
Universitat de Lleida
Escola Politècnica Superior

Departament d’Informàtica i Enginyeria Industrial

Generation and management of multilingual ontologies

Sergi Vila Almenara

Director: Roberto Garćıa González

Treball Final de Grau, Juny 2015

Abstract

The main objective of this project is facilitating and improving the quality of automatic translation

based on online translators. The process is facilitated by providing an unified programming interface

that hides the subtleties of each individual translator Web service. The API can also be reached

through a command-line user interface. And the quality of the results is improved because each

translation can be forwarded to the set of integrated translators, the individual results are then

aggregated and then analyzed to automatically select or propose the best candidate translation, for

instance favoring the one with most votes.

The result is a tool, called MultiTranslator, implemented as an independent Python package. This

package contains a module (Transfusion) that offers 14 fully implemented translator services, 7 data

writers to export and display the translations, a corrector to remove and fix variations of translations

to obtain more uniform aggregated results. MultiTranslator is also available through three command-

line applications: Transfuse, to translate terms and export translations easily, Grouper, to generate

three different types of reports to simplify and share high quantity translations, and Validator, to

obtain analysis about the success rate of the translated terms and the accuracy of the translators.

Multitranslator, is integrated in a larger project called NewsdeskTranslations. This project is based

on the recollection of semantic data stored in a remote database using SPARQL queries according

to the requests done by the users using a Django application. This information is related to the

field of plant pests and other plant health threats, also including related terms like plant parts,

animals or verbs. NewsdeskTranslations aim is to facilitate the enrichment of the semantic dataset

to facilitate media monitoring. The tool facilitates generating and validating terms derivations (like

verb forms, plurals,...), retrieving related terms and translations from external semantic datasets and

also integrated MultiTranslator to translate from English to 9 languages all the selected terms.

NewsdeskTranslations integrated all these techniques to collect variations and translations of the terms

in the semantic dataset. Then, after all this data is obtained and stored, the users can interactively

validate the correctness of these information (called labels) using a Web-based user interface, which

provides functionalities like accepting or rejecting an entire set of labels, importing and exporting sets

of labels to validate them locally, a search bar, filters, sorted columns and a score system to decide

more easily which labels are the best candidates for acceptance.

i

ii

Acknowledgements

To my family and friends for supporting me

To Roberto and Josep Maria for starting this project and trusting me to continue it

To Juan Manuel for helping me with the documentation and the last details

To Jordi, David and Marc for being my coworkers during these last months

To Josep Maria Ribó for having been one of the best professors of the UdL

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Motivation and Objectives . 2

1.2 Timing . 3

1.2.1 Distribution of the project . 3

1.2.2 Statistics . 4

1.3 Costs . 7

2 State of the art 9

2.1 Introduction . 9

2.2 Semantic web . 9

2.2.1 Terminology . 10

2.2.2 Input of the data . 14

2.2.3 Output formats . 17

2.2.4 Synonyms and translations . 21

2.3 Natural language derivation and word identification 22

v

vi CONTENTS

2.3.1 NLTK . 22

2.3.2 WordNet . 23

2.3.3 Dictionaries . 23

2.3.4 Implementation decision . 23

2.4 Translators . 24

2.4.1 History . 24

2.4.2 Translation tools . 25

2.4.3 Similar applications . 25

3 Development 27

3.1 Introduction . 27

3.2 Multitranslator . 27

3.2.1 Introduction . 27

3.2.2 Requeriments . 29

3.2.3 Installation Requirements . 29

3.2.4 Documentation . 31

3.2.5 Overview . 31

3.2.6 Translation utils . 32

3.2.7 Translator . 32

3.2.8 Query wrapper . 33

3.2.9 Transfusion . 34

3.2.10 Corrector . 37

3.2.11 Filters . 38

3.2.12 Writers . 40

3.2.13 Transfuse . 42

3.2.14 Grouper . 45

3.2.15 Validator . 51

3.2.16 Practical case . 55

3.2.17 Translators . 58

3.3 NewsdeskTranslations . 96

3.3.1 Introduction . 96

3.3.2 Requirements . 97

3.3.3 Ontology . 97

3.3.4 Front-end . 98

3.3.5 Back-end . 109

3.3.6 Practical case . 116

4 Conclusion 120

4.1 Future Work . 120

4.1.1 MultiTranslator . 120

4.1.2 NewsdesksTranslations . 120

4.2 Conclusions . 121

vii

viii

List of Tables

3.1 Grouper - Individual term report example . 47

3.2 Grouper - Translations report example . 48

3.3 Grouper - Language reports example . 48

3.4 Validator - Report by translator example without details 53

3.5 Validator Report by translator with details . 53

3.6 Validator - Report by term without details . 54

3.7 Validator - Report by term with details . 54

3.8 Google input . 60

3.9 Bing input . 62

3.10 SDL input . 66

3.11 MyMemory input . 68

3.12 MyMemory key comparison . 72

3.13 WorldLingo input . 73

3.14 OneHourTranslation input . 74

3.15 Yandex input . 76

3.16 Yandex Dictionary input . 78

3.17 Syslang input . 82

ix

3.18 Hablaa input . 83

3.19 Glosbe input . 86

3.20 iTranslate4 input . 90

3.21 Dict.cc input . 92

3.22 Baidu input . 94

x

List of Figures

1.1 Initial Gantt chart temporalization . 3

1.2 Real Gantt chart temporalization . 4

1.3 Commits history . 4

1.4 Multitranslator commits . 5

1.5 Multitranslator workweek . 5

1.6 NewsdeskTranslations commits . 6

1.7 NewsdeskTranslations workweek . 6

1.8 NewsdeskTranslations initial state . 7

2.1 Translations ontology . 12

2.2 Tim Berners-Lee Wikipedia information . 15

2.3 HTML SPARQL output . 18

2.4 CSV example . 21

3.1 Projects overview . 28

3.2 Translators accuracy . 57

3.3 Translators accuracy . 58

3.4 Available languages for each translator . 59

xi

3.5 Plant pest ontology . 98

3.6 Original website . 99

3.7 New website design . 100

3.8 Translate sections . 101

3.9 Progress bar waiting . 101

3.10 Progress bar advancing . 102

3.11 Progress bar advancing . 102

3.12 Models administration . 102

3.13 Models administration . 103

3.14 Custom actions . 104

3.15 Export file dialog . 105

3.16 Exported file . 105

3.17 Upload file page . 106

3.18 Edit label page . 107

3.19 Sources page . 108

3.20 Score update page . 108

3.21 Insect from the Cicadellidae family . 116

3.22 Affected olive tree with Xylella Fastidiosa . 117

xii

Chapter 1

Introduction

Some decades ago the information technologies, like TV and radio, could alert about the diseases

and status of the fields and the current diseases affecting these, but these news weren’t related, every

location was noticed about its own problems. But now, with Internet on our side, generating millions

of breaking news every day around the world about anything aspect of our life, this data can be found

using the correct tools to find and analyze it, but currently the problem is the complex management

of this information, it is virtually untreatable.

Nowadays some organizations are taking care about the preservation of the Nature and the environ-

ment, helping the people to prevent imminent pests and diseases, one of these organizations started

a new project exploiting the capacities of Medisys, an automatic system that recollects news about

human, animal and plant diseases, chemical, biological, radiological and nuclear threats, and food and

feed contaminations.

This project, currently named NewsdeskTranslations, was started by Roberto, my TFG’s tutor, and

Josep Maria, among others professors and professionals. The development of this tool will take more

than two years, so my job comprises specific goals according with the temporalization. In this project

was developed a Django application to obtain related terms associated with a list of pest available in

a remote database accessible thought SPARQL queries. After the data collection, it is validated by

the users and sent again to the remote database, the final objective of the project is the use of these

labels to create word filters for an external tool, that in this case, it is used to detect emerging pests.

In addition, the main page where the users request the pest information has undergone radical changes,

with a complete redesign and implementing some features for a more comfortable use.

1

2 Chapter 1. Introduction

Some names of technologies used are omitted to preserve this private data, so some parts of the project

are simplified.

After the investigations of the current available technologies, a Python module to perform translations

was made, MultiTranslator, including useful command-line applications to translate and store terms,

get the best translations based on criteria and verify the accuracy of the translators and the success

rate of the translated terms.

1.1 Motivation and Objectives

The idea of using the chain of technologies present in this project, being this the intermediate gear of

it for a bigger cause was one of the first motivations.

Also the Python language was a plus, during the degree some professors motivated us to use this

language for its simplicity and fast development, I feel comfortable working with it, and new knowledge

that I never learn before has been obtained here. Django is another technology known by me, almost

the basic concepts, so I could ensure that the learning of new technologies wouldn’t slow down too

much the development. One of my fears was the web development, but as you will see at the end of

this document, finally I have learn the necessary concepts to create a better tool.

Finally, the dedication and explanations of Roberto and Josep Maria finally convinced my to accept

the project, knowing beforehand the tasks (and problems) that I faced.

Initially the objectives were defined as guidelines, the course of the project could derive in another

ways depending on the current state of the art, but ever taking in account the next main objectives:

• Continue the development of the project, including new features both on the generation and in

the management of labels.

• Do research about the existing translators on the web, tools to derive words and new ways to

obtain information using the Semantic Web.

• Integrate the obtained tools in the project.

• Verify the correctness of these tools.

• Implement new features to supply new discovered needs during the development.

1.2. Timing 3

1.2 Timing

The Final Degree Project has a duration of 375 hours split in 4 months, that is, approximately 23

hours per week, so to reach these amount of hours I decided 4 hours per day is fine, the last 3 hours

were distributed at the weekends and periods when I hadn’t class work. Obviously, during some

periods I worked more and others less, but in general, they were quite balanced.

My implication in the project officially started on February 16, some weeks before I had access to the

project input materials and I began to collect and study them and decide what, when and how the

identified requirements and tasks should be completed. The project finished on June 19, when this

document was printed and submitted to the University, only pending it defense.

1.2.1 Distribution of the project

According to the main objectives, a general distribution of tasks and their timings was done according

with the temporalization, the definitions of the tasks are enough general to decide which technologies

will be used after the initial investigations.

First there is a simple planning of the first ideas of the project:

Figure 1.1: Initial Gantt chart temporalization

And then the final planning done showed in the figure 1.2

As it can be seen, the research concluded with the implementation of the MultiTranslator project,

also, the design of the NewsdeskTranslations is not temporalized, but the deadlines allowed the study

of the necessary technologies to complete this task.

4 Chapter 1. Introduction

Figure 1.2: Real Gantt chart temporalization

1.2.2 Statistics

Seeing the distribution of project commits in GitHub, we can take an approach about the distribution

of time in both projects. It is important to notice that GitHub only computes commits, not the amount

of work behind each commit. It may occur that one feature takes one day of work and 5 commits

(because the code needs a lot of improvements) while another requires a couple of days but only one

commit is done, as only finished features were committed. The next images shows the implication in

the project over time.

The columns are the days of the weeks starting by Sunday, the most of the days I made commits

during the work days.

Figure 1.3: Commits history

The multitranslator project has the next commits, additions and deletions of lines:

1.2. Timing 5

Figure 1.4: Multitranslator commits

Figure 1.5: Multitranslator workweek

And the NewsdeskTranslations project:

6 Chapter 1. Introduction

Figure 1.6: NewsdeskTranslations commits

Figure 1.7: NewsdeskTranslations workweek

Notice that the NewsdeskTranslations project starts with this number of lines:

1.3. Costs 7

Figure 1.8: NewsdeskTranslations initial state

1.3 Costs

This project is all-based on the creation of new software, hence there isn’t any cost of material, nor

software licenses. But indirectly I used products and I had a workplace at the GRIHO laboratory of

the Universitat de Lleida.

The tools used for developing were my personal laptop and its accessories, no additional hardware was

required.

Most of the programs used are free, had free plans or a demo period, like Google Chrome, LibreOffice

Calc, SourceTree, SublimeText or VirtualBox, including the PyCharm and Github student licenses.

Others are not free, but I had these before the project started, like Windows 8.1 and Microsoft Word.

For now the hardware and the software are covered, no additional spends are required, but any

software development has another important cost, the programmers and their salary. Looking the

labor agreement at the Bolet́ın Oficial del Estado1 we can find the salary for a junior programmer,

that is fixed in 13.634,88 euros per year and 40 hours per week, but remember the development lasted

4 months and every week I work 23 hours on average. So we need to calculate the equivalent salary

for this project:

13634, 88 euros ∗ 4 months

12 months
∗ 23 hours

40 hours
= 2613, 352 euros

So the final cost of the project is 2613 euros.

If this was a real budget, this cost may vary if some considerations are taken, first, if additional fee

licenses are required, part of the cost could be assumed by the client, also including the amortization of

1https://www.boe.es/diario_boe/txt.php?id=BOE-A-2009-5688

https://www.boe.es/diario_boe/txt.php?id=BOE-A-2009-5688
https://www.boe.es/diario_boe/txt.php?id=BOE-A-2009-5688

8 Chapter 1. Introduction

the hardware, and second, the client can assume that some technologies are known by the developers,

in this project most of them are known, like Python and Django, but others not, including JavaScript

and web design, so these last extra technologies are not assumed by the client.

Chapter 2

State of the art

2.1 Introduction

Before the development of the applications, some investigations were done to enter to the fields of the

semantic web, word derivation and translations to decide which parts of the project finally can be

implemented.

2.2 Semantic web

We would think semantic web is a trendy term that is living a great expansion due to the new

technologies based in the Web 3.0. But actually it was the original idea of Tim Berners-Lee, it was his

first attempt to develop an interconnected network where all the data could be identified and related,

which would help the machines to understand human concepts, providing a new way to manipulate

the massive information available. This project failed and became the hyperlinked net of HTML pages

that forms the World Wide Web, but for some years, this initiative returns, extending and enriching

the metadata of the existing pages to develop new technologies to access the information contained in

these.

9

10 Chapter 2. State of the art

2.2.1 Terminology

Semantic web is composed by acronyms, lots of them, that describe standards and technologies, and

the combination of these the objectives of the original concept of the semantic web is reached and

expanded without limitations.

URI

An Universal Resource Identifier is an URL that identifies one, and only one, resource. The fact they

are URL doesn’t mean that can be addressed as a normal webpage, so not all the URIs has a visual

representation if the domain doesn’t support it. Two or more different resources can have the same

name, for example, names of people, so if we search about Tim Berners and appears two different

URIs, that is because one is the creator of WWW and the other is a completely different person,

hence, the URIs must be different. Some ontologies assign easy names like Tim Berners(Professor) or

Tim Berners(Actor) to identify and distinguish the resources, but others use random combinations of

characters and numbers or UUID.

RDF

The Resource Description Framework is a standardized markup language based on triplets emerged

from the Meta Content Framework (MCF), a system to describe and organize web content, and the

XML format. A triplet is composed of three elements, all of them URIs:

• Subject: It represents a concept for the humans, can be everything you can imagine, but only

represents the idea, not a particular aspect of this.

• Property: The point of connection between the subject and the object.

• Object: Another subject if the property is a connection or a final leaf (called literal) if it is an

attribute like text, numbers, coordinates, images, dates.

RDFs

With RDF we can give meaning, characterize and relate concepts, but all of these are independent

between them, so a new standard extension for RDF was published by the W3C in 1998, the RDF

2.2. Semantic web 11

Schema. The main features of this standard is the possibility to extend a resource from a class,

providing all the properties of the base class and creating a better grouping of concepts, also this

helps at the time of defining ontologies and knowing which properties have a resource of some class,

for example, if we are talking about a musician, it has information like music genre, played instrument,

band, albums, singles, tours, but not only these type of properties, a musician is a person, so after

some extends like Musician → Artist → Professional → Person → Human → Animal → Thing, all

the properties of the superclass also are inherited (name, height, birth, artistic name, feeding type,

kind, location).

RDFa

The RDF information not only needs to be created and processed following the standardized markup

languages, we can exploit the possibility of ”hacking” the HTML labels and add semantic data on

plain HTML code of a normal webpage, and combining with the described RDFs classes, a chunk of

code can be automatically processed and understood, enabling new possibilities over searches, filtering

better the data and thus creating an hemeroteca of own content.

The site schema.org provides a large list of classes and properties to use inside webpages about prac-

tically all the concepts of the real world.

OWL

In the RDFs definition are introduced the ontologies, an ontology is a vocabulary over a domain that

defines the entities and relationships between them, providing meaning understood by a machine.

The Web Ontology Language is a standard defined by the W3C that extends the possibilities of RDFs,

if with RDFs we can say that the classes Dog and Cat are subclasses of Animal, with OWL we can add

that both resources are disjoint, that is, OWL permits the addition of metaproperties on the entities

and properties. These extra properties are helpful at the time of merging equivalent resources from

different databases and ontologies, converging into the same resource. For example, if a database is

focused on animals’ scientific names an another centered on animals’ locations, if both databases use

different nomenclatures for the classes but we are able to found a relation between them, finally we

will get an ontology with all the data.

A famous and used ontology is FOAF (Fiend of a Friend), it describe the relations of social networks.

12 Chapter 2. State of the art

Translations ontology

To understand, complement and relate the developed translation tool with the Semantic Web project

was created an ontology about translations, modeling the classes involved in the project and their

relations.

Figure 2.1: Translations ontology

• A Language has a name (English) and a code (en).

• A Language pair is a combination of two Language entities (to and from, English and Spanish),

and also has an id (en-es).

• A Term is a concept of our reality, name can be a single word (hello), a combination (good bye)

or a phrase (change color), in short, the text that is translated. A term is displayed in a specific

Language.

• A Translator has a name (Google) to identify it and the language pairs that it supports.

• A translation is created by a Translator (the author), has a source term (from) and its translation

(to), the languages of the terms encodes an equivalent language pair.

SPARQL

The SPARQL Protocol and RDF Query Language is the query language used to retrieve information

from Semantic Web databases, even allowing the creation and update of content. Tim Berners-Lee

2.2. Semantic web 13

did a comparison with relational databases to understand the importance of SPARQL:

”Trying to use the Semantic Web without SPARQL is like trying to use a relational database without

SQL.”

Parts of a query

Prefixes

All the information which is not a literal is a resource, so all the properties, classes and other resources

are URIs, in order to facilitate the comprehension of the queries and to shorten these, at the start of

the query, is very helpful first define the root of the URIs, called namespaces.

Select

This is the information that will be retrieved, like an SQL query. All the variables must start with

an interrogation. The action DISTINCT is recommended to avoid duplicated information. It has the

next structure:

SELECT [DISTINCT] ?<variable1> ?<variable2> [...]

From

In most of the cases this is not necessary, but if we need to work with complex queries that involves

specific resources or databases, a set of queries only be directed to a group of resources, and others to

another, so using FROM and FROM NAMED this issue can be solved.

Where

Here go the imposed restrictions over a domain of data to find the requested information. The

instructions are wrote using the triplets’ syntax:

?<variable> <property> [literal | ?<variable> | <URI>]

The restrictions are wrote following the next format:

?object foaf:name ?name

For multiple restrictions (the most common case), all the instructions must end with a dot except the

last. If a left variable is used more than once, a semicolon at the end of the line avoids the repetition

14 Chapter 2. State of the art

of this variable, only indicating the property and the other resource or literal.

Additionally the action FILTER can be used for boolean conditions about the used variables.

Options

Actions inherited from SQL like ORDER BY, LIMIT, OFFSET, UNION can be used with the same

effects as this.

Endpoints

SPARQL it’s only the language used for the queries, standardizing these for all the databases, but it

is not enough, services called endpoints get the queries to return the results, normally every database

based on an ontology has its own endpoint, because it is who has direct access to the data, that is why

we don’t need to indicate the used graph, because by default, the endpoint uses itself. Furthermore,

some endpoints has the capability to combine other endpoints and databases to retrieve data for all

the supported sites. At last, some endpoints need authentication to manage the number of queries

and to avoid the abuse of the service.

2.2.2 Input of the data

There are many ways to add or enrich resources using automatic processing, interactive user interfaces

and existing databases. The preferred system is the content managed by people, because one of the

problems found with automatic parsing is the inconsistency of the data, that is, use of different labels

for the same concept, duplicated properties with different content, lack of content for an specific scope,

incompatibilities between ontologies... All these problems can be solved if the person responsible of

a content also adds the appropriate tags if for example is a Wikipedia article, or checks periodically

one by one the properties to ensure high-quality resources.

DBPedia

It is a project created in 2007 to extract content from Wikipedia and adapt it as linked data. Currently

some important Wikipedias have its equivalent DBPedia, these are independent of each other (but

relatively interconnected) with specific tags and content. Obviously, the more pages has the more

content has, so in this case, the English Wikipedia/DBpedia is which has more entries.

2.2. Semantic web 15

There is an example of how work it:

Some of the content from Wikipedia is formatted using templates, there are a large number of template

for general information like persons, spices, music, films and sport competitions. This is the personal

information template of Tim Berners-Lee:

Figure 2.2: Tim Berners-Lee Wikipedia information

There is basic information that more or less every noted person has. This information is typed and

when the collector of data gets this page, it reads the key-value data (could be RDFa) and adds triplets

of these resources.

Our next task is to obtain the same resource from DBPedia, so we are going to do a query using

SNORQL1:

SELECT ?name ?person

WHERE {

?person a <http :// dbpedia.org/ontology/Person > .

?person foaf:name "Tim Berners -Lee"@en .

?person foaf:name ?name

}

Listing 2.1: SPARQL query

1http://dbpedia.org/snorql/

http://dbpedia.org/snorql/
http://dbpedia.org/snorql/

16 Chapter 2. State of the art

Notice that this query is very specific, the category Person is known, the name is exactly this and the

@en suffix is declared. From my experience, this isn’t a query about unknown information, so a more

general (and costly) query is the next:

SELECT ?name ?person

WHERE {

?person foaf:name ?name .

FILTER regex (?name , "Tim Berners ")

}

Listing 2.2: SPARQL query

We search all the people whose name match Tim Berners.

GeoNames

It is a geographical database with over 9 million unique resources catalogued into 645 categories (cities,

rivers, shops, buildings, geographical and so on). The resources come from the local databases of each

country in the world, for example, in Spain the two organizations that provide data are the Instituto

Nacional de Estad́ıstica and the Instituto Geográfico Nacional. Users can edit and complement all

the information using a friendly interface based on Google Maps, but the most powerful tool is the

possibility to make queries using a SPARQL endpoint with its own ontology and namespaces not only

about with specific fields matching, but also proximity to coordinates or delimited areas, the own

site provides GeoSPARQL with examples to learn. But another excellent feature is that if a resource

is linked to a Wikipedia article, this also will be linked to DBPedia, so this is a good example how

different databases finally will be connected from a common URL.

MusicBrainz

Probably the biggest database about music artists and their songs. It is maintained by the non-profit

organization MetaBrainz. Everyone can add or edit data following strict guidelines that finally is

automatically dumped as RDF. An additional service based on fingerprints allows the possibility to

compare songs using unique identifiers, the current used technologies are MusicDNS and Chromaprint.

2.2. Semantic web 17

Government open data

Since the last years the transparency of the public administrations have offered to the citizens data

about their country. Most of the data are statistical tables about a specific scope, like the numbers

of births and deaths along the years, population of the cities and the economic sector rates for each

territory, but also demographic, social and economic information like the streets and public buildings

(hospitals, schools, police stations) and services (parking lots, taxis, sports facilities) of the cities and

the management of public money.

Normally every city council publish its own data and other initiatives collect it. The transparency site

of Gijón2 is a good example of a city council compromised with open data, with updated documents,

many formats and also provides an SPARQL endpoint for querying.

A problem detected about this type of information is the facility to being deprecated after few months.

2.2.3 Output formats

When a SPARQL query is made, the server and the user must agree with a specific format for the

future modeling and manipulation of the data, it can be RDF/XML or equivalent, but the most

common formats are the next.

HTML formatting

Normally SPARQL endpoints or semantic databases have the capacity to show the linked information

of a resource as a normal page only reaching the first related data. It is useful to see the fields that

have a resource, to jump to other linked resources or properties, or to obtain the same resource in

other semantic databases. A big deal of semantic web is the high number of properties, so when we

make queries, if we want a nice performance and filtering, we must provide specific characteristics to

find the requested resources. The next example shows the first ten rivers in United States starting

with A:

2https://transparencia.gijon.es/

https://transparencia.gijon.es/
https://transparencia.gijon.es/

18 Chapter 2. State of the art

Figure 2.3: HTML SPARQL output

XML

Called eXtensible Markup Language, it is a markup (that is, based on labels) language for the creation

of data structures similarly to the HTML’s labels. One of its essential features is that is very readable

by humans due to the tree structure. Some web services like feed readers and applications that work

with graphs use XML to store the data because it really be easy to treat tree structures.

<?xml version="1.0" encoding="UTF-8"?>

<user>

<id>1835</id>

<name>James</name>

<surname>Cook</surname>

<birth>

<day>6</day>

<month>3</month>

<year>1980</year>

</birth>

<location>

<city>Lleida</city>

<region>Catalonia</region>

<country>Spain</country>

</location>

<friends>

<id>7636</id>

2.2. Semantic web 19

<id>1284</id>

<id>5334</id>

</friends>

</user>

The first line is recommended to avoid problems about the version and the encoding. Currently there is

only the initial version 1.0, so there aren’t doubts about it, but the character codification is important

if a service work with different languages.

JSON

The JavaScript Object Notation, as the name suggests, has the syntax of a Javascript object, that is,

a tree of key-value pairs where the keys are plain text and the values can be numbers, text, boolean,

arrays or another JSON objects (subtrees). The Python representation for dictionaries is equivalent

to JSON, so it is a good and fast system to serialize in both sides. The codification can’t be declared

like XML, the service must provide a field with this data. The example is the same as the XML to

show the equivalences between them.

{

"id": 1835,

"name": "James",

"surname": "Cook",

"birth": {

"day": 6,

"month": 3,

"year": 1980

},

"location": {

"city": "Lleida",

"region": "Catalonia",

"country": "Spain"

},

"friends":

20 Chapter 2. State of the art

[

{"id": 7636},

{"id": 1284},

{"id": 5334}

]

}

There exist sites to convert XML to JSON and reverse like CodeBeauty3 and FreeFormatter4.

CSV

The Comma Separated Values format offers a spreadsheet formatting where every text between com-

mas fills one cell, maintaining the original structure of the plain text. This format has some limitations

with texts that contains commas (phrases, directions, list of items), so there are alternative charac-

ter separators to extend its capabilities like tabulations (TSV) and semicolons (the most common).

Typically these type of files are imported with spreadsheet editors like Open/LibreOffice Calc and

Microsoft Excel, where are configured the encoding and the character separator.

The next example shows how is encoded a receipt:

Product,Name,No,Price

V-001,Potatoes,4,1.15

V-050,Salad,1,0.85

G-361,Olives,4,0.35

S-388,Bread,2,0.35

L-117,Water,3,0.45

M-343,Cereals,4,2.3

Notice that the decimal separator is a dot, if we use the comma, the decimal part will be next to

the integer part, that is tabulations or semicolons are better and avoid problems, also can be used

simple or double quotes to group text that contains commas, but if there are quotes inside the problem

continues being the same.

And this is how is displayed in Excel:

3http://codebeautify.org/jsonviewer
4http://www.freeformatter.com/xml-to-json-converter.html

http://codebeautify.org/jsonviewer
http://www.freeformatter.com/xml-to-json-converter.html
http://codebeautify.org/jsonviewer
http://www.freeformatter.com/xml-to-json-converter.html

2.2. Semantic web 21

Figure 2.4: CSV example

2.2.4 Synonyms and translations

From DBPedia we have the capacity to obtain certified synonyms and translations using some prop-

erties, not all the resources have all of this, but if it has almost one, we will receive a valid term.

• rdfs:label

• foaf:name

• dbpprop:wikt

• http://es.dbpedia.org/property/name

• prop-<language code>:wiktionary

As a normal user, when you want to consult an article from Wikipedia in another language, you change

it using the list of languages in the margin of the page, obtaining the same resource from another

Wikipedia version.

The main idea is the same, using the English DBPedia to ’jump’ to the other DBPedias in other

languages. With the property owl:sameAs we obtain the list of equivalent terms, so we need to

explore these sites and try to extract the values of the commented properties.

After some investigations and evaluating the time to found an heuristic or decision system to obtain

valid these synonyms and translations finally this idea was discarded, the range of properties to obtain

the correct translations vary a lot depending on the term, obtaining unclassified data in the most of

the cases, and even totally incorrect and misplaced information. Also, the current disaggregation of

semantic databases complicates the matter, for each one must be implemented a specific action plan

studying their own particular properties.

The main problems to solve would be:

22 Chapter 2. State of the art

1. Find the terms in the semantic web database and certify really this is the wanted data.

2. Use the available properties of the found resources to explore related terms and translations.

An easy and fast solution could be the indiscriminate addition of all the collected data, without taking

care if it is valid or not, but it would go against the ideal to find a system to validate only the required

data.

A more careful option is limiting the treated properties, using only which obtain a higher rate of

success in most of the cases. For example, a combination of ”sameAs” to obtain related terms with

”foaf:name” to finally obtain the name.

In conclusion, the current semantic web databases have the enough issues that difficult exceedingly

the recollection of the required data, without guaranties that finally they can be solved.

2.3 Natural language derivation and word identification

One of the ways to obtain information about words is the use of lexical and syntactic libraries with

extend number of dictionaries, corpus and thesaurus to analyze the structure of sentences. The main

objective for our goal is the derivation of the original words to obtain alternative forms of the same

lexema, that is the root of a set of very related terms, for example verb derivations: jump, jumping

and jumped. Another important goal is the search of synonyms to obtain additional words.

NewsdeskTranslations currently uses NLTK and WordNet to obtain the plural, the lexema and alter-

native forms for the verbs, so this investigation doesn’t start with nothing.

2.3.1 NLTK

The Natural Language ToolKit5 is a Python library that provides complex analysis of texts, including

parsing of words, word suggestions and the most important feature, statistics about thousands of

books. Using these features, new plugins can be added to take advantages of the statistics, because

most of the functionalities work with these, deciding which is the best output depending of the provided

word or text.

5http://nltk.org/

http://nltk.org/
http://nltk.org/

2.3. Natural language derivation and word identification 23

2.3.2 WordNet

WordNet6s a lexical database based on synsets, that are groups of synonyms similar than a thesaurus.

The basic use of the database is as a corpus integrated as a plugin into NLTK. The specific features that

provides WordNet is the filtering of the terms of a sysnet from a provided type of word, comparisons

between terms, verb derivation, search of the lexema, and synonyms, hyponyms and hyperonyms.

2.3.3 Dictionaries

Some online services like WordsAPI7, Cambridge Dictionary8, BabelNet9, DictionaryAPI10 provide

information about the type, genre, number of a terms, and also synonyms of it. These services returns

big amount of information, including an enormous range of meanings, so this data must be filtered

and compared with others to obtain the searched words. For example, the term ”shoot” can be the

action of throwing a projectile, but also it is a sprout of a plant, if in the definitions of the terms can

found the word plant, we can ensure that it is a valid translation.

2.3.4 Implementation decision

After the research some problems were detected, the lexical libraries have an acceptable word identi-

fication as long as a phrase or a medium long text is provided, but individual words without context

could be a difficult task if there aren’t enough services to compare, the generation of incorrect data

mixed with few valid results is not acceptable. Another problem was the limitation of the languages,

English is the most extended language, therefore, the quality for other languages will be lower than

this.

Thinking about the derivation of words in other languages, the unique languages required for the

project which I know their grammar are English and Spanish, so not only new tools need to be stud-

ied, integrated and tested, an additional extra work must be done to know how works every language.

By the accumulation of the presented problems, finally the enrichment of terms is not continued and

other ways must be found.

6i
7https://www.wordsapi.com/
8http://dictionary.cambridge.org/
9http://babelnet.org/

10http://www.dictionaryapi.com/

https://www.wordsapi.com/
http://dictionary.cambridge.org/
http://babelnet.org/
http://www.dictionaryapi.com/
i
https://www.wordsapi.com/
http://dictionary.cambridge.org/
http://babelnet.org/
http://www.dictionaryapi.com/

24 Chapter 2. State of the art

2.4 Translators

To understand the possibilities and the current status of machine translation development a brief

history about the evolution of these could be interesting.

Before the investigation about the available options to develop the required functionalities, it has been

performed an initial screening about probable existing applications that would be used.

Finally, an additional research was done about similar applications that group translators and have

validation features.

2.4.1 History

Humanity developed along the History large variety of languages that have been evolving some from

others, differentiating or converging, and finally extinguished, either for geographic, demographic,

cultural, political or social reasons.

The Rosetta Stone probably is the oldest manifestation of a document with equivalent texts where

some of the language are extinct, this stone made of black basalt found in a temple of Rosetta in 1799

contains the same text, the Menfis’ decree, in Greek, Egyptian hieroglyphics and Egyptian Demotic.

Other similar translations were found during the next years, starting a race to reveal the ancient Egypt

secrets.

The first demonstration of automatic translation arose in the s.XVII using elementary translation

systems using a directly word-by-word heuristic, but due to the inexistence of the computational

power of the computers in this period no good results were obtained.

After that, the efforts to develop translators had serious difficulties to evolve until the development of

the first computers, with IBM leading the first experiments of statistical machine translations (SMT)

in the 1980s, doing a similar task than Rosetta Stone, the comparison of the same texts in different

languages, with the advantage that the texts are found in Internet, offering a massive number of these.

The most recent remarkable goal was the development of Moses11, a SMT system that currently still

evolving.

11http://www.statmt.org/moses/

http://www.statmt.org/moses/
http://www.statmt.org/moses/

2.4. Translators 25

2.4.2 Translation tools

A basic list of tools was done to start the investigations.

These are the purposed tools:

Bilingual dictionaries

Actually, where everybody has smartphone with Internet probably is less common the use of

this type of dictionaries, but some years ago the tourists go with these little books that contains

the equivalent words an useful phrases between two languages. Using this type of dictionaries

first can checked if a term exists (or it is common, at least), and second, if it has synonyms.

Thesaurus

A thesaurus is a list of related terms with similar meaning or over the same field. Tools that can

provide synonyms will be helpful, an example is words related with breath: to speak, to scream,

to cry, to shout, to whistle, to snore, to expire, to whisper, to blow, to cough, to sneeze.

Translators

Services that transforms the input text from a language to another using heuristics. The more

terms can be obtained, the better, it is important to found a big number of these to compare

these.

Semantic linked data

Using some SPARQL endpoints and the property SameAs, genuine equivalent terms can be

obtained without dubts as long as the linkages are correct.

Dictionaries and spell checkers

Some of the translations probably don’t have sense, using these tools we can ensure that the

terms exists and we will add more credibility to these, the meanings can help to decide which is

the most appropriate.

2.4.3 Similar applications

They have been found three applications focused on translations and its management, but anything

have the exactly features developed in this project, basically they helped to discover new translators.

26 Chapter 2. State of the art

Lingoes

Lingoes12 is a Windows application with dictionaries and translators compatible with more than 80

languages. This program has integration of plugins, including the capacity to detect text from the

browser, word pronunciation, new glossaries and language packs.

Weblate

This Django application13 can translate using Amagama, Google, Bing, MyMemory, Glosbe and

Apertium (among others), also includes a validation tool similar to NewsdeskTranslations, but it only

filters be language, all the words end to the same place, and with a high quantity of words, could be

very difficult their management. Finally comment the nice design it has.

Virtaal

Virtaal14 is a cross-platform visual application to translate texts and store these in files, also some

options like autocompletion, spell checking and search are included. The main remarkable features

are its user interface and its easy usage.

12http://www.lingoes.net/en/translator/index.html
13https://github.com/nijel/weblate
14http://docs.translatehouse.org/projects/virtaal/en/latest/index.html

http://www.lingoes.net/en/translator/index.html
https://github.com/nijel/weblate
http://docs.translatehouse.org/projects/virtaal/en/latest/index.html
http://www.lingoes.net/en/translator/index.html
https://github.com/nijel/weblate
http://docs.translatehouse.org/projects/virtaal/en/latest/index.html

Chapter 3

Development

3.1 Introduction

After the initial experiments in the NewsdeskTranslation project, the decision was to combine the use

of natural language tools and semantic data with translation tools, the part where this work focuses

its efforts.

This section contains the design and implementation of the MultiTranslator project and the new

features added into the NewsdeskTranslations project, also explaining how they are related.

The figure 3.1 shows a general overview of the entire project and how the different parts are connected.

3.2 Multitranslator

3.2.1 Introduction

MultiTranslator is a Python package that contains a set of modules and scripts to obtain, correct,

display and validate translations. The main module is Transfusion, the abstraction layer to obtain

translations, it is only available in a programmable environment, so Transfuse is the command-line

application that uses Transfusion and offers the simplicity of a callable script with the powerful of

the module. Finally, Grouper and Validator help the user to manage and correct big amounts of

translations.

27

28 Chapter 3. Development

Figure 3.1: Projects overview

3.2. Multitranslator 29

3.2.2 Requeriments

The functionalities required are:

• The user must be able to translate texts from a source language to a set of target languages

using a default or custom configuration of translators.

• The user must be able to export the obtained translators in different formats to files or the

standard output.

• The user must be able to fix translations using a configured behavior of filters execution.

• The user must be able to see the execution status of the translators during a translation process

if user desires.

• The user must be able to finish any supported translation process even a translator is not working

properly.

• The user must be able to use the JSON exported files to obtain spreadsheets to display the best

translations and as a human validation interface.

• The user must be able to use the JSON exported files to obtain analysis about the accuracy of

the translators and the success rate of the translated terms.

3.2.3 Installation Requirements

The next requirements must be accomplished to install and use the project correctly.

• A computer with a UNIX OS, Mac OS X or Windows XP or higher.

• All the online translators integrated into Multitranslator require an Internet connection.

• Python 2.7. Specifically the project was done with Python 2.7.3, to avoid incompatibilities this

version is preferred. Python 3 is not compatible.

• Privileges to install Python packages.

Required libraries

The Multitranslator project depends on third-party libraries created by the community, some of them

are easy to install with tools like ”easy install” or ”pip”, but others require platform specific com-

ponents or additional libraries for the specific hardware or OS. In this cases, specific installation

guidelines for some of these libraries are provided. In any case, it is highly recommended the use

30 Chapter 3. Development

of a Python virtual environment to avoid conflicts among dependencies and with other applications.

A setup.py file is provided in the root of the project for an automatic installation, which requires

executing:

python setup.py install

Also in the repository there are some tips for specific libraries.

The basic libraries to install are:

• requests==2.5.3

• tabulate==0.7.4

• pycurl==7.19.5.1

• httplib2==0.9

• simplejson==3.6.5

• goslate==1.4.0

• xmltodict==0.9.2

• beautifulsoup4==4.3.2

• futures==2.2.0

• six==1.3.0

• dill==0.2.2

• reportlab==3.1.44

The next libraries could have installation problems or special issues that need to be explained:

• beautifulsoup4

This library is installed with dict.cc library, dict.cc is integrated in the project, that is, it doesn’t

require installation, but beautifulsoup4 does require.

• mstranslator

Like dict.cc, this library is inside the project, the unique dependency is the library requests.

• pycurl and httplib2

The first installation of these libraries were difficult for me because the pip installation can’t

decide a correct configuration for my computer, so I had to test different versions and finally these

worked. Probably these libraries are already installed if you develop or use Python applications

that need remote connections. If there are problems to install pycurl, try to install the next

3.2. Multitranslator 31

libraries with:

sudo apt-get install libcurl4-gnutls-dev librtmp-dev python-dev

• Reportlab

Could be problems with this PDF library if during the installation the arial.ttf font is not found.

Sadly, there isn’t a generic solution that solves this issue.

The installation steps are:

1. Clone the repository1 or copy the provided repository in the pathos installation directory.

2. Move to pathos repository.

3. Execute python setup.py install

4. Depending on your configuration, you need to install the required libraries displayed by the error

messages, in my case the pending libraries are pp and pyre/pythia (that are located in

pathos installation if you need them). Some compressed libraries can be found in pathos repository/external.

The installation process is the same, using the python setup.py install command. Additionally,

pathos for Windows requires Visual C++ 9.02.

Finally, the installation process can be complex, specially pathos, so if the proposed version cannot

be installed, please, consider the direct download using ”pip” or ”easy install”.

3.2.4 Documentation

Sphinx3 must be installed to generate the documentation. Go to the docs directory and execute:

make html

After the generation, the mainpage is located at docs/build/html/index.html

3.2.5 Overview

The next sections explain all the necessary concepts to understand the architecture designed from the

most basic concepts to the final implemented applications.

First of all they are explained the data structures used, after that, how the project can be configured,

1https://github.com/uqfoundation/pathos
2http://www.microsoft.com/en-us/download/details.aspx?id=44266
3http://sphinx-doc.org/

https://github.com/uqfoundation/pathos
http://www.microsoft.com/en-us/download/details.aspx?id=44266
http://sphinx-doc.org/
https://github.com/uqfoundation/pathos
http://www.microsoft.com/en-us/download/details.aspx?id=44266
http://sphinx-doc.org/

32 Chapter 3. Development

then how works the designed abstraction layer and which components are created to support the main

module, and finally, how must be used the implemented scripts.

3.2.6 Translation utils

translation utils.py contains the fundamental functionality of the whole application, which is used in all

the processes in one way or another. It defines the fundamental entities TranslatorTask, TranslatorJob

and Translation.

A TranslatorTask stores the text to be translated from a source language to a list of target languages.

A TranslatorJob stores the name of the translator that made a translation, the list of translations as

a dictionary and the time spent to generate them. The keys of the translation dictionary are language

codes, and the values, lists with the translations. For example:

{

"es": ["hola", "saludo"],

"it": ["ciao"],

"fr": ["bonjour", "salut"]

}

A Translation is the combination of a TranslatorTask and a list of TranslatorJob, that is, the modeling

of a translation process, containing what is to be translated and the results for each involved translator.

These three data structures have a unicode () function to show a representation of the data, it’s

important to use this function and not the default str () because the Unicode encoding is necessary

in most of the cases. Python 3 solves this issue, but with Python 2 the solution is to use of the

previous function or changing the default encoding configuration of Python, affecting all the Python

libraries and applications.

3.2.7 Translator

The abstract class Translator defines the methods that a translator must implement, every implemen-

tation of a translator needs to extends this class for a correct behavior. The constructor only needs

the optional parameter verbose to show information about the current state of the translations.

The abstract functions that each translator must implement are:

3.2. Multitranslator 33

• get translation: From a text, a source language and a target language, it returns a tuple where

the first element is a list of translations (strings) and the second is the error code status. The

error code can be an HTTP error returned by the translator service or an own code if a problem

is detected, in general these are the error codes:

– 200: Ok

– 204: No content

– 400: Bad request

– 401: Unauthorized

– 403: Forbidden

– 404: Not found

– 408: Timeout

– -100: Not supported language

– Plus other specific codes specific to each translation API

In fact, the types of error codes are split in two: 200 (OK), where all gone correctly, and the

rest, where the translation cannot be done.

• get name: Returns the name of the translator.

• get languages: Returns a set with the code languages (strings) that the translator supports.

The functions already implemented by Translator are:

• set verbose: Changes the value of the verbose flag.

• translate: The most important function of this class. This function receives a TranslatorTask

and obtains translations for each required target language using the get translation function

(implemented by translator subclasses). If the verbose flag is activated, it shows information

using the standard error output about the current state of the translation and its result. After

all the translations are done, the function returns a TranslatorJob instance.

3.2.8 Query wrapper

It facilitates calls to remote services, common data structures and functions that most of the translators

use. However, some translators require specific calls which will be also presented.

The main library used is pycurl, a Python interface that use libcurl to make requests to Web services.

Some translators work with the HTTP method GET and others with POST. So we have the methods

34 Chapter 3. Development

do get and do post, both methods need an endpoint, the headers, a callback to store the information

and optional timeouts to abort the query if the server does not respond. Additionally do get needs

a dictionary with the parameters, and do post needs a dictionary with the parameters if the encode

flag is activated, or a string representation of the dictionary if encode is deactivated. Both functions

return the response code of the server or a timeout if the server connection does not work properly.

Also there are a Buffer class that stores the response from the server, and JSONBuffer (subclass of

Buffer) that transforms JSON content to a dictionary.

However, some translators that will be explained later use httplib2 and urllib for special reasons, so

the implementation of each is directly done in the corresponding translator.

3.2.9 Transfusion

Currently, what has been introduced are just the data structures and the generic behavior of trans-

lators, so now we need an abstraction layer to work more easily and facilitate the integration with

other programs or modules. Transfusion is a set of functions used to configure and launch transla-

tions, avoiding the headaches of the individual implementations of the translators and how the data

is managed.

The constructor of Transfusion has some optional parameters: the list of translators, the verbose flag

and which corrector will be used (as detailed in Section 3.2.10).

The functions provided by Transfusion are:

• set translators: if we want to update a Transfusion instance with new translators.

• set verbose: flag to enables debug information about the state and operation of the translations.

• get translation: the main function, it initiates the remote connection with the translator service.

• get correction: after receiving a Translation instance, this function applies the behaviors con-

figured in the Corrector instance, returning a copy of the original Translation with the applied

filters.

Also this class holds the list of supported languages, directly related with the languages required for

NewdesksTranslations:

• English: en

• Spanish: es

• French: fr

3.2. Multitranslator 35

• Portuguese: pt

• Chinese: zh

• Russian: ru

• Arabic: ar

• German: de

• Italian: it

• Dutch: nl

The default and expected source language would be English, with any other language unexpected

results could be obtained.

As a curiosity, the name Transfusion is the combination of translation and fusion, defining perfectly

what does this set of functions.

Concurrency

Notice the execution of the translators is sequential, but every translator behavior is independent

from the rest, so an interesting feature is to benefit from Python management of pools of threads

to parallelize their execution. The first implementation used the default multiprocessing library, but

there was an issue related with the serialization of data from threads, which only works with function

out of classes.

The current implementation uses pathos.multiprocessing, a library for concurrence with the capacity

to serialize functions of classes using Dill. The function get concurrent translation does the same that

the sequential function, replacing the iteration by a pool of threads (configurable by parameter) and

doing a map, finally storing the job of each translator in an array.

Notice the execute function is a curious abuse of the Python language, the map function receives the

execute function and the tasks, that are tuples where the first parameter is the translator instance

and the second, the TranslatorTask. Therefore, the execute function for every thread receives one of

these tuples, calling the first element with the function translate and sending the second as parameter,

obtaining this code:

def execute(self, args):

return args[0].translate(args[1])

36 Chapter 3. Development

Keys

The file keys.py stores the API keys, usernames and passwords for each translator, it is only used for

a better organization of this information and as a configuration file that can be shared.

Settings

The file settings.py has a default configuration for the initialization of the translators using the provided

keys and additional parameters if required. The instances of all the activated translators are stored in

a dictionary, where the key is a simplification of the name of the translator and the value is the own

instance.

Example of usage

At this point it is possible to call a translation using the previous Python components. This is a

simple example of how it works.

First we need to create a TranslatorTask:

translator_task = TranslatorTask("hello", target_languages=["es", "it"])

Then, we create the Transfusion instance with the default translators, corrector and with the verbose

flag activated:

transfusion = Transfusion(verbose=True)

We launch the translation process:

translation = tranfusion.get_translation(translator_task)

During this execution we can see the verbose for each translator:

Baidu working...

Baidu hello es 200 6.95918679237

3.2. Multitranslator 37

Baidu hello it 200 1.03975510597

Google working...

Google hello es 200 0.194092035294

Google hello it 200 0.0981569290161

...

SysLang working...

SysLang hello es 200 3.33597993851

SysLang hello it 200 3.34506893158

Finally we obtain the translation and for example we can show the results for the first job:

print translation.jobs[0].__unicode__()

Obtaining:

Translator: Baidu Translations: Spanish: {Hola}; Italian: {Ciao}

Execution time: 7.99939799309

The Translation data structure becomes a massive structure fully of information and difficult to show.

For a programmer it might be enough, but if a user wants to use it, probably a more user-friendly

presentation would be useful, in the next sections we will see how this issue is solved.

3.2.10 Corrector

Corrector works as an extension for Transfusion, fixing and deleting incorrect translations, it is called

with the get correction function. The majority of the translators do not return exactly what is searched

or expected. There is a list with the most common issues with their outputs:

• Same as input

• First letter capitalized

• All the letters capitalized

• Incorrect punctuation symbols, including unconnected pair symbols (only initial exclamation for

example)

38 Chapter 3. Development

• Words inside brackets

• Absolutely incorrect text

Lots of these translation are really just variations of the correct answer, for example, the term hello

in Spanish is ”hola”, but translators output also includes ”Hola”, ”hola.”, ”HOLA” and ”hola (salu-

dation)”. However, in order to process translators output in an aggregated way and decide the best

translation, their output needs to be formalized to some extent and make all the previous outputs

equivalent to just ”hola”.

Therefore, once these variations were collected, Corrector was implemented to try to minimize their

impact. It was designed taking in mind the capacity to add filters as modules, including the possibility

to execute these individually, so it is easily extensible to new identified variations.

3.2.11 Filters

All the filters derive from the abstract class AbstractFilter, whose unique method is apply, which

receives a term as parameter. Alternatively, this function can be implemented using **kwargs (pa-

rameters as a dictionary) if more parameters are needed.

The provided filters are:

• LowercaseFilter: It has different behavior depending of the input:

– First letter capitalized and the rest in lowercase → First letter in lowercase

– All the letters capitalized → All the letters in lowercase

• SameFilter: Compares the input term with the translation, if they are the same it returns a

void string. This filter does not follow the filter interface because its apply function needs two

parameters, therefore this filter is directly integrated in the corrector.

• ParenthesisFilter: Removes the characters between brackets, and also the brackets. In the

constructor it can be indicated the regular expression to use.

• PunctuationSymbolsFilter: Removes the defined characters. In the constructor they can be

indicated using a string.

• StripFilter: Removes spaces, tabulation and other separators on the left and on the right of the

input string. In the constructor it can be indicated which characters are used as string.

3.2. Multitranslator 39

Unused and proposed filters

Other filters have been created but are currently not used because they do not fit the output of the

current translators, though might be useful in the future:

• LengthFilter: If the term exceeds a specific length, the translation is discarded.

• ProportionFilter: If the translation length exceeds X times the original term length, it will be

discarded.

• ArticlesFilter: Removes common words that can appear near nouns, for example articles, but

can be used for any type of words like prepositions and conjunctions, every language needs its

own set of words.

• StructureFilter: For particular patterns that invalidate translations, for example, (<error code>)

text.

• AlphabetFilter: If the alphabet used by the translation differs from the correct alphabet, for

example, an Arabic translation with Latin letters.

• GrammarFilter: Similar to StructureFilter, it identifies grammar rules that all the words of the

same type must comply, if for example the source terms are gerunds and are known that the

end of the translation must be a specific sequence of letters, these can be detected (for English

is -ing, for Spanish is -ndo)

Filters execution

The file corrector configuration.py contains the used filters and the available languages. The de-

fault filters ordered dictionary is the structure sent to the corrector to apply the filters, the value for

every string key must be a list of AbstractFilter instances. This special organization of the data has

sense if the apply filters and apply all functions are checked in the Corrector class.

The OrderedDict must be provided in the constructor, if it is undefined, it will be used the default

filters from corrector configuration.py.

apply filters iterates over the list of filters identified by the key filters type from self.filters and returns

the chained output after the filtering. This function can be executed individually if only a set of

filters is required. apply all sends the term to all the filters in self.filters in the specific provided order.

Initially it is checked if the source term and the translation are the same (SameFilter behavior), after

that are executed all the groups of filters and after each is checked again if the terms are equal, this

40 Chapter 3. Development

allows an early return response if this event occurs, for example, it could be a first group of fastest

filters, another more slowly, and finally a very heavy filters that take a lot of time, if the equality of

terms can be detected before the execution of the second and the third group, the performance will

be better.

The expected workflow of the corrector is the creation of an instance of Corrector with the selected

filters and languages and the execution of the apply all function. All the filters should extend the

AbstractFilter super class, because these will be easily integrated and executed in the same way. If

some extra filters with other needs are required, these can be called individually by the programmer.

3.2.12 Writers

To provide more useful and usable translations output a set of writers have been developed. Some are

intended for users and others to serialize the information in different formats.

There is not a common interface because every translator can use different data and optional flags,

so every implementation is unique and has different parameters. If the number of writers was higher,

probably a common interface with kwargs or the use of class hierarchy would be good options.

Write utils

The file write utils.py contains a set of functions used by all the writers, and also specific functions

for the writers that generate tables. These are the most important functions:

• get write file descriptor: Every writer must call this function to obtain a file descriptor of a

specific file to store the generated data, the available strings are:

– ”stdout”: returns sys.stdout, the text will be displayed in the screen.

– ”default”: returns a file descriptor at the root whose name is the current date, the term

and the source and target languages.

– A path: First it is checked if the path exists, if not, it is created. It returns a descriptor

file whose file is inside this path and whose name is the previous default name explained.

– A file: Returns the descriptor file of this file.

• write utf8 encoded: Encodes the input text using UTF-8 and writes it in the file descriptor.

• close file descriptor: Closes the file descriptor unless it is the standard output.

3.2. Multitranslator 41

JSON

The most important format to serialize the translations. It is used by other applications because is

easy to dump it into a dictionary, for a normal user it is readable, but uncomfortable.

XML

Another useful and common format to serialize the data. Using the xmltodict library, these type of

files can be loaded as a dictionary, like JSON.

PDF (experimental)

It can be used to store translations in a more usable format. The library used to generate the PDFs

is reportlab. This writer is experimental, it is only created to demonstrate the possibility to create

automatic reports with the translations.

The method used to write text uses the low-level functions of the library to work correctly with

Russian and Arabic languages, that is, all the text positions and page breaks are managed by the

custom implementation and not by the library. Finally, there is an issue with Chinese characters so it

is not possible to generate PDF with terms in this language. They will be just showed correctly if the

user has the Asian Language Pack or TrueType fonts with Asian characters installed and configured.

Standard output

This is the first implemented writer to test Transfuse. It has problems if the width of the terminal

is not wide enough. Then, if the translation table is misplaced, the solution is to store the output

in a file and view if with and editor featuring a disable word wrap flag. The library used to create

the tables is tabulate4, a Python module created by Sergey Astanin to display tables. It supports the

following formats: fancy grid, grid, html, latex, latex booktabs, mediawiki, orgtbl, pipe, plain, psql,

rst, simple and tsv.

This library has a reported issue5 with the Chinese characters, so when the bug is fixed, tabulate will

be updated to the last version.

4https://bitbucket.org/astanin/python-tabulate
5https://bitbucket.org/astanin/python-tabulate/issue/51/chinese-characters-using-fancy-grid#

comment-None

https://bitbucket.org/astanin/python-tabulate
https://bitbucket.org/astanin/python-tabulate/issue/51/chinese-characters-using-fancy-grid#comment-None
https://bitbucket.org/astanin/python-tabulate
https://bitbucket.org/astanin/python-tabulate/issue/51/chinese-characters-using-fancy-grid#comment-None
https://bitbucket.org/astanin/python-tabulate/issue/51/chinese-characters-using-fancy-grid#comment-None

42 Chapter 3. Development

Standard individual output

To solve the previous issue with the misplaced table, another display based on tables (also using

tabulate) was implemented. This representation shows the same task table, but now every language

has an individual table, so the output is narrower as opposed to the wide tables generated by the

standard output formatting.

Raw output

The most basic writer, it simply shows the unicode () output. It could be useful to store a record

of translations, but for translations with a lot of information it is difficult to read.

3.2.13 Transfuse

Transfuse is a command-line application that uses Transfusion and the writers to provide a more usable

command-line user interface that allows users to request and store translations. All the parameters

are optional and the following instructions are provided to guide users.

Arguments

• -t | --term: Text to be translated, it’s recommended the use of quotes to avoid problems with

spaces. By default is ”hello”, only used for testing.

• -sl | --source-language: Language code provided by Transfusion. By default it is English.

• -tl | --target-languages: List of language codes provided by Transfusion. If this argument

is not present, it’s assumed all the language will be used except the source language.

• -tr | --translators: List of names of the translators. The names are obtained using the

default translators dictionary keys from settings.py. If this argument is not present, it’s assumed

all the default translators will be used.

• -so | --standard: Output the tasks in a table and the translators for each language in another.

• -soi | --standard-individual: Output the tasks in a table and each language has a table,

it’s more readable in some cases.

• -j | --json: Output the JSON representation of the translation.

• -x | --xml: Output the XML representation of the translation.

3.2. Multitranslator 43

• -p | --pdf: Output the PDF representation of the translation, it must require a parameter,

that is the filename where the data will be stored.

• -ro | --raw-output: Output the default Unicode representation of the translation.

• -s | --show: Offer specific help about a topic, the options are:

– translators: Show the available translator names for -tr.

– languages: Show the available language codes and its name for -sl and -tl.

– table-formats: Show the available table formats provided by tabulate.

– all: Shows all the previous information.

• -v | --verbose: Active the verbose flag for Transfusion.

• -c | --correct: Active the correction flag for Transfusion.

• -h | --help: Show the help provided by argparse.

Special arguments compatible with -so | --standard:

• -ti | --time: Add a new column with the total time execution and the time for each translator.

• -td | --time-decimals: Change the number of decimals for a best fit.

Special arguments compatible with -so | --standard and -soi | --standard-individual:

• -tf | --table-format: Change the table format used by tabulate. By default is ”fancy grid”.

Arguments for concurrency:

• -co | --concurrent: Active the concurrent execution of the translators.

• -nt | --num-threads: Set the number of threads used for the concurrent execution.

Additional information

The writers can be combined in any desired way, all the options that involve outputs need zero or one

parameters (except PDF that requires one). If no parameter is set, the data will be displayed in the

screen. If a parameter is set, it must be a filename, a path (it must end with a slash ’/’), ”stdout”

or ”default”, as explained in the write utils section. At least one output option must be provided,

otherwise the data will be lost after the execution ends.

The verbose messages are only displayed on standard error, that is, these information does not interfere

with the translation information stored in files. From Transfusion, the file name is automatically

chosen.

Transfuse is the act of doing a transfusion, in this case, Transfuse canalizes a Transfusion from the

memory of the computer into another entity, either the screen, a file, or the user who is seeing the

44 Chapter 3. Development

translations.

Examples of usage

There are some examples that can help to understand how Transfuse must be called. Show help:

transfuse --help

Show available options:

transfuse --show all

Show available translators:

transfuse --show translators

Translate ”hello” from English to Spanish and Italian using all the translators, standard output and

verbose:

transfuse --term "hello" -tl es it -so -v

Translate ”dog” from English to Russian using Google, Yandex and Bing, standard output individual

with tsv table format and with the corrector:

transfuse --term "dog" -tl ru -tr google yandex bing -soi -tf tsv -c

Translate ”cat” from English (explicit) to German using Google, OneHourTranslation, SDL and

Hablaa, standard output, JSON output in the file ”json test”, XML output with default filename

in the folder ”new directory”, raw output in a default filename, with concurrency and 4 threads:

transfuse --term "cat" -sl en -tl de -tr google onehour sdl hablaa -so --json

json test --xml new directory/ -ro default -co -nt 4

3.2. Multitranslator 45

3.2.14 Grouper

Previously we have seen that using transfuse the user can obtain the required translations in different

formats. If this information has a low grade of relevance or only a few translations, it’s better the use of

the table outputs, but if a big set of information is obtained and this must be stored an checked later,

the best option is the JSON format, with a medium grade of readability for humans, but perfectly

understandable by machines.

The decision to implement this application comes after the generation of the translations of the pest

words for the filters. The creation of this quantity of files can be tedious, but only takes time, transfuse

(with the help of transfusion) does all the job, the great problem becomes at the time someone see

the results, virtually intractable using the current table outputs, that are nice for a few words and

languages in a particular moment.

The main task of grouper is to parse lot of information to display it based on the requirements and

chosen options by the user, offering three types of output and two criteria.

Configuration file

First of all, the configuration file can be optional, but without sources or scores, the application loses

all its sense, using all the time a default source with a score of 1, so it’s extremely recommended the

use of this. The first step to use grouper is the creation of a JSON file with the configuration, the

structure is the next:

{

"default": {

"default": 50,

"<language code 1>": 40,

[...]

"<language code n>": 30

},

"sources": {

"<source 1>": {

"default": 60,

"<language code 1>": 70,

46 Chapter 3. Development

[...]

"<language code n>": 80

},

[...]

"<source n>": {

"default": 60,

"<language code 1>": 65,

[...]

"<language code n>": 50

}

}

The ”default” key must be present with an inner ”default” key, with more specific scores for the

language codes. The ”sources” key stores the scores for each source, all the sources used in the

translation files must be present or they don’t be counted. If a language is not found, it will be used

the default value.

A little example of a configuration file is:

{

"default": {

"default": 50

},

"sources": {

"Google": {

"default": 60,

"es": 70,

"fr": 40

}

3.2. Multitranslator 47

Outputs

There are three different report types, each of these is specially created for a specific purpose discovered

during the development. The three outputs are formatted using TSV, so they can be opened with

OpenOffice Calc.

Individual term report

For each term and for each language is showed the score and the number of sources. This report is

designed to verify the program is working correctly, that’s for this the extension is .info and not .tsv,

because it is only an informative report of the execution, providing unnecessary information for a real

user.

Example:

insects
es

insectos
No. sources: 5 Score: 315

los insectos
No. sources: 2 Score: 120

Table 3.1: Grouper - Individual term report example

Translations report

This report could be a classical file used by a professional human translator, but instead of containing

only one translation, the user can decide how many wants. The languages are displayed horizontally

and the terms vertically, so if for example, a user only wants a language, he can export this copying

it in another spreadsheet. The displayed languages are the languages that at least one term has as

a translation, that is, if for example the user only wants Spanish and Italian, the translation files

only must contain these languages. The order of the translations is based in their score or number of

sources, the user can chose which method prefer, in general, the two methods are correlated, but if

the configuration file has big differences in the scores, the results will vary.

Example:

48 Chapter 3. Development

insects it es
insetti insectos
Insetti los insectos
gli insetti

Table 3.2: Grouper - Translations report example

Language reports

The translations report is very useful to see the translations in all the languages to use these, but

what happens if the user wants to verify these translations? This set of reports solves the problem, for

every language is created a file with all the terms and their translations, but the translations column

is duplicated, the left column has the original translations and the right will be used to modify these

and see the changes. When the files have been corrected, a parser can check the differences and inform

of these. Example:

insects es es
insectos insectos
los insectos los insectos

Table 3.3: Grouper - Language reports example

Arguments

• -s | --sort: Criterion used to sort the translations. Options: source, score

• -i | --input: The JSON file or path (with JSON files) where are found the translations

• -c | --conf-file: The settings about the sources and their scores

• -v | --verbose: Show information about the current state of the execution using the error

output

• -nt | --num-translations: Number of maximum translations displayed for output and output-

languages

• -o | --output: Must be a file. Write all the translations for each term and language in the

TSV file

• -ol | --output-languages: Must be a path. Write a set of files with the translations inside

the path, each file contains one language

• -r | --results: Write a detailed report about the number of sources and the score of each

term for every language

3.2. Multitranslator 49

Like transfuse, the three outputs: ouput, output-languages and results can be combined in the desired

way, but one of this must be present.

Examples of usage

Creates a information file called results using the translation files inside translations directory with

the configuration file grouper configuration.json:

grouper -i translations directory -c grouper configuration.json -r results

Creates a translation report called translations using the translation files inside translations directory

with the configuration file grouper configuration.json, with verbose and the translations are sorted by

score:

grouper -i translations directory -c grouper configuration.json -o translations -v

-s score

Creates a folder called languages folder with the double translation columns using the translation files

inside translations directory with the configuration file grouper configuration.json, with verbose and

the translations are sorted by source, with 2 as a maximum number of translations per term:

grouper -i translations directory -c grouper configuration.json -ol languages folder

-s source -nt 2

Practical case and error detection

After the implementation of Transfuse, the corrector and an initial version of the grouper were done,

Roberto sent me a list of words needed for a new filter to detect new pests. This were a good moment

to test the applications in a real scenario.

First try

The file provided contains 277 terms and are required all the supported target languages and the

highest number of translations, that is:

50 Chapter 3. Development

277 terms ∗ 9 target languages ∗ 12 translators = 29916 petitions

There is a lot of work, if every petition takes 1 second the translation of all the terms takes 8 hours

and 18 minutes, and remember, it was the first attempt to run Transfuse with this amount of data, a

person must be in front of it and check if all is correct, and 8 hours is a lot of time.

A high percent of the terms are plants (cabbage, peach, pepper) and diseases and causes (mortality,

risk, injury, tsunami), but also there are a some from other contexts like commercial brands and

products (Google, Nokia, Microsoft), geographical places and buildings (volcano, Fukushima, factory

farm), animals (pork, dog, sheep) and human terms (wars, smartphone, nuclear industry). All the

words can be found at TFG/data/pest filter data/pest words.txt.

At the time this test was done, all the translators are enabled, except Syslang/Frengly and iTranslate,

the first because it has the problem with the timing petitions and the second because the limit of

translations is very low. These are: Google, Bing, MyMemory, SDL, WorldLingo, Yandex, Yandex

Dictionary, OneHourTranslations, Hablaa, Glosbe, dict.cc and Baidu.

Script

To translate all the words the next script was launched:

#!/bin/bash

while read line

do

term=$line

transfuse --term "$term" -soi pest_soi/ --json pest_json/ -v -c -tf tsv

done < $1

The script reads all the lines of the file provided in the first argument ($1) and calls Transfuse for

each line/term, notice the last line must be void.

Transfuse automatically stores the TSV and JSON files into the pest soi and pest tsv directories, that

is 277 files in each folder following the name formatting: <date> <term> <source language> <target

languages>.<format>.

3.2. Multitranslator 51

Issues

Initially the .tsv extension is not properly wrote, all the outputs from -soi (and -so) were .txt, it was

changed to avoid to modify the extensions every time, now if the -tf argument is tsv, the file extension

is .tsv, other formats also supports this feature.

In the Hablaa’s ToS is explained that the service is free, but if the same IP sends lots of petitions the

services will be denied, sadly this occurred, the concurrent execution of the script provokes this issue,

the regulation is by IP, so multiple users can perform translations if these use different IP or if the

workload is low.

OneHourTranslation had a bug in the response status, the code is correct (a 0), but the field msg

contains ”General error” in a extremely lower number of cases. Extending the condition with this new

field to decide if a petition is done correctly solves the problem.

Results

After some hours of executions and tests the final results are obtained, the methodology to obtain

these are the execution of the script in three different consoles to obtain a good performance/time ratio

and to avoid the 8 calculated hours, becoming in around 3, notice someone must be present during

the executions to detect problems, almost this first time, every execution only had 10-20 terms, and

when one ends, a new set of words was launched, this behavior also was done to detect unhandled

exceptions and to have more control of what was doing.

Some files are checked and at first appearance (and as expected) there are good and bad translations,

but more or less, all the translators tries to do a good job, Arabic probably was the lowest number

of translations, were other languages have translations by all the translator, Arabic had absolutely

nothing. Finally, the corrector does a good job, there were some fears about Russian, Chinese and

Arabic but any issue was detected.

3.2.15 Validator

Validator was created to generate automatic reports about the accuracy of the translators and the

success rate of the terms. Additionally, with these information can be created more realistic scores

for grouper.

52 Chapter 3. Development

Configuration file

All the terms that will be validated must be present in this file, including the source and the target

languages following the next structure:

{

"languages": {

"source_language": "<language code>",

"target_languages": "[list of language codes]"

},

"valid_translations": {

"<term 1>": {

"<language code 1>": "[list of valid translations]",

[...]

"<language code n>": "[list of valid translations]"

},

[...]

"<term n>": {

"<language code 1>": "[list of valid translations]",

[...]

"<language code n>": "[list of valid translations]"

}

}

A configuration file example can be:

{

"languages": {

"source_language": "en",

"target_languages": ["es"]

},

"valid_translations": {

"dog": {

3.2. Multitranslator 53

"es": ["perro", "can"]

}

}

Outputs

There are a lot of configurations to classify the validations using the parameters translators, languages

and terms. After some tests about which are better, two implementations were elected, one focused

on the translators and another on the terms.

Report by translator

For every translator is showed the percentage of accuracy for each language, additionally with the

detailed flag, they are displayed all the terms and their validation status.

Example without details:

Google
es 75% (75 of 100)

WorldLingo
es 55% (55 of 100)

Table 3.4: Validator - Report by translator example without details

Example with details:

Google
es 75% (75 of 100)

insects True
scratch True
kill True
lack juice False
[...]

WorldLingo
es 55% (55 of 100)

insects True
scratch True
kill False
lack juice False
[...]

Table 3.5: Validator Report by translator with details

54 Chapter 3. Development

Report by term

For every term is showed the percentage of accuracy for each language, additionally with the detailed

flag, they are displayed all the terms and their validation status. Example without details:

sunflower
es 92% (12 of 13)

elm
es 61% (8 of 13)

Table 3.6: Validator - Report by term without details

Example with details:

sunflower
es 92% (12 of 13)

Baidu True
Google True
WorldLingo True
[...]

elm
es 61% (8 of 13)

Baidu False
Google True
WorldLingo True
[...]

Table 3.7: Validator - Report by term with details

Arguments

• -i | --input: Directory with the JSON files that contain the translations

• -tr | --report-by-translator: Do an analysis focused on the accuracy of the translators

• -te | --report-by-term: Do an analysis focused on the success rate of the terms

• -vf | --validation-file: The JSON file with the required information for the analysis

• -v | --verbose: Show information about the current state of the execution

• -d | --detailed: Show more information about the statistics

• -s | --separator: Add extra lines for a better readability

• -p | --percentage: The percentages are showed in a most readable style

3.2. Multitranslator 55

Additional information

The difference between the use of percentage or not is the next:

With percentage:

61% (8 of 13)

Without percentage:

61 8 13

As it can be seen, the percentage option is more readable for humans, and without it, a parser can

read every individual value because they are separated by tabulations.

Examples of usage

Creates a report about the accuracy of the translators, with detailed information about which terms

are accepted, with readable percentages:

validator -i translations directory -tr translators validation -d -p

Creates a report about the success rate of the terms, with verbose, with additional spaces:

validator -i translations directory -te terms validation -v -s

3.2.16 Practical case

A list of words was created to verify and try to obtain good parameterizations of the correctness

of every translator. The domain of the list is focused on plants and animals glossary, also including

verbs, symptoms and plant parts. All the terms are enough known by everyone, it’s true that some are

strange, but because are related to the world of the plant diseases, but experts on this probably know

these. These terms are translated by me to Spanish, the most of the terms are known by me, but others

need additional investigation to know exactly what is the translation, obviously the use of machine

translators is not allowed here, the translations were found using English-Spanish and Spanish-English

dictionaries and specialized websites with pair translations done by humans, like Linguee6.

6http://www.linguee.com/

http://www.linguee.com/
http://www.linguee.com/

56 Chapter 3. Development

Transfuse

The translations were obtained using the bash script presented in 3.2.14 that reads a file with the

words and executes:

transfuse --term "$term" -soi translations/ --json translations json/ --pdf

translations pdf/ -v -c -tf tsv -co -tl es

The outputs are individual language (but only Spanish is used) with TSV formatting, JSON and PDF.

The verbose flag is activated to check the execution, any issue was found. The corrector is activated.

And finally, the concurrent execution of the translators is activated with the default number of threads.

The translators used are: Google, Bing, MyMemory, SDL, WorldLingo, Yandex, Yandex dictionary,

Baidu, Hablaa, Glosbe, Dict.cc, OneHourTranslation, SysLang. All except iTranslate.

Grouper

When all the translations were done, a configuration file was created containing the used translators,

it can be found in TFG/data/spanish data/grouper configuration.json.

After that, grouper is called with the next command:

grouper -i translations json/ -c grouper configuration.json -o grouper translations

-s source

Finally, the file grouper translations.tsv contains all the translations ordered by source.

Validator

The validation configuration file contains all the terms in the wordlist, with the Spanish translations

done by me. It can be found in TFG/data/spanish data/validation data.json.

The commands executed to obtain the reports are:

validator -i translations json/ -vf validation data -tr translators report

validator -i translations json/ -vf validation data -te terms report

3.2. Multitranslator 57

In the same folder where is placed validation data.json can be found the generated reports called

translators report.tsv and terms report.tsv, among other additional reports.

Statistics

First of all, notice that the valid translations in the validator configuration file don’t reach all the

domains of the terms, for example, the term wet has some translations, the provided translations

are: ”humedecer”, ”húmedo”, ”mojar” and ”mojado”, but Bing translator returns ”húmeda”, a valid

translation, so all the percentages really are higher, the more valid translations there are, the more

percentages are obtained if the translators can really translate the terms. Also, the word cactus is the

same in Spanish, so all the translators will fail because the corrector detect the same words.

The next graphic shows the percentage of success for each translator, it is created using the translators

report:

Figure 3.2: Translators accuracy

According to statistics, Glosbe is the best with a 86%, that is because is the translator that returns

more translations, so, it works with brute force, using only Glosbe is not a good idea because a lot of

concepts will be obtained. The intermediate translators go from Yandex Dictionary to Google, with

a 60-75% success rate, these translators do a correct job with few results. From SDL to Bing, the

success rate vary from 48% to 58%, approximately they find the valid translation half of the time, is

not a bad result, but others do it better. Finally, Syslang and Baidu have the worst punctuation, 31%

and 33%, respectively, probably users don’t want to use these.

This graphic is created using the terms report, showing the number of parameters with the same

percentage of success:

58 Chapter 3. Development

Figure 3.3: Translators accuracy

The tendency of the graphic is that the more terms are, the more accuracy have, so the most of

the terms are grouped over the 50% of success rate. The terms with difficulties to be translated are

composed words and verbs, so probably these words have correct translations, but the range of words

is higher than the others, and not all the possibilities are configured as explained at the start of the

analysis, so if a more exhaustive set of words the results would be better.

Conclusions

After these two analysis now we have a better knowledge about the global possibilities of Transfusion

and which are the best translators to use on it. If we take the average of all the translators it is 57%

of accuracy, but if we only use the best the average grows up to 72%, an taking in the account that

valid translations aren’t contemplated in the configuration file, this number might grows a little bit

more.

3.2.17 Translators

During all the development were found translator services compatible with Transfusion, some of them

are adapted projects created by the community, but most of them are directly implemented specially

for Transfusion. In this section it is explained which languages are compatible, the characteristics of

every implemented translator, including how are the inputs and the output, their limits and issues,

and in some cases, the curl queries used for testing.

3.2. Multitranslator 59

Available languages

The next table shows which languages supports every translator, some of them also has additional

information about the number of translations available.

Figure 3.4: Available languages for each translator

The data for MyMemory were obtained on April 21 and for Hablaa on April 13.

Google Translate

Overview

Probably the most famous translator, its website offers pair translations near 100 languages, automatic

source language detection, voice recording, phonetic pronunciation (text and audio), keyboards for all

the languages, specially for non-ascii languages, like Chinese, entire website translation and finally a

toolkit to upload our documents .

The machine learning is based in text comparison of the same texts in different languages, Google has

its own book service7, so one of the sources is the book comparison, and the translations of the books

are done by humans, offering a massive number of quality translations.

7https://books.google.es/

 https://books.google.es/
 https://books.google.es/

60 Chapter 3. Development

API

That was the first translator used in the Django project, it was added by Josep Maria as a test for the

translation process. This translator is wrapped in a Python library called goslate, there are multiple

implementations, but the original comes from the user zhuoqiang8 and his repository9. The library

can be used as a command line application, but for our project it is directly imported.

Input

The most important method is translate, with the classical triplet of parameters term-target-source,

also supports automatic detection for the source language provided by Google. The queries have the

encoding parameter to UTF-8.

Endpoint http://translate.google.com
HTTP method GET
Content type application/json

client: Simulates another application that uses this service publically (set a)
sl: Source language code
tl: Target language code
ie: Input encoding (set UTF-8)
oe: Output encoding (set UTF-8)
dt: Indicates if the query is a translation (t) or a romanization (rm), like
Chinese character to latin alphabet (set t)
q: Text to be translated

Table 3.8: Google input

Output

The library cleans the raw obtained text to fix issues with the encoding, providing an unicode string.

This is the unique response, an unicode string if all goes well:

u’hola’

Otherwise the string is empty.

8https://bitbucket.org/zhuoqiang
9https://bitbucket.org/zhuoqiang/goslate/

https://bitbucket.org/zhuoqiang
https://bitbucket.org/zhuoqiang/goslate/
https://bitbucket.org/zhuoqiang
https://bitbucket.org/zhuoqiang/goslate/

3.2. Multitranslator 61

Limit of use

There isn’t a specific limit, but probably if a massive number of requests are done, Google can ban

the IP address.

Issues

Checking the code, the original author has some issues about the user agent, he needed to use Mozilla

4.0 because Google forbids the default urllib2 agent.

Google translate provides good translations and also it’s fast and free. But the fact Google has a

monetization way for its translate service, really it’s not a free service, if Google wants, it can close

the current endpoint and only the users with API key will be able to access it.

The 8th April 2015 the service stops abruptly, nobody can do queries, the endpoint used by goslate

(and the rest of libraries) was closed or changed, because truly the API offered by Google is a payment

service, but these use ”alegal” ways to call public endpoints that Google products use, like the auto-

matic translator of Google Chrome, another method is the use of Google Sheets an do indirect calls,

but it is extremely slow. The issue was solved by goslate’s author, he noticed that a new parameter

(dt) is added, he simply updated the query with this change, other users migrate to another transla-

tors, like MyMemory. In 2011 and 2012 an issue about the closing of the free services happened, so

probably in the next months or years will occur again if the ToS of Google change.

Bing

Overview

Originally it was Altavista Translator, created by Digital Equipment and Systran (that has its own

translator10) in 1997. Some years later, in 2003, Yahoo adquired the current owner of Altavista (Over-

ture Services), and then, in 2008, it changed to Yahoo BabelFish (not be confused with BabelFish11

from The BabelFish Corporation). Finally, in 2012, Yahoo BabelFish becomes the current Bing Trans-

lator managed by Microsoft.

In brief, currently there are Bing Translator from Microsoft, Systran (requires fee) and BabelFish

10http://www.systransoft.com/
11http://www.babelfish.com/

http://www.systransoft.com/
http://www.babelfish.com/
http://www.systransoft.com/
http://www.babelfish.com/

62 Chapter 3. Development

(without API access).

Bing Translator offers text translations, automatic source detection, website translation and trans-

lations from files. Also there are some Microsoft products like Skype and Office that integrate it.

Finally, the API provides some methods for the developers to integrate it as you can see in the next

section, the available interfaces are HTTP, SOAP, AJAX and REST.

The source of the translations comes from the same texts in different languages and statistical tech-

niques, obviously, the base of all is the original Altavista Translator, so Microsoft integrates it in with

its applications and adds more equivalent texts.

API

The user wronglink12 created a wrapper13 with all the options that the official AJAX API supports,

that is, translations from a language to another, automatic detection of the source language, transla-

tions from files, text to voice and suggestion of better translations.

The wrapper needs credentials to access the service, that are the client ID and the client secret, that

can be obtained in the Azure marketplace creating a new web application14.

Input

Endpoint http://api.microsofttranslator.com/V2/Ajax.svc/
HTTP method GET
Content type text/plain

Parameters

text: Text to be translated
to: Source language code
from: Target language code
options: The content type (plain/text) and the domain of the text (currently it
seems to be only ”general”)

Table 3.9: Bing input

The query type used only returns one translation, also exists another call15 to obtain more translations

based on a classification from 0 to 100 about the correctness of the translation. After some tests, it

is easy to see that some translations near 100 are exactly the same translation of the individual call,

but others are incorrect, and the translations near 0 don’t have sense.

12https://github.com/wronglink/
13https://github.com/wronglink/mstranslator
14https://msdn.microsoft.com/en-us/library/hh454950.aspx
15https://msdn.microsoft.com/en-us/library/ff512402.aspx

https://github.com/wronglink/
https://github.com/wronglink/mstranslator
https://msdn.microsoft.com/en-us/library/hh454950.aspx
https://msdn.microsoft.com/en-us/library/ff512402.aspx
https://github.com/wronglink/
https://github.com/wronglink/mstranslator
https://msdn.microsoft.com/en-us/library/hh454950.aspx
https://msdn.microsoft.com/en-us/library/ff512402.aspx

3.2. Multitranslator 63

The implementation has the two possibilities using the more translations and max translations param-

eters in the constructor, the default function is request only a translation and maximum 10 translations

if more translations is enabled.

Output

The wrapper only returns an unicode string if only a translation is requested:

u’Hola’

If we want more translations the output is a JSON object:

{

"Translations":[

{

"Count":0,

"Rating":5,

"MatchedOriginalText":"",

"MatchDegree":100,

"TranslatedText":"computadora"

},

{

"Count":2,

"Rating":1,

"MatchedOriginalText":"computer",

"MatchDegree":100,

"TranslatedText":"computadora"

},

{

"Count":0,

"Rating":0,

"MatchedOriginalText":"computer",

"MatchDegree":100,

"TranslatedText":"ordenador"

64 Chapter 3. Development

},

{

"Count":0,

"Rating":0,

"MatchedOriginalText":"computer",

"MatchDegree":100,

"TranslatedText":"equipo?"

},

{

"Count":0,

"Rating":0,

"MatchedOriginalText":"computer",

"MatchDegree":100,

"TranslatedText":"computadora"

},

{

"Count":0,

"Rating":0,

"MatchedOriginalText":"computer",

"MatchDegree":100,

"TranslatedText":"Computadora;"

},

{

"Count":0,

"Rating":0,

"MatchedOriginalText":"computer",

"MatchDegree":100,

"TranslatedText":"Computadora"

}

],

"From":"en"

}

3.2. Multitranslator 65

This structure is modified for a better comprehension, replacing the unicode strings to readable text.

The unique valid information is every value in TranslatedText of the Translations array. The Count,

Rating and MatchDegree keys don’t have the enough quality to be useful.

Limit of use

With the free subscription16 there are 2.000.000 input characters per month.

Issues

An initial connection with the Microsoft’s servers is done to obtain an access token, this token has an

expiration time of 10 minutes, the used library manages this issue, but it is an increment of complexity

and possible problems.

Currently the unique context is ”general”, probably in the next months or years new contexts will be

added.

The translations from the query that returns more than one result has extremely low quality, these

aren’t validated by nobody.

SDL

Overview

SDL provides machine and human translations. The online translation site managed by SDL is

FreeTranslation17, where the users can translate texts and documents, also rate and hear these. Also

there is an application for Android18 and iOS19. Additional solutions20 related to translations are

offered to speed up the development of webpages and programs in multiple languages.

16https://datamarket.azure.com/dataset/bing/microsofttranslator
17http://www.freetranslation.com/
18https://play.google.com/store/apps/details?id=com.sdl.translate
19https://itunes.apple.com/us/app/sdl-translate/id720669507
20http://www.sdl.com/cxc/all-products.html

https://datamarket.azure.com/dataset/bing/microsofttranslator
http://www.freetranslation.com/
https://play.google.com/store/apps/details?id=com.sdl.translate
https://itunes.apple.com/us/app/sdl-translate/id720669507
http://www.sdl.com/cxc/all-products.html
https://datamarket.azure.com/dataset/bing/microsofttranslator
http://www.freetranslation.com/
https://play.google.com/store/apps/details?id=com.sdl.translate
https://itunes.apple.com/us/app/sdl-translate/id720669507
http://www.sdl.com/cxc/all-products.html

66 Chapter 3. Development

API

The API key can be obtained after the registration process21. This key must be set in the authorization

header. The documentation22 explains how to perform a curl query and how is the output.

Input

Endpoint https://lc-api.sdl.com/translate
HTTP method POST
Content type application/json

Parameters
text: Text to be translated
from: Source language code
to: Target language code

Table 3.10: SDL input

Curl

The curl call has the next appearance:

curl -X POST -H "Content-type: application/json" -H "Authorization:

LC apiKey=<PRIVATE KEY>" -d ’{"text":"hello", "from":"eng", "to":"spa"}’

’https://lc-api.sdl.com/translate’

Notice the post data is a string, not a key-value resource.

Output

The response is a JSON object with the original provided data and information of the translation.

The useful field is translation.

{"from": "eng",

"charCount": 5,

"wordCount": 1,

21https://languagecloud.sdl.com/translation-toolkit/sign-up
22https://languagecloud.sdl.com/es/translation-toolkit/api-documentation

https://languagecloud.sdl.com/translation-toolkit/sign-up
https://languagecloud.sdl.com/es/translation-toolkit/api-documentation
https://languagecloud.sdl.com/translation-toolkit/sign-up
https://languagecloud.sdl.com/es/translation-toolkit/api-documentation

3.2. Multitranslator 67

"to": "spa",

"partialTranslation": false,

"translation": "Hola"}

Limit of use

Taken directly from the documentation23: ”For Machine Translation you can use up to 500,000 char-

acters per month in Sandbox for free.”

Issues

The post fields are really a string that’s looks like a JSON object, and this string mustn’t be encoded

because it will be managed by the server, SDL works with the language code ISO 639-2/B24, where

the codes have three letters, using a dictionary with the equivalent codes solves the problem.

MyMemory

Overview

The site25 has a little demonstration to test the capacities of MyMemory, the users can translate texts

from a language to another, obtaining a machine translation if the text is a phrase or a specific term,

and a list of translations with the most matched source text and its equivalent, these translations

come from another webpages like Wikipedia.

Also the users can add translations, and vote, suggest and correct the existing.

The source of the translations can be obtained at the end of the translation page: ”The Credits -

Computer translations are provided by a combination of our statistical machine translator, Google26,

Microsoft27, Systran28 and Worldlingo29.”

23https://languagecloud.sdl.com/translation-toolkit/api-documentation
24http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
25http://mymemory.translated.net/
26http://translate.google.com/
27http://www.microsofttranslator.com/
28http://www.systransoft.com/
29http://www.worldlingo.com/

https://languagecloud.sdl.com/translation-toolkit/api-documentation
http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://mymemory.translated.net/
http://translate.google.com/
http://www.microsofttranslator.com/
http://www.systransoft.com/
http://www.worldlingo.com/
https://languagecloud.sdl.com/translation-toolkit/api-documentation
http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://mymemory.translated.net/
http://translate.google.com/
http://www.microsofttranslator.com/
http://www.systransoft.com/
http://www.worldlingo.com/

68 Chapter 3. Development

API

Aside from translations, the API supports uploads with new translations, these can be directly sent

directly with GET or uploading a TMX30 file with a set of translations. When a translation is sent,

also can be specified a subject31.

The API key is not required, but if we are interested, we must register32 and do a query to

http://api.mymemory.translated.net/keygen?user=username&pass=password

with the corresponding username and password. The output is a JSON object with the key.

Input

The documentation33 is enough explicit and detailed to understand how works this translator.

Endpoint http://api.mymemory.translated.net/get?
HTTP method GET
Content type application/json

Parameters

q: Text to be translated
langpair: String that encodes the target and the source language as
<source lang>-<target lang>

key: Personal API key
de: Email

Table 3.11: MyMemory input

Output

The response is a JSON object split in two parts, translations by users, and machine translation.

{

"matches":[

{

"created-by":"Matecat",

"usage-count":42,

"reference":"",

30http://xml.coverpages.org/tmxSpec971212.html
31http://api.mymemory.translated.net/subjects
32https://www.translated.net/top/?ref=mm
33http://mymemory.translated.net/doc/spec.php

http://xml.coverpages.org/tmxSpec971212.html
http://api.mymemory.translated.net/subjects
https://www.translated.net/top/?ref=mm
http://mymemory.translated.net/doc/spec.php
http://xml.coverpages.org/tmxSpec971212.html
http://api.mymemory.translated.net/subjects
https://www.translated.net/top/?ref=mm
http://mymemory.translated.net/doc/spec.php

3.2. Multitranslator 69

"segment":"hello",

"create-date":"2015-02-10 00:18:22",

"last-updated-by":"Matecat",

"tm_properties":"",

"translation":"Hola",

"last-update-date":"2015-02-10 00:18:22",

"quality":"80",

"id":"465122672",

"match":1,

"subject":"All"

},

{

"created-by":"Matecat",

"usage-count":1,

"reference":"",

"segment":"Hello",

"create-date":"2015-04-10 18:34:41",

"last-updated-by":"Matecat",

"tm_properties":"",

"translation":"Hola sdasda",

"last-update-date":"2015-04-10 18:34:41",

"quality":"74",

"id":"465921498",

"match":0.97,

"subject":"All"

},

{

"created-by":"Matecat",

"usage-count":1,

"reference":"",

"segment":"Hello?",

"create-date":"2015-04-14 01:14:57",

70 Chapter 3. Development

"last-updated-by":"Matecat",

"tm_properties":[

{

"type":"x-project_id",

"value":"86047"

},

{

"type":"x-project_name",

"value":"series_2"

},

{

"type":"x-job_id",

"value":"101671"

}

],

"translation":"?‘Bueno?",

"last-update-date":"2015-04-14 01:14:57",

"quality":"74",

"id":"465956537",

"match":0.96,

"subject":"All"

}

],

"responseData":{

"translatedText":"Hola",

"match":1

},

"responseDetails":"",

"responseStatus":200,

"responderId":"236"

}

3.2. Multitranslator 71

As you can see, with a simple text like hello, some translations are strange and buggy, these kind

of translation are direct uploads of the users, using the fields created-by and quality can be decided

which grade of correctness is required.

The Python implementation can be configured in the constructor, deciding the minimum required

quality (80 by default), the allowed authors (Wikipedia and Matecat34 by default) or if all the authors

are allowed (False by default). Also there is the field segment, that shows the source term which is

obtained the translation.

If a translation is not available, the term will be translated using the machine translators named

before, the created-by field is MT!.

The translatedText field is the first translation of the array of matches, independently this is a good

or bad translation, that is, the responseText field is not useful, if there was any criteria that could

decide which is the best translation taking care the quality parameter for example, it could be useful,

but this is not the case.

Limit of use

Without providing a valid email in the field ”de” it can be made 1.000 requests per day. Providing

an email the requests per day increase up 10.000. More information can be found in the API limits

page35.

Issues

The translation of hotel from English to Spanish is ”Por favor, especifique dos idiomas diferentes”

(Please, specify two different languages), with the rest of language this issue doesn’t happen. This

translation is a user translation with a quality of 74, the correct translation hotel has 80, but the

translatedText field has the incorrect, so we cannot trust that the best translation is placed in this

place.

The JSONBuffer callback fails, the unique solution found is using a stream from the standard library

io, replacing the buffer with a BytesIO buffer.

The use of the API key has a worse performance than without such. A simple example with the term

34http://www.matecat.com/about/
35https://mymemory.translated.net/doc/usagelimits.php

http://www.matecat.com/about/
https://mymemory.translated.net/doc/usagelimits.php
http://www.matecat.com/about/
https://mymemory.translated.net/doc/usagelimits.php

72 Chapter 3. Development

hello and all the supported target languages shows the issue:

Without API key (s) With API key (s)
2.29422187805 11.8181540966

Table 3.12: MyMemory key comparison

The API calls are up to 415% slower than the same queries without API.

WorldLingo

Overview

Worldlingo is one of the oldest translators (created in 1998) on the Internet, it provides machine

and professional translations for over 141 languages. The free machine translation services are text

translation, document translation, web translation, email translation, all found in the main page36.

Also there are some external services as bilingual dictionaries, translations about a specific vocabulary’s

job, localization of software and multimedia and mobile solutions.

API

There is a simple page37 to test the possibilities of WorldLingo API, including encoding, output format,

custom dictionary and error output location.

All the information about the API can be found in this document38.

It includes a set of glossaries can be used to obtain better translations depending of the translation

context.

The implementation is using the default API key.

Input

There is the decided configuration for the queries:

36http://www.worldlingo.com/es/
37http://www.worldlingo.com/demo/api-html/WorldLingoAPI-HTMLDemo.html
38https://www.worldlingo.com/en/downloads/ServiceAPI.pdf

http://www.worldlingo.com/es/
http://www.worldlingo.com/demo/api-html/WorldLingoAPI-HTMLDemo.html
https://www.worldlingo.com/en/downloads/ServiceAPI.pdf
http://www.worldlingo.com/es/
http://www.worldlingo.com/demo/api-html/WorldLingoAPI-HTMLDemo.html
https://www.worldlingo.com/en/downloads/ServiceAPI.pdf

3.2. Multitranslator 73

Endpoint http://www.worldlingo.com/S000.1/api?
HTTP method GET
Content type text/plain

Parameters

wl data: Text to be translated
wl srclang: Source language code
wl trglang: Target language code
wl password: API key (secret by default)
wl gloss: Glossary or context of the translation (General by default)

Table 3.13: WorldLingo input

Output

The default and used configuration is that the data is directly displayed in the body of the returned

HTML page following the next structure:

error code

translation

If all goes right the error code must be 0, otherwise the translation can’t be done through a mandatory

parameter is incorrect through the server side has an internal problem.

There is an example:

0

hola

The entire response must be decoded to UTF-8 because it is directly the body of the HTML document.

Limit of use

According with the documentation 1000 requests per month are permitted using the free service.

Issues

The output format could be better.

74 Chapter 3. Development

OneHourTranslation

Overview

OneHourTranslation provides human translations as first service, including translation of documents

and multimedia, proofreading, transcriptions, translation of emails, webpages and applications. The

free machine translator for users currently is not working, so for now the unique access to it is the

API.

API

It has one of the best documentations, there are the web documentation39 and a downloadable file40.

The queries need the user account and the public and private keys, this information can be found

after the registration in this link41. There is also a sandbox scenario with its specific keys, but it is

designed only for testing.

Input

Endpoint http://www.onehourtranslation.com/api/2/mt/translate/text?
HTTP method GET
Content type application/json

Parameters

source content: Text to be translated
source language: Source language code
target language: Target language code
account: User account
secret key: Provided secret key
public key: Provided public key

Table 3.14: OneHourTranslation input

Curl

This is the provided curl example in the documentation:

39http://www.onehourtranslation.com/translation/api-documentation-v2
40http://oht-webcontent.s3.amazonaws.com/resources/One_Hour_Translation-API-V2-implementation-guide.

pdf
41https://www.onehourtranslation.com/profile/apiKeys

http://www.onehourtranslation.com/translation/api-documentation-v2
http://oht-webcontent.s3.amazonaws.com/resources/One_Hour_Translation-API-V2-implementation-guide.pdf
https://www.onehourtranslation.com/profile/apiKeys
http://www.onehourtranslation.com/translation/api-documentation-v2
http://oht-webcontent.s3.amazonaws.com/resources/One_Hour_Translation-API-V2-implementation-guide.pdf
http://oht-webcontent.s3.amazonaws.com/resources/One_Hour_Translation-API-V2-implementation-guide.pdf
https://www.onehourtranslation.com/profile/apiKeys

3.2. Multitranslator 75

curl --request GET "http://www.onehourtranslation.com/api/2/mt/translate/text?

secret key=<secret key>&public key=<public key>&source language=en-us

&target language=fr-fr&source content=text for translation"

Output

The service returns a JSON object split in three parts: status, errors and results.

{"status": {"msg": "ok", "code": 0},

"errors": [],

"results": {"TranslatedText": "hola"}}

The translation is placed in the TranslatedText field. A translation is correct if the field code is 0.

If the translation can’t be done the code remains being 0. There are a large number of error codes,

most of them related to malformed queries or other actions which aren’t direct translations.

Limit of use

Apparently there isn’t a defined limit, but probably if a massive number of queries are done, the API

key will be banned.

Issues

The character ´ (simple quote) is not decoded properly, it is displayed as the HTML character ',

the HTMLParser library solves the problem.

Yandex

Overview

Yandex is the Russian Google, it is a set of search services (images, videos, maps) and it also has a

translation tool. The translator page offers translations between languages, automatic source language

76 Chapter 3. Development

detection, textual and audio pronunciation and webpage translations. Also there is an application for

Android, iOS and Windows Phone. The mechanisms used by this service for the translations are

comparisons between texts and statistics using BLEU42 metrics.

API

The documentation43 is simple but well explained, it can be found which languages and parameters

are available, and the different outputs and error codes depending the format. The API key can be

obtained after the registration, requesting it and found it here44.

Input

There are XML and JSON (and JSONP) formatting, the used is the JSON because most of the

translators use this.

Endpoint https://translate.yandex.net/api/v1.5/tr.json/translate
HTTP method POST
Content type application/x-www-form-urlencoded

Parameters

text: Text to be translated
lang: String that encodes the target and the source language as
<source lang>-<target lang>

key: Private key

Table 3.15: Yandex input

Curl

The curl call has the next appearance:

curl -X POST ’https://translate.yandex.net/api/v1.5/tr.json/translate?

key=<PRIVATE KEY>&lang=en-es&text=hello’

42http://en.wikipedia.org/wiki/BLEU
43https://tech.yandex.com/translate/doc/dg/concepts/About-docpage/
44https://tech.yandex.com/keys/

http://en.wikipedia.org/wiki/BLEU
https://tech.yandex.com/translate/doc/dg/concepts/About-docpage/
https://tech.yandex.com/keys/
http://en.wikipedia.org/wiki/BLEU
https://tech.yandex.com/translate/doc/dg/concepts/About-docpage/
https://tech.yandex.com/keys/

3.2. Multitranslator 77

Output

One of the shorten and simplest JSON objects. The translation can be found in the text field.

{"lang": "en-es", "text": ["hola"], "code": 200}

The array of translation must contains one value because only one text is requested.

Limit of use

From the Terms of Use45: ”Small translation projects, which do not exceed 10,000,000 characters a

month (and no more than 1,000,000 in 24 hours), can use this service for free.”

Additionally from the general Yandex ToS:

”2.3. Yandex reserves the right to set any limits and restrictions, including but not limited to those

stated below: the volume of the text translated: 1,000,000 characters per day but not more than

10,000,000 per month.”

Issues

Difficulties to find the content type for the pyCurl queries. Notice the curl call doesn’t need this

header. Erroneously, if it is incorrect the service returns the error ’API key is incorrect’ instead of a

better error message about the content type.

Yandex Dictionary

Overview

This is another service from Yandex, in this case Yandex Dictionary is a set of bilingual dictionaries

between two languages created and extended from the translations of the Yandex translator. This

service isn’t available for normal users, it only be callable from the API.

45https://translate.yandex.com/developers

https://translate.yandex.com/developers
https://translate.yandex.com/developers

78 Chapter 3. Development

API

The documentation46 explains the accepted language pairs and how are done the queries and which

outputs are returned.

The process47 to obtain the API key is the same as Yandex translator.

Input

The format types can be JSON and XML, the used is JSON.

Endpoint https://dictionary.yandex.net/api/v1/dicservice.json/lookup?
HTTP method GET
Content type text/plain

Parameters

text: Text to be translated
lang: String that encodes the target and the source language as
<source lang>-<target lang>

key: Private key

Table 3.16: Yandex Dictionary input

Output

For this translator the term to test is ”computer” because it has synonyms.

{

"head":{

},

"def":[

{

"text":"computer",

"tr":[

{

"text":"ordenador",

46https://tech.yandex.com/dictionary/doc/dg/concepts/About-docpage/
47https://tech.yandex.com/keys/get/?service=dict

https://tech.yandex.com/dictionary/doc/dg/concepts/About-docpage/
https://tech.yandex.com/keys/get/?service=dict
https://tech.yandex.com/dictionary/doc/dg/concepts/About-docpage/
https://tech.yandex.com/keys/get/?service=dict

3.2. Multitranslator 79

"syn":[

{

"text":"computadora",

"pos":"noun",

"gen":"f"

},

{

"text":"Computer",

"pos":"noun",

"gen":"m"

},

{

"text":"computador",

"pos":"noun",

"gen":"m"

},

{

"text":"informatica",

"pos":"noun",

"gen":"f"

}

],

"mean":[

{

"text":"laptop"

},

{

"text":"desktop"

},

{

"text":"computing"

}

80 Chapter 3. Development

],

"pos":"noun",

"gen":"m"

},

{

"text":"informatico",

"pos":"adjective",

"mean":[

{

"text":"computing"

}

]

}

],

"pos":"noun",

"ts":"[pronunciation]"

}

]

}

This JSON structure is modified in order to being more readable. Not just a set of translations are

obtained, also the type of word, genre, pronunciation and other synonyms are retrieved.

The translations can be found in the text fields of def, tr and syn, except those within mean field.

Limit of use

From the general ToS: ”2.4. Yandex reserves the right to set any limits and restrictions, including but

not limited to those stated below: the number of references to the Service: 10,000 references per day.”

3.2. Multitranslator 81

Issues

The JSON structure changes depending of the term, this provoke that some test needed to be per-

formed to avoid problems accessing the parsed dictionary from the obtained JSON.

Frengly (Syslang)

Overview

When this translator was discovered it’s name was Syslang, but currently it’s Frengly.

Frengly collects translations from users using a friendly interface, also can be added translations from

source provided texts by the site. The translation page48 supports translations between languages and

autodetection of the source language.

Frengly’s engine has a particular system49 to rate the quality of the translations following different

criteria about if a word is translated by a human or a machine, if there isn’t a translation and depending

the length of the translated segments.

API

The documentation50 explains how do the queries, also it is supported a JQuery function to translate

from another webpage.

There isn’t API key for this service.

Input

The type format can be XML or JSON, but if an error occurs, regardless the chosen format, it is

XML. Initially it was implemented with JSON, but this issue provoke the change to XML.

48http://www.frengly.com/#!/translate
49http://www.frengly.com/#!/quality
50http://www.frengly.com/#!/api

http://www.frengly.com/#!/translate
http://www.frengly.com/#!/quality
http://www.frengly.com/#!/api
http://www.frengly.com/#!/translate
http://www.frengly.com/#!/quality
http://www.frengly.com/#!/api

82 Chapter 3. Development

Endpoint http://frengly.com?
HTTP method GET
Content type text/xml

Parameters

text - Text to be translated
src: Source language code
dest:Target language code
email - Frengly account email
password - Frengly account password
outformat - Format of the response [xml/json] (set xml)

Table 3.17: Syslang input

Output

<?xml version="1.0" encoding="UTF-8"?> <root>

<text>hello</text>

<translation>hola</translation>

<translationFramed>hola|</translationFramed>

<missing/>

<existing>hello,</existing>

<stat>1/1</stat>

</root>

The translation is found in the translation field. Notice the rest of the fields, if a word can’t be

translated it will be indicated, also every translated set of words (Frengly decides how to split these)

can be found individually in translationFramed. That’s a nice option to detect incorrect translations.

Limit of use

Reading the ToS51 there isn’t any limitation about the usage, except the systematic crawling of the

service, that is not this case.

Issues

The wait time between queries must be 3 seconds, this is a serious problem if two instances are running

at the same time. A solution for one instance is waiting 3 seconds every each call to ensure the next

51http://www.frengly.com/#!/privacy

http://www.frengly.com/#!/privacy
http://www.frengly.com/#!/privacy

3.2. Multitranslator 83

can be performed without this problem.

The commented problem with the default XML format for errors.

Hablaa

Overview

Founded in 2011, Hablaa provides a simple translation page52 with a complementary paid service

provided by human translators53. Most of the content comes from the Hablaa’s translators and other

translation sites like Linguee54, but users also can add and vote translations.

API

The API55 supports translations, translations with examples and translations for similar concepts.

This last feature could be useful, but after some tests, the source terms can be phrases and remote

concepts, therefore this is not used for the implementation.

There isn’t an API key.

Input

Endpoint http://hablaa.com/hs/translation/
HTTP method GET
Content type text/html

Parameters
text to translate: Text or word for translation
lang code src: Source language code
lang code dst: Target language code

Table 3.18: Hablaa input

There aren’t exactly parameters, as is showed in the next curl query, the input data is directly part

of the URL separated by slashes.

52http://hablaa.com/
53http://hablaa.com/order-translation/
54http://www.linguee.com/
55http://hablaa.com/api/

http://hablaa.com/
http://hablaa.com/order-translation/
http://www.linguee.com/
http://hablaa.com/api/
http://hablaa.com/
http://hablaa.com/order-translation/
http://www.linguee.com/
http://hablaa.com/api/

84 Chapter 3. Development

Curl

In this curl query is showed how must be put the parameters:

curl -X GET ’http://hablaa.com/hs/translation/mouse/eng-spa/’

Output

The response is a JSON object like this:

[

{

"text":"!‘Hola",

"pos":{

"code": None,

"title": None

},

"source":"hablaa"

},

{

"text":"hola! saludo",

"pos":{

"code": None,

"title": None

},

"source":"Hablaa.com"

},

{

"text":"!‘hola",

"pos":{

"code": None,

"title": None

},

3.2. Multitranslator 85

"source":"Hablaa.com"

}

]

Limit of use

From the ToS: ”API is free to use, regarding indicated data source license. There is a limit of call

that may be done from one IP in fixed period of time, to prevent from abuse. The limit is not strict,

there is heuristics that guesses whether queries comes from robot or human. If there are too many

queries or they look non-human – IP gets blocked. If you are a developer and such case happens:

please contact us.”

Issues

The language codes must be the specified in this56 JSON object.

The implementation of this service was difficult because it works with CloudFlare and pyCurl is not

allowed, that is why is used httplib2.

Glosbe

Overview

Glosbe is a collaborative project that involves the community to provide translations and also some

sites like Wiktionary57, OpenSubtitles58 and OmegaWiki59.

The main site offers translations between language pairs, showing an extend number of translations,

with context annotations, audios, possibility of editing, google translation, similar terms and phrases

in the original and the target languages (later we will see how is managed all this data).

56http://hablaa.com/hs/languages/
57http://www.wiktionary.org/
58http://www.opensubtitles.org/es
59http://www.omegawiki.org/

http://hablaa.com/hs/languages/
http://www.wiktionary.org/
http://www.opensubtitles.org/es
http://www.omegawiki.org/
http://hablaa.com/hs/languages/
http://www.wiktionary.org/
http://www.opensubtitles.org/es
http://www.omegawiki.org/

86 Chapter 3. Development

API

The documentation60 explains the basic usage to obtain translations, but also how to add new of

them. There isn’t API key, the entire site is free.

Input

Endpoint https://glosbe.com/gapi/translate?
HTTP method GET
Content type text/xml

Parameters

phrase: Text to be translated
from: Source language code
dest: Target language code
format: Type format, can be XML, JSON or JSONP (set XML)
pretty: Adds tabulations and returns for more readability (set false)

Table 3.19: Glosbe input

XML and JSON objects have the same value information, but the JSON format has less information

about the keys, and these are the unique way found to obtain valid translations, so the format must

be XML.

Curl

A curl query has the next appearance:

curl -X GET ’https://glosbe.com/gapi/translate?

from=eng&dest=spa&format=xml&phrase=hello&pretty=true’

Output

The output of this translator is extremely large (1125 lines), only are showed the relevant parts. As

explained in the input section, the XML format has more information, and this is essential in order

to obtain the translations.

The basic structure is:

60https://glosbe.com/a-api

https://glosbe.com/a-api
https://glosbe.com/a-api

3.2. Multitranslator 87

<?xml version="1.0" encoding="UTF-8"?>

<map>

<entry>

<string>result</string>

<string>ok</string>

</entry>

<entry>

<string>authors</string>

<map>Information about authors</map>

</entry>

<entry>

<string>dest</string>

<string>es</string>

</entry>

<entry>

<string>phrase</string>

<string>hello</string>

</entry>

<entry>

<string>tuc</string>

<map>List of meanings, translations and examples</map>

</entry>

<entry>

<string>from</string>

<string>en</string>

</entry>

</map>

Inside the tuc field there is a complex and irregular structure that combines different information, most

of them useless. The valid translations are found inside the structures with key

com.google.common.collect.RegularImmutableMap:

88 Chapter 3. Development

<com.google.common.collect.RegularImmutableMap resolves-to="[...]$SerializedForm">

<keys>

<string>text</string>

<string>language</string>

</keys>

<values>

<string>hola</string>

<string>es</string>

</values>

</com.google.common.collect.RegularImmutableMap>

The JSON object doesn’t has this key, so it’s more difficult to find this structure.

Finally the translation is located inside the first string of values.

Limit of use

From ToS: ”API is free to use, regarding indicated data source license. There is a limit of call that

may be done from one IP in fixed period of time, to prevent from abuse. The limit is not strict, there

is heuristics that guesses whether queries comes from robot or human. If there are too many queries or

they look non-human – IP gets blocked. If you are a developer and such case happens: please contact

us.” Notice these ToS are exactly the same as Hablaa.

Issues

Some time spent searching a logic pattern to obtain the useful content from the large XML documents.

Also the decision between XML or JSON was well studied.

The length of the returned data is too large, for some reason the callback function of the default

pycurl function fails and only the final part of the XML can be stored, that is why is used the httplib2

library.

3.2. Multitranslator 89

iTranslate4

Overview

In association with other translation services, iTranslate4 probably has the most complete machine

translation capabilities in terms of alternative sources. The external supported translators are: Ame-

bis61, Apertium62, Linguatec63, Lingenio64, Morphologic65, Promt66, pwn.pl67, SkyCode68, Systran69

and Trident70. Most of them are paid services that work as desktop applications, for this project they

can’t be used. Also the languages of the webpages don’t help to find information about these.

API

The service supports a set of dictionaries that help to decide the context of the text to obtain better

translations. During the configuration of the service after the registration, for every language pair the

user can choose which translators are used and their relevance.

The documentation71 has all the information about how it works, including the response code, the

encoding, the available functions and the output depending of the used input format.

The API key can be generated in the settings section72 after the registration. In this same page can

be found the number of remaining characters to translate using the current account.

Input

The configuration to call this service is the next:

There are more parameters like rid to use another configuration of translators and frm to decide the

format of the input text (currently only text and HTML).

61http://presis.amebis.si/
62https://www.apertium.org/
63http://www.linguatec.de/
64http://www.lingenio.de/
65http://www.webforditas.hu/
66http://www.promt.com/
67http://translatica.pl/
68http://webtrance.skycode.com/online.asp?current=6&setlang=en
69http://www.systransoft.com/
70http://www.translate.ua/
71http://itranslate4.eu/en/api/docs
72http://itranslate4.eu/en/api/settings

http://presis.amebis.si/
http://presis.amebis.si/
https://www.apertium.org/
http://www.linguatec.de/
http://www.lingenio.de/
http://www.webforditas.hu/
http://www.promt.com/
http://translatica.pl/
http://webtrance.skycode.com/online.asp?current=6&setlang=en
http://www.systransoft.com/
http://www.translate.ua/
http://itranslate4.eu/en/api/docs
http://itranslate4.eu/en/api/settings
http://presis.amebis.si/
https://www.apertium.org/
http://www.linguatec.de/
http://www.lingenio.de/
http://www.webforditas.hu/
http://www.promt.com/
http://translatica.pl/
http://webtrance.skycode.com/online.asp?current=6&setlang=en
http://www.systransoft.com/
http://www.translate.ua/
http://itranslate4.eu/en/api/docs
http://itranslate4.eu/en/api/settings

90 Chapter 3. Development

Endpoint http://itranslate4.eu/api/Translate?
HTTP method GET
Content type text/json

Parameters

dat: Text to be translated
src: Source language code
trg: Target language code
auth: Private key
dom: Context of the input text (general by default)
min: Minimum number of translations
max: Maximum number of translations

Table 3.20: iTranslate4 input

Output

The response is a JSON object like this:

{

"dat":[

{

"text":[

"hola"

],

"length":4,

"rid":"ape.ts"

},

{

"text":[

"Hola"

],

"length":4,

"rid":"lgt.ts"

},

{

"text":[

"!‘Hola"

],

3.2. Multitranslator 91

"length":5,

"rid":"pro.ts"

}

]

}

The translations are found in the fields text. The field rid indicates which translator is used (in this

case ape is Apertium, lgt is Linguatec and pro is Promt).

Limit of use

10.000 output translated characters, that’s all, this services is only a demo of the paid service, after

exhausting the quota, the API key is useless.

Issues

If the minimum and the maximum number of translations aren’t the same, as it has been tested, the

number of translation is the minimum value, so maximum could be a big number and the minimum

the number of wanted translations.

Dict.cc

Overview

Created by Paul Hemetsberger in 2002, Dict.cc73 is a collaborative project with an initial set of

translations from Beolingus’s dictionary74 and Mr Honey’s Business Dictionary75. Users can upload

their translations in a complete form, and others can correct and rate these.

The entire site is focused in the German language, so it’s logically the best translations are in this

language. Also the webpage has an English-German training vocabulary to learn new words between

these languages.

73http://www.dict.cc/
74http://dict.tu-chemnitz.de/
75http://www.mrhoney.de/

http://www.dict.cc/
http://dict.tu-chemnitz.de/
http://www.mrhoney.de/
http://www.dict.cc/
http://dict.tu-chemnitz.de/
http://www.mrhoney.de/

92 Chapter 3. Development

API

This translator doesn’t has an API, but the user rbaron76 from GitHub created a Python library77 that

obtains the translations downloading the entire HTML document. It can be cloned from GitHub78

or installed using pip: pip install dict.cc.py The library also works with command line but the

implementation uses the core to obtain the translations, that is, the dictcc.py file.

Input

Endpoint http://<subdomain>.dict.cc/?
HTTP method GET
Content type text/html

Parameters
subdomain: <source language><targer language>

s: Text to be translated

Table 3.21: Dict.cc input

The user agent used is Mozilla/5.0 (Windows NT 6.3; WOW64; rv:30.0) Gecko/20100101 Firefox/30.0.

The subdomain is the concatenation of the two language code like this:

http://enes.dict.cc/?s=computer

Where en is English and es is Spanish.

Output

The wrapper returns a Dict object that contains the source and target languages, the number of

translations and a list of tuples with source terms and their translation. This list of tuples not only

contains the original term, it also has similar terms derived of this:

[(’computer’, ’ordenador’), (’computer-aided’, ’asistido por ordenador’), (’car computer’,

’ordenador de a bordo’), (’laptop computer’, ’ordenador portátil’), (’personal computer’,

’ordenador personal’)]

The implementation is able to choose all the translations or only where the source term is exactly the

provided, depending if the parameter exactly term of the constructor is true or false, by default is

76https://github.com/rbaron
77https://github.com/rbaron/dict.cc.py
78https://github.com/rbaron/dict.cc.py.git

https://github.com/rbaron
https://github.com/rbaron/dict.cc.py
https://github.com/rbaron/dict.cc.py.git
https://github.com/rbaron
https://github.com/rbaron/dict.cc.py
https://github.com/rbaron/dict.cc.py.git

3.2. Multitranslator 93

true.

Limit of use

There isn’t a specific limit, further, the use of the wrapper anonymises who are doing the requests.

In the FAQ79 can be found the next: ”All the linking and integration methods mentioned here can

be used for free and without having to ask for permission. Maintainers of websites receiving more

than a few million page views per month should however please notify me in advance to avoid possible

performance issues (paul at dict.cc). Short notes from other website maintainers (after integration) are

also very welcome, just because it’s interesting to see which sites link to dict.cc. Server-side processing

of any kind is not allowed, currently there is no API available or planned.”

Issues

The wrapper solves a problem with the order of the elements of the tuples, the implementation needs

to manage this order to return the correct data.

The day the creators of this site modify the position of the translations the wrapper will stop working.

Baidu

Overview

As Yandex, Baidu is the Chinese Google, it has around 42 products, most of them search engines

(text, music, news, statistics) and thematic services like Baidu Space, Baidu Encyclopedia and Baidu

Library.

The translator page80 can translate text form a specific language pairs and how this is pronounced.

Aside from the translator, Baidu also provides a dictionary81 in English and Chinese.

79http://www.dict.cc/?s=about%3Afaq
80http://translate.baidu.com/
81http://dict.baidu.com/

http://www.dict.cc/?s=about%3Afaq
http://translate.baidu.com/
http://dict.baidu.com/
http://www.dict.cc/?s=about%3Afaq
http://translate.baidu.com/
http://dict.baidu.com/

94 Chapter 3. Development

API

The documentation82 is in Chinese, so it’s recommendable an automatic web translator to try to

understand it.

The API supports an array of source texts separated by return characters, but for this implementation

only is done for an individual translation.

Following this tutorial83 the registration process is more easy. It is required the API key, but also

exists the client key and the secret key.

Input

Endpoint http://openapi.baidu.com/public/2.0/bmt/translate?
HTTP method GET
Content type application/json

Parameters

q: Text to be translated
from: Source language code
to: Target language code
client id: API key obtained after registration

Table 3.22: Baidu input

Don’t confuse the client id parameter with the client key.

Output

The response is a JSON object:

{"to": "spa",

"from": "en",

"trans_result": [{"src": "hello", "dst": "Hola"}]}

The translation is found in the dst field of the array trans result.

82http://goo.gl/dodzCT
83http://wp-autopost.org/manual/how-to-apply-baidu-translator-api-key/

http://goo.gl/dodzCT
http://wp-autopost.org/manual/how-to-apply-baidu-translator-api-key/
http://goo.gl/dodzCT
http://wp-autopost.org/manual/how-to-apply-baidu-translator-api-key/

3.2. Multitranslator 95

Limit of use

From the documentation and after an English translation is found: ”Baidu translation api currently

divided into four files, for ordinary developers to provide 1000 cycles/hour limit”

Issues

Some problems to obtain the verification code in the registration process.

The language of the site is Chinese.

Discarted translators

The next translators were tested for their integration, but these finally cannot are available for various

reasons.

Apertium

In collaboration with Spanish and Romanian institutions, this translator84 currently works with

Python 3, running a server (Toro and Tornado) in the local machine and doing petitions to local-

host. The technologies used are incompatibles with the project, that uses Python 2.

Watson

It is the translator85 of IBM integrated in the Bluemix86 platform, the services only offers 30 free days,

also, a registered and deployed application must be done following the guidelines, this fact is quite far

of the required services.

84https://www.apertium.org/
85http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/machine-translation.html
86https://console.ng.bluemix.net/

https://www.apertium.org/
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/machine-translation.html
https://console.ng.bluemix.net/
https://www.apertium.org/
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/machine-translation.html
https://console.ng.bluemix.net/

96 Chapter 3. Development

MyGengo

The philosophy of MyGengo is to upload jobs, check if these are completed, and when are done, get

the results. The services is focused in human translation, but also exists a sandbox scenario with a

machine translator, but this last works equally, it is not received an automatic response. There is a

library87 for Python but it is useless for this project.

BabelFish

Searching the origins of Bing Translator it is found BabelFish88, but sadly there isn’t an API that

works with this translator.

WorldReference

Currently this service89 doesn’t provide new API keys.

Other online translators

Internet is full of translator pages and they only are accessible using a browser, as for example dict.cc.

The translations only can be obtained downloading the entire HTML document and try to parse it.

Some sites have methods to detect this practice, so first the wrapper can be banned, and second, site

can change the display of the elements as commented in the dict.cc translator.

3.3 NewsdeskTranslations

3.3.1 Introduction

As explained in previous sections, NewsdeskTranslations is a Django application in development where

the users can obtain semantic data related to plant pests from a remote database using SPARQL

87https://pypi.python.org/pypi/mygengo/1.3.1
88http://www.babelfish.com/
89http://www.wordreference.com/

https://pypi.python.org/pypi/mygengo/1.3.1
http://www.babelfish.com/
http://www.wordreference.com/
https://pypi.python.org/pypi/mygengo/1.3.1
http://www.babelfish.com/
http://www.wordreference.com/

3.3. NewsdeskTranslations 97

queries, for later validate it and sent the new derived valid terms to the original database using

natural language techniques, translation services and other semantic databases.

In addition to the integration of MultiTranslator in NewsdeskTranslations, it require some adjustments

and new features related with the generation and validation of the obtained data.

First, we will take a look at the requirements of the application, then which type of data manages the

application, after the visible part of the project, where the users will be working, and finally, how all

these functionalities are implemented.

3.3.2 Requirements

At the end of the development this application must accomplishes the next requirements:

• The user must be able to use a webpage to store terms using natural language tools to obtain

derivations, translators to obtain the same terms in other languages and semantic databases to

obtain additional information about the pests.

• The user must be able to choose which information about the selected pests would obtained

using the webpage. For enrich, the user can choose the resources, for translate the user can

choose the resources, the target languages and the translators.

• The user must be able to see a progress bar to know the current number of completed tasks in

the webpage.

• The user must be able to use the Django administration panel to filter, sort, classify and search

labels.

• The user must be able to export and import CSV files with labels.

• The user must be able to validate the labels inside the exported files.

• The user must be able to configure the score (weight) of each source present in the database.

3.3.3 Ontology

All the data managed by the application is obtained using SPARQL queries, that is, these information

is located into a Semantic Web database.

To understand more easily the type of words used by the application and their relations, the figure

3.5 shows the used ontology.

Using this ontology, the application requests and obtains terms classified in:

98 Chapter 3. Development

Figure 3.5: Plant pest ontology

• Plant part: The different sections that compose the anatomy of a plant, like crown, trunk, leaves

and root.

• Symptom: Those symptoms that are shown by those hosts affected by the pest or disease. For

example, yellowing, withering and change color.

• Crop: Specie plant affected by a pest or disease.

• Vector: Organism that helps transmitting the pest or disease.

• Transmission mechanism: Non-biological agents that can facilitate the transmission of the pest

or disease. For example, mud, wind and water.

3.3.4 Front-end

The front-end is the set of user interfaces available in the client side, this project has two main pages

and some auxiliary pages. The mainpage is the site where the users will generate the new labels

for the required pests using some implemented tools and features. The other important page is the

admin panel provided by Django, in this case reinvented as a validation panel where the labels are

checked. The rest of the pages are used by the administrators of the site or for minor tasks that will

be explained.

3.3. NewsdeskTranslations 99

Figure 3.6: Original website

Webpage

When I started the project, the webpage has the basic aspect showed in the figure 3.6.

After lot of changes and tests the figure 3.7 shows the proposed design and utilities to generate new

labels from pests.

Actions

At the left the user can use the droplist to enrich labels from the semantic web database, DBPedia

and EPPO and translate labels, the make alert option is a future feature doesn’t contemplated in the

project. When the action is decided only remains to click the ”Go” button to start the execution.

Also there is the ”Pending tasks” button to check if the tasks are completed, showing the progress

bar section, that is because the tasks are independent of the client, that can close the tab or browser

and return after few minutes to see the new progress, the unique restriction is that the user must use

100 Chapter 3. Development

Figure 3.7: New website design

the same computer and browser to enter again in the webpage.

At the right there are the ”Upload file” and ”Validation panel” buttons, with the first, the user can

upload a CSV file with labels (explained in the section 3.3.4), and with the second he goes to the

administration panel to manage the generated labels.

Pest table

The pest table is the original table implemented by Josep Maria, any change was done. When a user

interacts with the website, this is the first election that he must done, because if he changes the table

page, depending of the browser, the checked options are deleted.

Options

Depending of the chosen action, more or less options will be available.

For the enrich labels action it is showed the resources section. For enrich with DBPedia and EPPO

all the options are hidden because the unique required data are the pests. Finally, the translate labels

option has all the sections: resources, languages and translators, as it can be seen in the next image.

3.3. NewsdeskTranslations 101

Figure 3.8: Translate sections

Progress bar

When an action is executed, the user must wait the completion of the tasks, otherwise, unexpected

results will be obtained. As explained before, the user can close the browser and check after the state

with the ”Check pending tasks” button. The first step is to obtain the labels selected in the resources

section and the desired pests. An animation is showed because the server doesn’t know the number

of labels.

Figure 3.9: Progress bar waiting

When the labels are obtained, the progress bar will advance to fill. At the bottom of the bar will be

displayed the percentage, number of completed tasks at the current time and total tasks.

102 Chapter 3. Development

Figure 3.10: Progress bar advancing

Finally the tasks are completed, a message is showed indicating which action is completed, if the user

uses the ”Pending tasks” button this message won’t be displayed.

Figure 3.11: Progress bar advancing

Admin panel

The admin panel is a default webpage provided by the Django framework to manage the models of the

database. In this case the users must use this panel to manage the generated labels in the mainpage

and additional features that will be explained. In the root of the admin webpage there are the available

pages:

Figure 3.12: Models administration

3.3. NewsdeskTranslations 103

Validation panel

In this page the users can manage the labels generated in the mainpage.

Figure 3.13: Models administration

The main functionality is accept or reject labels using the status column and the save button at the

bottom of the page. Initially all the labels are in the ”Pending” state, user can decide which are good,

checking the ”Accepted” state, or bad, checking the ”Rejected” state. When all is decided and saved,

the labels are sent to the remote database.

At the top there is a search bar to find labels using the columns label and generated label.

Another important feature are the filters, it’s extremely recommended the use of these at least to filter

the ”Pending” labels from the rest.

The filters used filter by:

• Status

• Class

• SPARQL status

• Source

• Endpoint

104 Chapter 3. Development

• Language

Finally, after the use of the search bar and the filters, the last feature to manage the labels are the

sorted columns, except the sources column, the headers of the rest columns can be clicked to sort the

labels ascendant or descendant by the values of the selected column.

Custom actions

Django provides a droplist to implement new actions.

Figure 3.14: Custom actions

Accept, reject and delete labels

Complementing the default validation process, the user can use the action droplist to accept, reject

or delete all the marked labels using the left checkboxes.

Copy a label

If user needs, the duplication of labels is available, but only one each time to avoid problems, for

example, cloning 100 labels at the same time could be a chaos, it is better to go one by one, cloning,

changing and accepting a label, and repeat the process for all the desired labels.

Export labels

If the user doesn’t want to use the validation panel, he can use a CSV file with the marked labels.

The export action launches a dialog to decide where the file is saved, it can be showed in the figure

3.15.

3.3. NewsdeskTranslations 105

Figure 3.15: Export file dialog

Figure 3.16: Exported file

Obtaining a file like the showed in the figure 3.16.

The unique column that users can edit is the Translation column, the others must be ignored. The

unique rules to verify the labels are if the text is deleted, the label is rejected, else, it is accepted. To

manage the labels, can be activated some sort and filter features that the spreadsheets include.

The version number is included if in future updates the proposed format changes, avoiding problems

with old files, that will continue using the current implementation.

Upload file

After the verification of an exported file, the user can use the ”Upload button” in the mainpage and

send the file using the provided dialog showed in the figure 3.17. The labels will be read and directly

classified and updated.

106 Chapter 3. Development

Figure 3.17: Upload file page

Edit labels

This functionality only must be used to solve issues like to correct the language of a label, or to check

the information of the label, and exists the possibility to broke the label, for example, changing the

URI.

Manage resources

In the last column of the validation panel there are the scores for each label, they are the sum of the

score for each source, this value is used to sort the labels with a better criterion than the number of

sources, as long as these scores are well-balanced.

3.3. NewsdeskTranslations 107

Figure 3.18: Edit label page

108 Chapter 3. Development

Figure 3.19: Sources page

These scores must be chosen by the administrators of the site when a new source appears. After the

modification of a source, all the labels that has this source are recalculated. Notice any source can be

deleted to prevent inconsistency in the scores of the labels.

Figure 3.20: Score update page

3.3. NewsdeskTranslations 109

Sessions

Currently, this page is only for debugging, a normal user doesn’t need it. This is explained in the

section 3.3.5

3.3.5 Back-end

The back-end is the server side, where the Django application is running and serving the pages

requested by the client side.

Webpage

Initially the web page only contains a droplist with the actions enrich, translate and make alert. The

form and the enrich process worked, also the translate process using goslate (Google). As it can be

seen before, the page has changed a lot.

Actions

Enrich

The enrich process first obtains all the required labels from the remote database using the SPARQL

queries, after that the enrichment process really starts, depending of the structure of the labels, some

derivations are done using NLTK:

• Verbs: Derivation of the original verb form to obtain the infinitive, gerund and particle and the

lexema.

• Nouns: Plural and lexema of the word.

Also a treatment about punctuation symbols, extra spaces and lowercase characters is done.

DBPedia and EPPO

The DBPedia and EPPO actions were implemented by Roberto, my job was to connect these with

the rest of the actions, adding these in the views file and sending it the correct parameters to these

110 Chapter 3. Development

functions.

The DBPedia enrichment launches a SPQRQL query to the DBPedia endpoint, parsing and obtaining

the scientific names of the selected pests.

The EPPO enrichment first obtains the EPPO code from the ontology and a query is done using the

API provided by the EPPO service90, like translation services, after the data is obtained, it is parsed

and the new labels for the desired pests are obtained.

Translate

This is the time to remember the MultiTranslator project, this module, and most specifically Transfu-

sion, was created to encapsulate the logic behind the translator services and mainly offering a simple

function (get translation) that does all the work.

During the development, transfusion acts as a git submodule, offering me an easy way to update the

repository and apply the changes directly in the Django project.

At the end of the development, MultiTranslator became an independent project, that is, every change

must require an update from the repository, but in this case this fact doesn’t affect, because only

Transfusion is used. The keys and settings for Transfusion were directly wrote in the Django project,

for now, all the translators except iTranslate4 are available for the users, probably over time some

translators will be excluded, for example Hablaa, that becomes unavailable during some time if differ-

ent users execute it at the same time, or Syslang, that needs a 3-second delay. And probably, others

will be added as they will be appearing or being available without fee.

The basic behavior of the translate function is:

1. Set up the Transfusion instance with the translators desired by the user.

2. Receive the labels that will be translated, together with the language required.

3. Execute the get translation function and obtain the Translation instance after the execution of

the corrector.

4. Parse the Translation instance received and insert the translations into the database, taking into

account which translator is used every time.

5. Update the progress bar at the end of every individual task.

90https://data.eppo.int/

https://data.eppo.int/
https://data.eppo.int/

3.3. NewsdeskTranslations 111

Pest table

When the webpage is loaded, the server launch a query to obtain all the available pests in the remote

database, serving the entire webpage and rendering the table with the pests.

Options

The different sections required for each action were directly implemented in the HTML code, using

Django templates to generate the entire sets of buttons. Every group has an identifier for the ”Select

all” buttons.

Progress bar

Decisions

When the translate process were working, a big issue appears, if the user only wants few translations,

for example, the crops in Spanish using Google for a unique pest, the process is faster, a few seconds,

but if a big amount of data is required (like the first practical case of the Grouper), the time taken is

extremely big, it could be more than 20 minutes requiring all the sources, languages and translators.

So an additional task is proposed an accepted, the implementation of a progress bar, very used in file

services like DropBox.

Initially I started a research process to know how must be implemented a progress bar, one of the bests

options found was Celery, a Django application that manages asynchronous tasks, and this project91,

at first appearance seems to be easy to use, but the fact is that only the process to install all the

required components (MySQL for the database and RabbitMQ for the message passing, among others)

and interconnect these was very difficult for me. After some days expended on this, finally I desisted.

The second option was the combination of JQuery-UI or Bootstrap for the design, Ajax for the

asynchronous communication with the server and JavaScript/JQuery to update the progress bar. But

it stills remaining an issue, how the server knows which user is requesting the new progress bar value?

The answer is using a new model combined with the session token that Django provides for each

specific computer and browser.

91http://www.dangtrinh.com/2013/07/django-celery-display-progress-bar-of.html

http://www.dangtrinh.com/2013/07/django-celery-display-progress-bar-of.html
http://www.dangtrinh.com/2013/07/django-celery-display-progress-bar-of.html

112 Chapter 3. Development

Implementation

The new model, called SessionProgress, stores the session key of a user, the number of completed

tasks and the total number of tasks. When a user request the mainpage, a SessionProgress instance is

created in the database, storing the session key and initializing the tasks to -1. Also, initially the first

time the mainpage is served, the progress bar values are set to -1 by default, that is, the first time the

Ajax communication hasn’t begun. It’s important to comment that the HTML code for the progress

bar is in an independent file, linked in the mainpage.

At the client side, an Ajax call requests the progress bar template every 500 milliseconds, when the

server receive the petition, it obtains the session of the user and sends the renderized template with

the new values to the user. Now the client renders again the progress bar section with the current

and total tasks, depending of the values, the progress bar has a different aspect.

If total tasks and current tasks are greater than 0, the user executed an action and is waiting, the

progress bar displays the current state of the execution. Else, if current progress is 0, the labels aren’t

obtained yet, the animation is showed. Finally if the two previous cases don’t occur, the progress bar

is void because all the tasks are completed.

Every action available in the droplist updates the progress value every time an individual task is

completed, that is for example, if a user enrich a pest, at the end of every NLTK enrich, the progress

is updated. In the case of the translations, the total tasks are the multiplication of the pests times

number of labels times languages times translators.

Design and user interaction

Initially there isn’t temporalized the dessign because my knowledge about web design and front-end

development was very poor and it could affect at the temporalization of other tasks, and I say it in

past because in the middle of the development (with good temporalization dates) I started to learn

JQuery, CSS, JavaScript and Ajax to improve my skills and offer a better first impression of the

project, because except the Django panel, there isn’t any other graphical user interface.

As a disclaimer, the development of this part were hard and some of the code is taken from examples

and tutorials, like any other newbie web developer, so probably an expert on this field would do better

the logic of the functionalities and know more libraries than me.

In general, most of the JavaScript code uses JQuery 1.11.2 and the graphics were done with JQuery-UI

3.3. NewsdeskTranslations 113

1.11.4. Also there is a library for Ajax using JQuery 1.11.1 and another for the forms, adapted by

Malsup.

The next list shows how functions are used to implement every element:

• Texts: Simply changing the CSS colors and sizes. Simply changing the CSS colors and sizes.

• Buttons design: Using the button() function from JQuery and overriding the default CSS colors.

• Pest table: The pest table is the unique element from the original webpage, it uses django-tables2

for the design and the form.

• Sections: Using individual divs for each section and modifying the border and border-radius

parameters.

• Select all buttons logic: Getting the elements of the section where is the button and changing

the checked parameter for each button.

• Sections update using the droplist: Using the slideUp and slipdeDown functions.

• Progress bar design: Using the provided progress bar design provided by JQuery.

• Progress bar automatic update: Using the setInterval(”refresh()”, 500) function to update the

bar every 500 milliseconds.

• Gradients: Using the CSSmatic92 webpage.

Admin panel

As explained before, the admin panel had the capacity to validate labels and sent it to the remote

database using the SPARQL queries, all this part were done at the start of the project and my work

continue right it left off.

Refactoring

In the temporalization can be seen a high quantity of deletions, that is because during the firsts weeks,

and also when it is required, the original code is highly modified to offer more generic solutions and

doing the necessary adaptations when new functionalities were implemented.

The refactor process affect at the next parts.

92http://www.cssmatic.com/

http://www.cssmatic.com/
http://www.cssmatic.com/

114 Chapter 3. Development

SPARQL queries

All the queries to obtain the different classes had a duplication of the code because in some cases

the URI parameter is required and in others not, creating the same query with and without this

parameter, an easy solution was found, in the place where the URI was wrote, a new function decides

if the URI must be wrote or not depending if it is None or not.

Database insertions

Initially there were lots of functions to obtain the different resources of a pest, the structure of these

were equal, only the parameters of the SPARQL query changed, so a big important reimplementation

were done to offer a more generic solution, including the compatibility with the translation function.

The first step was the creation of a new class, LabelInfo, to store in memory all the labels obtained,

and also, the creation of a set of enumeration classes to manage the used actions, graphs and resources.

This is the dictionary corresponding to the plant part resource, it can be seen how is configured every

parameter to be used later in the enrich and translate processes:

plant_part = { "common": {"resource_type": "plantPart",

"class_uri": "http://purl.obolibrary.org/obo/PO_0025131",

"class_label": "Plant Part"},

"local": {"endpoint_type": settings.ENDPOINT,

"graph_type": settings.GRAPH,

"property_uri": "http://www.w3.org/2000/01/rdf-schema#label",

"function": sparql.get_local_plant_parts},

"remote": {"endpoint_type": settings.REMOTE_ENDPOINT,

"graph_type": settings.GRAPH_PLANT_ONTOLOGY,

"property_uri": "http://www.w3.org/2000/01/rdf-schema#label",

"function": sparql.get_remote_plant_parts},

"enrich": {"verb_ing": False}

}

After this refactor, a new function was implemented using these data structures, replacing the old

duplicated functions, and the function that inserts the data into the database also was reimplemented.

Finally, the enrich and the translate functions also were remade with this new behavior.

3.3. NewsdeskTranslations 115

Custom actions

Accept, reject and delete selected labels

The delete action is a default action provided by Django.

The functions that implement the accept or reject actions receive which labels are checked, changing

the status depending of the case, and finally saving all.

Import/export file

The export functionality reads all the checked labels and store it using the unicodecsv library, that is

because the default csv library provided by Python can’t manage unicode strings. The file is wrote as

presented in the front-end section and sent to the client as an attachment:

response = HttpResponse(content_type=’text/csv’)

response[’Content-Disposition’] = "Attachment; filename=export_%s.csv" % \

(time.strftime("%d-%m-%y_%H-%M"))

Copy

This functionality clones the selected label, changes the generated label name appending " copy <index>",

where index is the number of copy, finally, the source User is assigned to this. The user can clone

the same label the number of times he want, for example obtaining: insects copy 1, insects copy 2,

insects copy 3 and so on. If the user tries to clone more than a label, a Django error message will be

showed at the top of the validation panel.

Minor features

The next additions are little improvements that weren’t present in the original implementation.

Search bar

Adding the next line in the admin file the search bar was activated:

search fields = [’label’, ’definitive’]

116 Chapter 3. Development

Score column

The field score was added in the LabelSource and ValidateLabel models, and the score column was

activated for the validation panel. As explained in the front-end section, when the score of a source is

updated a post save receiver is triggered and it updates all the related labels.

Languages

Internally, the server works with language codes, like Transfusion, but for the users it is better to

display the name, not the code. Using a dictionary where the key is the code and the value is the

name, Django automatically works with the codes but shows the names.

3.3.6 Practical case

With the next example, we will across the full set of functionalities of the project, indirectly including

the MultiTranslator module. We take the case that a new pest is detected in the lands of Lleida, the

pest is called Xylella Fastidiosa, a bacterium that affects the olive and almond trees (among other

trees), this bacterium is found in some vector insects of the Cicadellidae family, when the insects feed

the wood of the tree, if these tree has the bacterium, the insect will transport it to another trees when

it feed again. The disease of Xylella Fastidiosa is the withering and death of the affected tree.

Figure 3.21: Insect from the Cicadellidae family

3.3. NewsdeskTranslations 117

Figure 3.22: Affected olive tree with Xylella Fastidiosa

Previously, in the remote database a investigator must provide some guidelines and information about

this pest, classifying this in crops, plant parts, diseases, the common names he know and so on.

Enrich

Mainpage

The investigator responsible of the NewsdeskTranslations project receive the order to generate the

necessary labels to use these in the new filter to obtain the news about this pest.

He goes to the mainpage and does the next actions:

1. Finds Xylella Fastidiosa in the pest table and check it.

2. Checks the ”Select all” button for the enrich labels action.

3. Presses the ”Go” button to start the enrichment and waits.

Validation panel

When all the tasks are completed he presses the ”Validation panel” button and goes to the Django

admin panel, where all the labels are generated, he filters these by ”Pending” and ”NLTK enrich” to

obtain only the desired labels.

Now the investigator must decide which generated labels are correct and which are rejected, or change

these if he knows the correct derivations of the words. When all the pending labels are updated and

sent to the remote database, this initial process is completed.

118 Chapter 3. Development

Enrich with DBPedia/EPPO

Mainpage

Now the investigator wants to know which are the alternative names of the pest, he uses the DBPedia

and the EPPO enrichments.

Validation panel

Filtering by ”Pending” and DBPedia or EPPO he can validate these new labels.

Translate

Mainpage

In 2013 this pest was extended by Italy, so besides the Spanish, the Italian could be a good option

to obtain more information. The investigator choose the ”translate labels” option, select all the

translators and the languages Spanish and Italian, and finally proceeds to start the translation process

using the ”Go” button.

Validation panel

Our investigator is Spanish, so he can validate the Spanish labels, but he doesn’t know Italian, so first

he validate the Spanish words using the correct filters. He can be helped by the columns ”Matches”

and ”Scores” if he is doubting between two words, for example. Also, if he notices that a important

translation is not present, he can clone it using the copy action and put his own translation. He has

some contacts that know Italian, so he exports the Italian labels and sent the generated file to one of

his co-workers. Some days ago the file is validated and returned to the investigator, the last step is the

upload of the file, all the labels will be updated, saved and sent to the remote database automatically.

3.3. NewsdeskTranslations 119

Conclusions

After this example, the investigators who will use this tool may have an idea of how it works and what

are the available functionalities. It also can be used as a feedback to obtain new ideas or changes that

are reclaimed if a feature is not good as expected.

Chapter 4

Conclusion

4.1 Future Work

4.1.1 MultiTranslator

Lots of new features can be implemented, new translators and writers, better corrector implemen-

tations, new scripts and functionalities about unexploited features, like the interconnection of the

current tools, or the dump of data to write again it in other formats. Probably the most important

feature is the implementation of more source languages. For this project only English is required, but

for a more general purpose, new languages could be activated after the required tests and fixes for

each translator.

Some translators can be configured to filter translations by user, type, quality, and so on, a deeper

analysis can be done to improve the possibilities of these features.

4.1.2 NewsdesksTranslations

This project is still work in progress, with many months remaining till its deadline. For now, the

generated data requires human intervention before it is loaded into the semantic repository. One of

the ways to facilitate this process could be the automation of the validation of translations using a

score for their reliavility. To determine this score, a significative sample of translators output should

be validated by experts and contrasted with what is generated by the MultiTranslator.

The Semantic Web is evolving every day, if we wait a little bit more, new semantic databases that

120

4.2. Conclusions 121

integrate and enrich existing datasets can help us to obtain verified translations and the type of terms.

Also new ontologies and specific databases could be added besides EPPO and DBPedia.

Currently the users can’t know if the used remote services are working correctly, additional information

like the number of new labels or status of the translators, SPARQL endpoints and databases could be

displayed when the tasks of the user are completed, to inform the administrators if there are problems.

The ”make alert” action in the droplist of the mainpage must be implemented when the application

that gets the validated labels for the filters is finished.

4.2 Conclusions

The investigations done in this project provided me a deeper knowledge about Semantic Web, machine

translators and to lesser extent, natural language processing. The fully integration of all the studied

exceed the available time to develop the project, that is, focusing the efforts only in MultiTranslator

was a good idea. If it had tried to implement all some essential features couldn’t been implemented,

for example, if Transfusion hadn’t the corrector implementation, the quality of the translations would

be poor, and therefore, the entire project wouldn’t obtain the minimum quality to be a useful tool.

The design and development of MultiTranslator show me how a Python programmer really must work

and which problems must face. At the beginning my knowledge about dependencies and installation

process were basic, but after the last the project became one more of the thousands libraries created

by the community to solve specific tasks, and that facilitate and speed up the development of new

projects, like the set of libraries used in this project, without these some of the features couldn’t have

been implemented. Also, the fact that MultiTranslator is available for everyone is a good starting point

for other developers that require translation services in their applications, NewsdeskTranslations will

be useful for a lot of people, but its existence will have fewer impact in the development community.

The addition of new features in NewsdeskTranslations notice me the importance that Django is ob-

taining during the last years, it not only provides a set of tools and abstractions to develop powerful

web applications, but these tools are well designed and easy to integrate and extend, as it can be seen

in the project.

Another important task studied and finally implemented with good results is the web design, this type

of programming never attracted me, now I have a better understanding of these technologies and after

crossed the first barriers about syntax, paradigms and the different methodologies to work, all that

remains is apply all the acquired knowledge and skills in new projects.

122 Chapter 4. Conclusion

Finally, the tools and functionalities implemented reach their final stage for this project, but it has to

keep working both in this project and the posterior and subsequent projects related to this.

Bibliography

[1] Apertium api. http://wiki.apertium.org/wiki/Apertium-apy.

[2] Collins dictionary api. http://www.collinsdictionary.com/api/.

[3] First steps with celery: how to not trip. http://hairycode.org/2013/07/23/

first-steps-with-celery-how-to-not-trip/.

[4] First steps with django - using celery with django. http://docs.celeryproject.org/en/

latest/django/first-steps-with-django.html.

[5] Gengo api docs. https://github.com/gengo/gengo_api_docs/blob/master/content/v2/

api_methods/service.md.

[6] Google translate api documentation. https://cloud.google.com/translate/v2/libraries.

[7] Language translation with python. https://impythonist.wordpress.com/2014/02/11/

language-translation-with-python/.

[8] Linked data client: Modules. http://marmotta.apache.org/ldclient/modules.html.

[9] Machine translation tools. http://wiki.crisiscommons.eu/wiki/Machine_Translation_

Tools#APIs.

[10] Memsource machine translation. http://wiki.memsource.com/wiki/Machine_Translation.

[11] Nltk - language processing and python. http://www.nltk.org/book/ch01.html.

[12] Nodebox - loading the library. https://www.nodebox.net/code/index.php/Linguistics#

loading_the_library.

[13] Openlogos machine translation. http://logos-os.dfki.de/.

123

http://wiki.apertium.org/wiki/Apertium-apy
http://www.collinsdictionary.com/api/
http://hairycode.org/2013/07/23/first-steps-with-celery-how-to-not-trip/
http://hairycode.org/2013/07/23/first-steps-with-celery-how-to-not-trip/
http://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
http://docs.celeryproject.org/en/latest/django/first-steps-with-django.html
https://github.com/gengo/gengo_api_docs/blob/master/content/v2/api_methods/service.md
https://github.com/gengo/gengo_api_docs/blob/master/content/v2/api_methods/service.md
https://cloud.google.com/translate/v2/libraries
https://impythonist.wordpress.com/2014/02/11/language-translation-with-python/
https://impythonist.wordpress.com/2014/02/11/language-translation-with-python/
http://marmotta.apache.org/ldclient/modules.html
http://wiki.crisiscommons.eu/wiki/Machine_Translation_Tools#APIs
http://wiki.crisiscommons.eu/wiki/Machine_Translation_Tools#APIs
http://wiki.memsource.com/wiki/Machine_Translation
http://www.nltk.org/book/ch01.html
https://www.nodebox.net/code/index.php/Linguistics#loading_the_library
https://www.nodebox.net/code/index.php/Linguistics#loading_the_library
http://logos-os.dfki.de/

124 BIBLIOGRAPHY

[14] Python - parallelizing cpu-bound tasks with multiprocessing. http://eli.thegreenplace.net/

2012/01/16/python-parallelizing-cpu-bound-tasks-with-multiprocessing.

[15] A ruby wrapper for the wordreference api. https://github.com/malandrina/word_reference.

[16] Smartling translation api. https://docs.smartling.com/display/docs/Smartling+

Translation+API.

[17] Using watson machine translation service with watson explorer. https://

github.com/Watson-Explorer/wex-wdc-integration-samples/blob/master/wex-mt/

watson-machine-translation-readme.md.

[18] What is machine translation? http://www.systransoft.com/systran/corporate-profile/

translation-technology/what-is-machine-translation/.

[19] Wordreference api. http://www.wordreference.com/docs/api.aspx.

[20] Wordreference workflow. https://github.com/mbdw/WordReference.

[21] J.M. Brunetti, R. Garćıa, R. Gil, and A. Granollers. Development and testing of the media

monitoring tool medisys for the monitoring, early identification and reporting of existing and

emerging plant health threats. Technical report, Universitat de Lleida, 2015.

[22] Des. La evolución, expansión, diversificación y extinción de

los idiomas. https://elimperiodedes.wordpress.com/2013/03/29/

la-evolucion-expansion-diversificacion-y-extincion-de-los-idiomas/.

[23] Aurelia Drummer. Literature review: Machine translation.

[24] Roberto Garćıa. Introducción a la web 3.0.

[25] Roberto Garćıa. Marcado semántico en la web 3.0.

[26] Paul Houle. How to write sparql queries against freebase data. http://blog.databaseanimals.

com/how-to-write-sparql-queries-against-freebase-data.

[27] Stefan Kottwitz. LaTeX beginner’s guide. Packt Publishing Ltd, 2011.

[28] Paul Miller. Demonstrating the value of sparql to the semantic web. http://www.zdnet.com/

article/demonstrating-the-value-of-sparql-to-the-semantic-web/.

http://eli.thegreenplace.net/2012/01/16/python-parallelizing-cpu-bound-tasks-with-multiprocessing
http://eli.thegreenplace.net/2012/01/16/python-parallelizing-cpu-bound-tasks-with-multiprocessing
https://github.com/malandrina/word_reference
https://docs.smartling.com/display/docs/Smartling+Translation+API
https://docs.smartling.com/display/docs/Smartling+Translation+API
https://github.com/Watson-Explorer/wex-wdc-integration-samples/blob/master/wex-mt/watson-machine-translation-readme.md
https://github.com/Watson-Explorer/wex-wdc-integration-samples/blob/master/wex-mt/watson-machine-translation-readme.md
https://github.com/Watson-Explorer/wex-wdc-integration-samples/blob/master/wex-mt/watson-machine-translation-readme.md
http://www.systransoft.com/systran/corporate-profile/translation-technology/what-is-machine-translation/
http://www.systransoft.com/systran/corporate-profile/translation-technology/what-is-machine-translation/
http://www.wordreference.com/docs/api.aspx
https://github.com/mbdw/WordReference
https://elimperiodedes.wordpress.com/2013/03/29/la-evolucion-expansion-diversificacion-y-extincion-de-los-idiomas/
https://elimperiodedes.wordpress.com/2013/03/29/la-evolucion-expansion-diversificacion-y-extincion-de-los-idiomas/
http://blog.databaseanimals.com/how-to-write-sparql-queries-against-freebase-data
http://blog.databaseanimals.com/how-to-write-sparql-queries-against-freebase-data
http://www.zdnet.com/article/demonstrating-the-value-of-sparql-to-the-semantic-web/
http://www.zdnet.com/article/demonstrating-the-value-of-sparql-to-the-semantic-web/

BIBLIOGRAPHY 125

[29] Antonio López Muzás. Sistema modular de presentación de información para la plataforma de

web semántica rhizomer. Master’s thesis, Universitat de Lleida, 2009.

[30] ReportLab. “reportlab pdf library. Technical report, ReportLab, 2014.

[31] Toby Segaran, Colin Evans, and Jamie Taylor. Programming the semantic web. ” O’Reilly Media,

Inc.”, 2009.

[32] WorldLingo. Service api to the worldlingo system. Technical report, WorldLingo, 2014.

[33] Patrick Sinclair Libby Miller Stephen Betts Yves Raimond, Tom Scott and Frances McNamara.

Case study: Use of semantic web technologies on the bbc web sites. http://www.w3.org/2001/

sw/sweo/public/UseCases/BBC/.

http://www.w3.org/2001/sw/sweo/public/UseCases/BBC/
http://www.w3.org/2001/sw/sweo/public/UseCases/BBC/

	Abstract
	Acknowledgements
	Introduction
	Motivation and Objectives
	Timing
	Distribution of the project
	Statistics

	Costs

	State of the art
	Introduction
	Semantic web
	Terminology
	Input of the data
	Output formats
	Synonyms and translations

	Natural language derivation and word identification
	NLTK
	WordNet
	Dictionaries
	Implementation decision

	Translators
	History
	Translation tools
	Similar applications

	Development
	Introduction
	Multitranslator
	Introduction
	Requeriments
	Installation Requirements
	Documentation
	Overview
	Translation utils
	Translator
	Query wrapper
	Transfusion
	Corrector
	Filters
	Writers
	Transfuse
	Grouper
	Validator
	Practical case
	Translators

	NewsdeskTranslations
	Introduction
	Requirements
	Ontology
	Front-end
	Back-end
	Practical case

	Conclusion
	Future Work
	MultiTranslator
	NewsdesksTranslations

	Conclusions

