so the limiting RPP current is 

I t I t I t nFA
D

c t t
t

lim,RPP d RP d dc d
M

M
p

b g b g b g b g= − = <0

0 0
1

0π
,  (26) 

which equals the limiting NPP current (23) when noticing that c
M0 (0, t<t0), which is 

time independent, has the same value in both experiments and arises from a diffusion 

limited step on an undisturbed bulk profile. 

 

An implication of the given equality of the limiting NPP and RPP currents is the 

cottrellian behaviour of Ilim,RPP which leads to φ lim,RPP  being dependent on K cT,M
∗ , 

K cT,L
∗  and ε,  i.e. φ φ εlim,RPP lim,,RPP T,M T,L= ∗ ∗K c K c, ,c h . 

 

As the demonstration is based on the linearity of the diffusion equation of M0 

(5), the equality Ilim,NPP =Ilim,RPP applies to any labile complexation model: 

heterogeneous, interaction between neighbouring sites, etc. 

 

We highlight that, due to the restricted impact of adsorption on RPP limiting 

currents [10], the result obtained in this section suggests that one can estimate 
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parameters of the system measuring Ilim,RPP and processing the data as if they were from 

Ilim,NPP without adsorption. 

 

6. Iso-φφφφ diagrams 

6.1 Definition 

The reduced dependence of φlim  (either in an NPP or RPP experiment) on just 3 

parameters indicates the convenience of a new kind of representation, which could be 

called an “iso-φ  diagram”, where ε is a fixed constant and level curves for φ  are 

reported in terms of the 2 remaining parameters in a contour plot. Although iso-φ 

diagrams could also be drawn with NPP currents for each fixed potential (i.e. δ) and ε, 

here we restrict ourselves to limiting currents to take advantage of the equality with 

limiting RPP currents. 

 

Fig. 3 shows an iso-φ diagram for ε=0.0685, where points corresponding to 

different couples of  [log(K cT,M
∗ ) , log(K cT,L

∗ ) ]-values with the same φ-value are 

connected building up a level or contour curve. Representations with similar axis have 

been used to study properties (such as bulk average equilibrium constants) of ligand 

mixtures (see [29] and page 215 in ref. [1] ). As ε φ≤ ≤ 1, we know that the upper 

boundary of the diagram ( cT,L
∗ → ∞  ) corresponds to the level curveφ ε= , while the 

lower and rightmost boundary of the diagram ( cT,L
∗ → 0 ) corresponds to the level 

curveφ = 1 . 

 

Published in Journal of Electroanalytical Chemistry 1999, vol 472, p 42-52 
doi:10.1016/S0022-0728(99)00259-4 reprints to galceran@quimica.udl.cat



  18 

  J  

  An iso-φ diagram gathers, for a fixed ε, all the information about the φ-values 

for any K. This information: a) has customarily been displayed as φ− cT,L
∗  plots [2] and 

b) has recently been suggested to be shown in φ- cT,M
∗  plots [4,10].  

 

a) A φ− cT,L
∗  plot corresponds to a vertical line in an iso-φ diagram, as a fixed 

amount of metal is taken. When comparing two imaginary vertical lines drawn in the 

very low cT,M
∗ region, one finds no difference in the spacing between level curves 

crossed by both vertical lines, as expected from the known result that φ− cT,L
∗  plots are 

cT,M
∗  independent in excess ligand conditions. If one of these vertical lines moves 

towards higher cT,M
∗  values, one notices a change in the spacing of the level curves, 

which indicates the unfulfilment of the excess ligand conditions. The higher cT,M
∗  (i.e. 

moving the vertical rightwards), the closer the level curves become at high enough  cT,L
∗ . 

 

b) A φ- cT,M
∗  plot [4] corresponds to a horizontal line in an iso-φ diagram,  as cT,L

∗  

is fixed. The excess ligand zone can be easily recognised at the left region of the 

diagram ( c cT,M T,L
∗ ∗<< ) where the level curves are horizontal: no dependence of the 

normalised current is noticed with changes in cT,M
∗ , as in excess conditions the well 

known expression 

φ
ε

=
+
+

∗

∗

1

1

K c

K c

T,L

T,L

 (27) 

applies. As can be seen in Fig. 3, the transition of φ from the excess ligand value given 

by (27)  to a nearly unity value is much sharper for an upper horizontal line 
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(corresponding to higher cT,L
∗ ) than for a lower one. Let us follow a horizontal line 

corresponding to an initial low concentration of cT,M
∗  which is successively increased. 

For low enough cT,M
∗  (left of the diagram) the level curves are practically flat and so our 

horizontal line simply follows the level curve: φ does not change with  cT,M
∗  because we 

are in the excess ligand region. Progressively the level curves bend upwards, this 

implying that the horizontal line is crossing level curves corresponding to higher φ 

values. The unfulfilment of excess ligand conditions leads to actual currents greater than 

those predicted by excess conditions, which can be intuitively interpreted by noticing 

that the approximation underestimates the metal concentrations along the diffusion layer 

due to an overestimation of the free ligand concentration.  

 

Let us follow a level curve starting from the left. First we find the flat region 

corresponding to ligand excess conditions. The level curve progressively is clearly seen 

to bend upwards when the amount of metal increases sufficiently. Here, excess ligand 

conditions begin to fail and each increase in cT,M
∗  must be balanced with another 

increase in cT,L
∗ in order to keep φ constant along the level curve that we are following. 

Eventually, the increases in both concentrations converge to keep a certain ratio, as can 

be seen in the upper right corner of Figs. 3 and 4: each level curve asymptotically tends 

to a straight line of unit slope (parallel to the diagonal of the diagram which is depicted 

in discontinuous line). This property is discussed in detail in sub-section 6.2. 

 

Due to the logarithmic scale of both axis, each ratio cT,M
∗ / cT,L

∗  corresponds to a 

line of unit slope (i.e. a parallel to the diagonal cT,M
∗ = cT,L

∗ ) . A point representing the 
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system moves upwards and rightwards along this line when concentrating the sample 

and downwards and leftwards when diluting.  

 

As pointed out above, there is an iso-φ diagram for each ε. Comparison of the 

diagram for ε=0.0685 ( Fig. 3)  and for ε=0.25 (Fig. 4) indicates that higher ε-values 

give rise to higher normalised currents for a given couple  [ cT,M
∗ , cT,L

∗ ] and, thus, the 

range of variation of φ is narrower although the global pattern of the level curves is the 

same.  

6.2 The limit of high stability constants 

Let us take fixed values for cT,L
∗  and cT,M

∗ . As K increases, we move upwards and 

to the right in the iso-φ diagram (see Figs. 3 and 4). The limiting behaviour in the corner 

is described by letting K tend to infinity. If cT,L
∗  ≥ cT,M

∗  all the metal is in complexed 

form and  

lim
K

c c

→∞
<∗ ∗

=
T,M T,L

φ ε    (28) 

 As said above, the level curveφ ε= corresponds to the lowest possible value in the 

diagram (and “bounds” the upper region of the iso-φ diagram) and can be seen as the 

level curve that eventually (for infinite K) tends to the diagonal of the diagram ( cT,L
∗  

= cT,M
∗ , discontinuous line in the figures). This implies that all the practical level curves 

(i.e. for φ ε> ) for high K cT,L
∗  and K cT,M

∗  values eventually lie below the diagonal 

(see the upper right region of  Fig. 4) where cT,M
∗ > cT,L

∗   
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So, in order to know which is the asymptotic limit of any level curve we must 

study the case  cT,M
∗ > cT,L

∗ . We begin by noticing that, if K tends to infinity, either cL or 

cM must vanish in order to render (through the equilibrium relationship (2)) a finite 

value for cML which is bound by the finite value cT,L
∗ . In Fig. 5 we can see the z-profiles 

of the 3 species for very high K (markers correspond to FEM simulation data). In the 

region close to the electrode, there is some ligand and no metal (since the latter is 

depleted to 0 on the electrode surface). This region ends at a normalised distance z0 

where both cL and cM tend to 0.  

 

For z<z0 , the diffusion equation (12) collapses into 

z c

z

c

z2
0

2

2

d

d

d

d
ML ML+ =ε  (29) 

which corresponds to the diffusion of just complex. The solution of (29), with the 

appropriate boundary conditions, is 

d

d
erf

e
d

d

c

z

c

z

c z z

z

z

ML ML T,M= F
HG
I
KJ

=
<∗ −

π ε
ε

ε

0

4 0

2

2 b g
 (30) 

 

Analogously, for z>z0 there is just metal diffusion, leading to 

d

d
erfc

e
d

d

c

z

c

z

c z z

z

z

M M T,M= F
HG
I
KJ

=
>∗ −

π 0

4 0

2

2 b g
 (31) 

 

The normalised limiting current can be computed from (22) and (30) as 
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φ
ε

ε

= F
HG
I
KJ

∗

∗

c

c
z

T,L

T,M erf 0

2

 (32) 

In order to find z0, we notice that the continuity of cT,M implies 

D
c

z
D

c

z
L

ML

z

M
M

z

∂
∂
F
HG
I
KJ = ∂

∂
F
HG
I
KJ− +

0 0

 (33) 

which, using (30) and (31), yields an algebraic condition for z0 : 

ε

ε

εe

z

c

c

e

z

z z− ∗

∗

−

F
HG
I
KJ

= −
F
HG

I
KJ F
HG
I
KJ

0
2

0
2

4

0

4

0

2

1

2
erf erfc

T,M

T,L

 (34) 

 

 Thus, for this case of infinite K,  we just need to solve a non-linear algebraic 

equation instead of the ordinary differential equation.  

 

We notice that z0 depends on the ratio cT,M
∗ / cT,L

∗  rather than on each separate 

value, and so (for K tending to infinity which corresponds to the upmost and rightmost 

side of the iso-φ diagram) φ φ ε= ∗ ∗,c cT,M T,Lc h . Hence, we conclude that all the level 

curves tend asymptotically to a straight line parallel to the diagonal (i.e. 

cT,M
∗ / cT,L

∗ =constant  or  log( cT,L
∗ ) = log( cT,M

∗ ) + constant ).   

 

Thus, as no information on K (except for the knowledge of being very high) 

appears on the upper right zone of the diagram, if we find our system to be there, 

dilution could prove useful to shift the system to a K-sensitive region (see page 274 in 

ref. [1]). 
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7 Determination of K from experimental normalised currents. Application 

to the Zn-PMA system  

The iso-φ diagrams allows us to suggest an easy graphical method to estimate 

the stability constant in labile metal-macromolecule complexation systems. Due to the 

choice of a logarithmic scale, an iso-φ diagram can also be used in systems where K is 

unknown; indeed, the property log log( ) logT,M T,MK c K c∗ ∗= +c h c h  implies that the pattern 

of the level curves does not change when the axis values are taken as log T,Mc
∗c h and 

log T,Lc
∗c h  instead of log T,MK c∗c h and log T,LK c∗c h . So, the only effect in changing K to 1 

is a shift of all level curves by the amount log (K) both in abscissas and ordinates. Thus, 

the following graphical method could be useful in some cases. Once ε is known, an iso-

φ diagram can be drawn. Let  φexp be the experimental φ value for a couple 

c cT,M exp T,L exp
* *, . The point with co-ordinates log , log* *c cT,M exp T,L expd i d i in the iso-φ 

diagram will usually not lie on the level curve corresponding to the experimental value 

φexp unless K = 1. To quantify the shift due to the unknown K, one can draw a straight 

line of unity slope passing through the experimental point and then determine its 

intersection with the level curve φ = φexp in the iso-φ diagram. Either the horizontal or 

the vertical distance between the experimental point and the intercept with the level 

curve provides the value of the logarithm of K. There is freedom for the election of the 

units of the concentration, which then determines the units for K. Iso-φ diagrams for any 

ε (or software necessary to generate them) are available from the authors upon request. 
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This procedure has been applied to experimental results obtained from Zn-PMA 

(polymethacrylic acid) at 0.01 M KNO3, corresponding to a titration of a solution of 

PMA with Zn, using the methodology, chemicals and apparatus of previous works [10]. 

The pH was kept close to 6 by convenient addition of 0.05M KOH solution, when 

necessary[30]. Fig. 6 shows an example of the application of this graphical method with 

the iso-φ diagram corresponding to ε = 0.06 (value given for Zn - PMA in ref. [10]). 

The experimental measurements recorded in Table 1 (marker - in Fig. 6)) exhibit a 

slight departure from the horizontality indicating the dilution effect. Positions for φ = 

0.55, 0.60, 0.65 and 0.70 (markers � in Fig. 6) have been obtained through linear 

interpolation using the closest experimental values. From each of these interpolated 

points a straight line of unity slope has been drawn. Then, the intersection with the 

corresponding iso-φ level curve has been determined (intersection points are labelled  A, 

B, C and D, respectively in Fig. 6 and in Table 2). The subtraction of the abscissas or 

the ordinates of these intersection points from the interpolated experimental points 

provides values for log (K) (which are summarised in Table 2). The average value, log 

(K/mM-1)=1.16±0.06, is in good agreement with previous results, log (K/mM-

1)=1.20±0.02, where a different procedure was employed ([10]). 

 

Instead of the graphical method (which furnishes a quick estimate of the log (K)) 

a numerical approach can be applied by fitting K in (16) so that the normalised current 

obtained with (22) (through the iterative method explained in section 4) reproduces φexp. 

By processing data contained in the 3 first columns of Table 1 (log ( cT,M
∗ ), log ( cT,L

∗ ) and 

φexp ), we obtain for each row, a log K-value. Their average value also is log (K/mM-

1)=1.16±0.06. If we compare the results of the graphical method and the numerical 

approach we can conclude that the first one is a quick and accurate method to determine 
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the K-value. Moreover, it must be pointed out that when the experimental φ-value 

increases, the iso-φ diagram warns us that the determination of the K-value becomes 

more inaccurate, because the iso-φ curve tends to be almost diagonal. In this case a 

small error in the location of the interpolated experimental iso-φ value leads to a far 

away intersection point due to the small difference in the slope of both intersecting 

lines: the target level curve and the line of unity slope passing through the experimental 

point log , log* *c cT,M T,Lc h c h . So this graphical method could also be useful for the 

experimental design in order to achieve good sensibility for K.  

Conclusions   

It has been shown that the spatial and time dependence of the concentration 

profiles in a dc experiment of an electrochemical reversible system with labile 

complexation for any ligand to metal ratio reduce to just a combined dependence in 

terms of x t  when homogeneous initial conditions and semi-infinite diffusion hold. 

 

This combined dependence enables the use of a change of variables which 

transforms the partial differential equation that models the behaviour of the system into 

an ordinary differential equation allowing a great save of computational time in the 

calculation of the current. Standard numerical methods can then be used to compute the 

concentration profiles and the current, or alternatively, to fit the stability constant K 

from an experimental φ value. 

 

Some general properties of the dc currents have also been pointed out: 

− cottrellian (t�1/2) time-dependence of the current. 
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− dependence of the current on just 4 parameters for a fixed time: K cT,M
∗ , K cT,L

∗ , 

D DL M  and E. 

− time independence of the concentrations at the electrode surface. 

 

Special attention has been devoted to the limiting currents. They depend, for a fixed 

time, on just  K cT,M
∗ , K cT,L

∗ and ε. This suggests the interest of a so-called iso-φ diagram 

(level curves for constant φ-values are plotted in terms of K cT,M
∗  and K cT,L

∗ ) which 

gathers all the information about the normalised limiting currents of the system 

(characterised by a given ε). 

 

A graphical procedure to obtain the stability constant from an experimental 

measurement of the normalised (limiting) current for any ligand to metal ratio using the 

corresponding iso-φ diagram is suggested. Another practical application of this diagram 

is the assessment of the accuracy of the determination of K from a given couple of total 

ligand and metal concentrations. Illustration of this procedure for the Zn-PMA 

voltammetric currents is reported. The K-value obtained is in good agreement with 

values previously published. 

 

All the properties above mentioned also hold for an NPP experiment without 

adsorption, since it reduces to a dc experiment lasting  the pulse time (tp). The equality 

Ilim,NPP =Ilim,RPP has been proved for any ligand to metal ratio under planar geometry and 

no adsorption, and, thus, the properties also apply for Ilim,RPP. This result and the 

reduced impact of adsorption in limiting RPP currents suggest the use of RPP in cases 

where adsorption is present and allow the use of simpler expressions (derived for NPP 
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without adsorption) in the interpretation of the limiting RPP currents. The change of 

variables could also prove useful in the computation of the current in any impulsional 

technique, since it can be used during the first pulse time which usually corresponds to 

the longest interval.  
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CAPTIONS FOR FIGURES  

 Fig.  1  Collapse of the profiles of metal concentration. a) profiles of normalised metal 

concentration at different times. b) the same normalised metal concentrations of a) but 

in terms of z.  Parameters are: K=105 m3 mol-1; D
M0 =2�10-9 m2 s-1; D

M
=7.3�10-10 

m2 s-1; D
ML

=D
L
=5�10-11 m2 s-1; c

T,M

* =10 mol m3; c
T,L

* = 8 mol m3; A=5.2�10-7 m2; 

n=2; T=298.15 K; t0=0.95 s; td=1 s; t= (◆) 0.02 s, (▲) 0.06 s, (�) 0.1 s, (+) 0.14 s, (−) 

0.18 s, (◊) 0.2  s. 

Fig. 2  NPP wave obtained through FEM calculation (markers) and through the change 

of variable combined with the shooting method (solid line). Parameters as in Fig 1. 

Fig. 3 Iso-φ diagram obtained with ε=0.0685. The additional discontinuous line depicts 

the diagonal of the diagram ( cT,L
∗  = cT,M

∗ ). 

Fig. 4  Iso-φ diagram obtained with ε=0.25.  

Fig. 5   Concentration profiles of  metal (marker Ý), complex (⇌) and ligand (�) in 

terms of z as obtained from finite element simulation for parameters given in fig 1 at 

t=0.2 s. Depicted in solid lines, the same profiles from equations given in section 6.2 

(arising from taking K → ∞) . 

Fig. 6 Graphical estimation of the stability constant with an iso-φ diagram from 

experimental data for Zn-PMA. The diagram has been drawn with ε=0.06. Marker - 

stands for the experimental points and marker (�) stands for the interpolated points of φ. 

The intersection between each discontinuous line (starting from the interpolated point 

and with unity slope) and the level curve having the same φ value as the interpolated 

point is shown with marker (Ý) and a capital letter (A, B, C or D).  
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Tables 

Table 1 Experimental φ values and calculated stability constants obtained from RPP titrations 

for the Zn(II)/PMA system.a 

 

log mMT,Mc
∗c h  log mMT,Lc

∗c h  φexp log mMK
−1d i b 

 

-1.706 -0.603 0.519 1.17 

-1.406 -0.604 0.543 1.12 

-1.231 -0.605 0.554 1.11 

-1.107 -0.606 0.551 1.14 

-1.011 -0.607 0.555 1.16 

-0.933 -0.608 0.563 1.16 

-0.867 -0.609 0.569 1.17 

-0.810 -0.610 0.562 1.21 

-0.715 -0.611 0.589 1.19 

-0.638 -0.613 0.586 1.26 

-0.572 -0.615 0.624 1.20 

-0.516 -0.617 0.637 1.22 

-0.467 -0.619 0.652 1.23 

-0.423 -0.620 0.697 1.11 

-0.383 -0.622 0.714 1.09 

-0.347 -0.624 0.726 1.10 

-0.314 -0.626 0.743 1.07 
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a Parameters used are: td = 0.8 s, tp = 50 ms, A � 0.52 � 10-6 m2, pH = 6 (adjusted for 

each titration point using 0.05 M KOH solution), ionic strength (KNO3) = 0.01 M, 

T=25ºC. 

b Fitted K-values from equations (16) and (22), as explained in section 4.  

 

Table 2  

Estimated log(K) values (graphical method, see Fig 6), using data given in table 1. 

 

 

 

φ  

coordinates 

log mM ,log mMT,M T,Lc c∗ ∗c h c h  

of the interpolated point 

coordinates 

log mM ,log mMT,M T,Lc c∗ ∗c h c h  

of the intersection point 

 

 

log(K / mM-1) 

    

0.55           [-1.292, -0.604]           A = [-0.18, 0.51]  1.11 

0.60           [-0.614, -0.614]           B = [0.63, 0.63]  1.24 

0.65           [-0.474, -0.618]           C = [0.76, 0.62]  1.24 

0.70           [-0.416, -0.621]           D = [0.69, 0.48]  1.11 
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