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Abstract

In many simulation studies involving networks there is the need
to rely on a sample network to perform the simulation experiments.
In many cases, real network data is not available due to privacy con-
cerns. In that case we can recourse to synthetic data sets with similar
properties to the real data. In this paper we discuss the problem of
generating synthetic data sets for a certain kind of online social net-
work, for simulation purposes. Some popular online social networks,
such as LinkedIn and ResearchGate, allow user endorsements for
specific skills. For each particular skill, the endorsements give rise to
a directed subgraph of the corresponding network, where the nodes
correspond to network members or users, and the arcs represent en-
dorsement relations. Modelling these endorsement digraphs can be
done by formulating an optimization problem, which is amenable to
different heuristics. Our construction method consists of two stages:
The first one simulates the growth of the network, and the second
one solves the aforementioned optimization problem to construct the
endorsements.

Keywords: Heuristics, Networks and Graphs, Optimization, Simulation

1 Introduction

Online social networks are ubiquitous in contemporary society. Ranging
from general social networks, such as Facebook or Twitter, to the blo-
gosphere and professional social networks, such as LinkedIn, Research-
Gate, and Academia, social networks now play a decisive role in politics,
decision-making, marketing, mating, and information diffusion in general.



An online social network can be effectively modelled by a graph, either
directed or undirected, according to the nature of the relationship estab-
lished among its entities. For example, in Facebook and LinkedIn the
nodes are the users’ profiles, and the (symmetric) binary relation defined on
the set of nodes is that of ‘friendship’ or ‘acquaintance’. In this case, the
ensuing graph is undirected, or symmetric.

A second scenario is illustrated by the blogosphere, i.e the social net-
work composed of blogs/bloggers and the (asymmetric) ‘recommendation’
or ‘follower’ relations among them, which gives rise to a directed graph. Re-
searchGate is a professional social network, similar to LinkedIn in many
aspects, except in that the relation defined between two users is a ‘follower’
relation, i.e. asymmetric. Analogous examples include ‘trust’ statements in
recommendation systems: some user states that he/she trusts the recom-
mendations given by some other user. Additionally, weighted arcs appear
in situations where such relations possess a certain degree of confidence (i.e.
‘trust’ or ‘endorsement’ statements could be partial).

Some social networks, such as LinkedIn and ResearchGate, have
recently included skills in users’ profiles, and the possibility to endorse other
users for a particular skill. For each particular skill, the endorsements make
up a directed graph, which is a subgraph of the main graph of acquaintances.

In many simulation studies involving social networks there is the need
to count on a sample network to perform the simulation experiments (e.g.
Cointet and Roth, 2007; Fowler and Christakis, 2008; Fowler et al., 2009;
Menges et al., 2008; Pan et al., 2012; Pérez-Rosés et al., 2014; Stocker et
al., 2002). Due to privacy concerns, most social networks do not disclose
sensitive information of its members to outsiders, which may include the
set of acquaintances or the endorsements. Therefore, generating realistic
synthetic networks stands out as an important challenge in social simulation.

There are numerous models attempting to describe real-life networks. In
particular, several models have been proposed to describe social networks.
For instance, Leskovec (Leskovec, 2008) suggests a model that describes
quite accurately the dynamics of different online social networks, such as
Flickr, Delicious, Answers, and LinkedIn. Leskovec’s model is ba-
sically a simulation algorithm, which reproduces the arrival of new nodes,
and the creation of new links among existing nodes, following a preferential
attachment rule (see next section).

However, Leskovec’s model does not make any provision for endorse-
ments, since that feature was added much later (2012 for LinkedIn, and
2013 for ResearchGate). As far as we know, there is no model of social
networks that covers the endorsement feature. Including such an extension
in Leskovec’s model would require a comprehensive statistical study with
real data over a relatively long period of time, just in the same manner that
the model was created in the first place. Yet, it is possible to replace the
aforementioned statistical analysis with a discrete optimization problem that
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uses a minimal amount of static information. This optimization problem is
amenable to different heuristics.

In this paper we address the problem of generating realistic synthetic
datasets that reproduce online social networks with the endorsement fea-
ture, such as LinkedIn, for simulation purposes. We propose a method
comprising two main steps:

I The base graph, or graph of acquaintances, is created according to the
network evolution model described in (Leskovec, 2008).

II Endorsements subdigraphs are generated by solving an optimization
problem with the aid of heuristics.

For the basic terminology and notation of graphs, digraphs, and complex
networks, we refer the reader to the Appendix.

2 Creating the network of acquaintances

In this section we briefly describe the network evolution algorithm given by
(Leskovec, 2008) for constructing the base network of acquaintances.

We have rephrased the procedure described in (Leskovec, 2008) as a
discrete-event simulation algorithm (Algorithm 1).

The algorithm receives as input the termination conditions, and a set of
network-dependent parameters. The values of the parameters determined
empirically in (Leskovec, 2008) for different social networks are given in
Table 1.

Lines 1 to 7 make up the initialization block. The graph G may be
initialized as a small clique, which is quite a realistic assumption. In our
case, we start with a small complete graph of five nodes.

Lifetimes (in days) are randomly generated from the exponential distri-
bution f(x) = λeλx. Sleeptimes (in days) are randomly generated from the
exponential distribution gd,α,β(x) = 1

Cd,α,β
x−αe−βdx, where d is the degree

of the node in question, and Cd,α,β is the normalizing constant.
Next comes the main cycle. Possible termination conditions for this cycle

are:

1. the clock exceeds a certain pre-defined simulation time,

2. a pre-defined number of iterations is reached,

3. the network reaches a pre-defined number of nodes,

or any combination of them.
The networks that arise from this process are scale-free, with power-law

degree distribution with exponent 1 + λΓ(2−α)
βΓ(1−α) , where Γ is the Gamma func-

tion. The density of these networks (i.e. their average degree) increases over
time, while their diameter actually decreases. Figure 1 displays a network
obtained by 1000 iterations of the main cycle in Algorithm 1.
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Figure 1: Sample network of 1493 nodes and 2489 links generated
by Algorithm 1. The graph G was initialized as a clique
of five nodes.
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Algorithm 1: Base network generation

Input : Termination conditions, node arrival function A(t), and
parameters α, β, λ.

Output: A base graph of acquaintances G.

/* ----- INITIALIZATIONS ----- */

1 Initialize G;
2 Initialize priority queue Q;
3 foreach vertex v ∈ G do
4 Generate random lifetime and sleeping time for v;
5 Push v onto Q;

6 end
7 Initialize clock;
/* ----- MAIN CYCLE ----- */

8 while termination conditions not met do
9 Pop a vertex u from Q;

10 Set clock to u’s wake-up time;
11 if clock does not exceed lifetime of u then
12 Create random two-hop edge starting at u;
13 Generate random sleeping time for u;
14 Push u back onto Q;

15 end
16 Create set of vertices S that have appeared in the meantime;
17 foreach vertex v ∈ S do
18 Link v to some w ∈ G with preferential attachment;
19 Generate random lifetime and sleeping time for v;
20 Push v onto Q;

21 end

22 end

3 Generating the endorsement subdigraphs

As it was mentioned above, the model given in (Leskovec, 2008) does not
consider endorsements, and no other model does, to the best of our knowl-
edge. In principle it might be possible to study the emergence and evolution
of endorsements, in much the same way that (Leskovec, 2008) studies the
dynamics of their underlying graph of acquaintances. This, however, ap-
pears like a formidable task. To begin with, it requires access to the real
data, from the moment that the endorsement feature was introduced.

On the other hand, it is not too difficult to take a static snapshot of
the endorsements at a given time. Let us assume that we are interested
in a set S of skills (|S| = ns). From now on G will denote the real social
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Network A(t) α β λ

Flickr e0.25t 0.84 0.002 0.0092
Delicious 16t2 + 3000t+ 40000 0.92 0.00032 0.0052
Answers −4544t2 + 160000t− 2500 0.85 0.0038 0.0019
LinkedIn 3900t2 + 76000t− 130000 0.78 0.00036 0.0018

Table 1: Parameters of different networks. Node arrivals are mea-
sured monthly; the other parameters are adjusted for days.

network at a given time, while G′ will be the synthetic base graph created
by Algorithm 1. With the aid of any statistical sampling method we can
estimate the frequencies and relative co-occurrences of the skills S in G.
Then it is possible to reproduce these statistics in synthetically generated
subgraphs of G′.

Network sampling methods have been investigated since at least the
1960s (e.g. Frank, 1977, 1978; Goodman, 1961), and several effective sam-
pling methods have been devised, such as snowball (a variant of breadth-first
search) (Frank, 1977; Goodman, 1961), random walk (Hardiman and Katzir,
2013; Kurant et al., 2011; Lu and Li, 2012; Ribeiro and Towsley, 2010), or
forest fire (Leskovec et al., 2005; Leskovec and Faloutsos, 2006). The in-
terested reader can find up-to-date discussions in (Doerr and Blenn, 2013;
Okabayashi, 2011; Wang et al., 2011). At any rate, some (rather informal)
experiments suggest that an accurate estimation of network statistics re-
quires a sample of size at least 15% of the total network size (Frank et al.,
2012), which is beyond our current capabilities in the case of LinkedIn.
Nevertheless, our main concern at this point is not an accurate sampling of
the network, but an accurate replication of the sampling results. Therefore,
in our experiments we have opted for taking a small sample of a few hundred
nodes by a simple variant of breadth-first sampling, and we make no claims
of accuracy in that respect.

All the relevant information relative to endorsements can be encoded
into an ns × ns matrix MS(G) = (mij). If the set of skills S is fixed, we
can drop the subscript S for simplicity of notation. The diagonal entry mii

represents the ratio between the number of nodes that are endorsed for the
i-th skill and the total number of nodes in the graph. On the other hand,
the entry mij , for i 6= j, is the ratio between the number of nodes that
have been endorsed for both skills, i and j, and the number of nodes that
have been endorsed for the i-th skill alone. Thus, mij may be taken as an
estimate of the conditional probability that a user gets endorsed for skill j,
given that it is endorsed for skill i.

Now our problem can be formulated as follows:

Problem 1 (Replication of endorsement pattern) – Given a finite un-
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directed graph G′ = (V ′, E′), a set of skills S, with |S| = ns, and a matrix
M = (mij)ns×ns with non-negative rational coefficients, determine if there
exists a configuration of endorsements such that M(G′) = M. In the af-
firmative case, we say that M is realizable, or that it is an endorsement
pattern.

Problem 1 (or Rep, for short) turns out to be closely related to the prob-
lem of recognizing intersection patterns of sets (Chvátal, 1980). In Intersec-
tion Pattern Recognition (Rip) we also have a (symmetric integral) matrix
P = (pij)n×n, where the pij are non-negative integers, and the goal is to find
a collection of n arbitrary sets, S1, S2, · · ·Sn, such that |Si ∩ Sj | = pij for
all 1 ≤ i, j ≤ n. Obviously, the diagonal elements pii correspond to the set
cardinalities |Si|. If that collection exists, then the matrix P is called an in-
tersection pattern, or in analogy with the terminology of Problem 1, we also
say that P is realizable. The collection S1, S2, · · ·Sn is called a realization.

Deciding whether a given matrix P is an intersection pattern is NP-
complete unless pii ≤ 2 for all 1 ≤ i ≤ n. Recall thatNP-complete problems
are computationally intractable with today’s technology. Since there is a
straightforward polynomial-time reduction from Rip to Rep, we are led to
the following result:

Theorem 1 – Rep is NP-complete.

PROOF. It is a routine task to verify that Rep ∈ NP for any finite
G′. Hence we only have to check that Rep is NP-hard by exhibiting a
polynomial-time reduction from Rip to Rep. Given an arbitrary symmetric
integral matrix P, we must produce an undirected graph G′, and a matrix
M = (mij)ns×ns with non-negative rational coefficients, so that P is real-
izable (as an intersection pattern) if, and only if, M is realizable (as an
endorsement pattern on G′).

Since the diagonal elements of P correspond to the cardinalities of the
sets Si, we can say without any loss of generality that the trace of P is an
upper bound for |U|, where U =

⋃n
i=1 Si. In other words, a given matrix P

is an intersection pattern if, and only if, there exists a realization with size
less than or equal to tr(P).

Thus, let G′ be a connected graph on tr(P). In Rip we will choose the
sets S1, S2, . . . , Sn among the vertices of G′. We make ns equal to n, and
mij = pij/pii for all 1 ≤ i, j ≤ n such that i 6= j. Finally, makemii = pii/|V ′|
for all 1 ≤ i ≤ n. Obviously, M is an endorsement pattern over G′ if, and
only if, P is an intersection pattern. This completes the polynomial-time
reduction. 2

Problem 1 (a decision problem) can also be formulated as a combinatorial
optimization problem. Let δ be a fixed given matrix ‘distance’ function. The
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approximation/optimization version of Rep is called Endorsement Pattern
Approximation (Epa):

Problem 2 (Endorsement pattern approximation) – Given a finite un-
directed graph G′ = (V ′, E′), a set of skills S, with |S| = ns, and a matrix
M = (mij)ns×ns with non-negative rational coefficients, find a configuration
of endorsements that minimizes δ(M,M′), where M′ = M(G′).

In our experiments we have considered a family of distance functions
δW, parametrized by a positive matrix W, defined as

δW(M,M′) =
1

n2
s

∥∥W ◦ (M−M′)
∥∥ , (1)

where ‖·‖ is the squared Frobenius matrix norm metric:

‖A‖ =
n∑
i=1

n∑
j=1

|aij |2 = tr(ATA)

(see e.g. Deza and Deza, 2013, p. 217), and ‘◦’ denotes Hadamard (or
elementwise) matrix multiplication.

Equation 1 is merely a weighted normalized error of the variable matrix
M′ with respect to the fixed target matrix M. The purpose of the weight
matrix W is to control the relative importance of the different pieces of
information encoded into M(G). In particular, we have chosen W so as to
confer more importance to the diagonal elements of M′, representing the
individual frequences of the skills within G′.

Theorem 1 confirms that reproducing endorsements is computationally
hard, either in its exact form or in the approximate form, which justifies the
use of heuristics to address the problem. In the next section we describe
some simple heuristic methods that have shown to produce good results.

4 Computational experiments

In order to test the above ideas in practice we have focused on LinkedIn,
which to the best of our knowledge, was the first professional social network
to introduce the endorsement feature. So, let G be the real LinkedIn net-
work as of Sep. 15, 2013. We have implemented Algorithm 1 and used it
to generate an undirected network of contacts G′ with 1493 nodes and 2489
edges. This network is small enough to be tractable, and yet large enough
to derive meaningful conclusions.
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4.1 An example

We first illustrate our experimental design with a small example, taken from
(Pérez-Rosés et al., 2014). The example considers only five skills: 1. Pro-
gramming, 2. C++, 3. Java, 4. Mathematical Modelling, 5. Statistics.
Those skills were chosen in (Pérez-Rosés et al., 2014) for two main reasons:

1. Those five skills abound in the LinkedIn sample taken.

2. Those five skills can be clearly separated into two groups or clusters,
namely programming-related skills, and mathematical skills, with a
large intra-cluster correlation, and a smaller inter-cluster correlation.
This is a small-scale representation of the real network, where skills
can be grouped into clusters of related skills, which may give rise to
different patterns of interaction among skills.

The occurrences and co-occurrences of the five skills were computed in
(Pérez-Rosés et al., 2014) for a small community of LinkedIn members,
resulting in the matrix M of Eq. 2.

M =


0.12 0.42 0.42 0.5 0.33
0.62 0.08 0.62 0.25 0.12
0.62 0.62 0.08 0.12 0.12
0.75 0.25 0.12 0.08 0.5
0.5 0.12 0.12 0.5 0.08

 (2)

We are now done with LinkedIn; from now on we are going to work
on the synthetic base network generated by Algorithm 1. For each skill we
want to construct a random endorsement digraph (a random sub-digraph of
the base network), in such a way that the above frequencies are respected.
This can be done efficiently by means of a simple local search heuristic.

The local search algorithm starts with a set of random endorsement sub-
digraphs of G, and then refines the endorsements by small local changes,
thus improving the approximation to M at each step. The local search step
consists either in the random addition or deletion of an arc in some endorse-
ment digraph chosen at random. This algorithm stops either when some
approximation threshold is reached, or when it is not possible to improve
(i.e. decrease) the objective function after a certain number of trials (500 in
our case). Algorithm 2 formalizes these ideas.

With the aid of Algorithm 2, the matrix given in Eq. 2 was approximated
to within an error of 10−5. The base network generated by Algorithm 1,
together with the endorsement digraphs obtained by Algorithm 2 for this
example can be downloaded from http://www.cig.udl.cat/sitemedia/

files/MiniLinkedIn.zip.
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Algorithm 2: Local search algorithm for creating the endorsement
digraphs

Input : Base network G = (V,E), an ns × ns matrix M, and
termination conditions.

Output: A set of ns endorsement subdigraphs D = D1, . . . , Dns of G

/* ----- INITIALIZATIONS ----- */

1 Initialize D1, . . . , Dns at random;
2 Compute the matrix M′ = M(G) from G and D1, . . . , Dns ;
/* ----- MAIN CYCLE ----- */

3 while termination conditions not met do
4 Choose i at random, with 1 ≤ i ≤ ns;
5 Choose one of two actions at random: Insert or Delete;
6 if Insert then
7 Choose a random edge (u, v) ∈ E such that there is no arc

u→ v in Di;
8 Compute the matrix M′′ after the addition of u→ v to Di;
9 if δ(M′′,M) < δ(M′,M) then

10 Insert u→ v in Di;
11 M′ := M′′;

12 end

13 else
14 Choose a random arc u→ v in Di;
15 Compute the matrix M′′ after the deletion of u→ v from Di;
16 if δ(M′′,M) < δ(M′,M) then
17 Delete u→ v from Di;
18 M′ := M′′;

19 end

20 end

21 end
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4.2 Further experimental results

Now, the purpose of our computational experiments is to check that our
heuristic method above scales up to larger instances of the problem. We
keep the same base network, but we introduce a larger number of skills (and
consequently, a larger endorsement pattern matrix). There are two main
risks threatening the convergence of Algorithm 2:

1. The pattern matrix M is not realizable, and

2. The local search procedure gets trapped in a local minimum of the
objective function.

At any rate, if the pattern matrix M arises from actual network statistics,
such as in the previous example, it should be approximable to within a
reasonable threshold. The second situation described above arises in any
heuristic algorithm attempting to solve an NP-hard problem, and many
strategies have been devised over the years to minimize that risk. We cannot
cover all those strategies in depth here, but we do mention one possible
solution at the end of this section. The interested reader can find a wealth
of information in (Aarts and Lenstra, 1997; Glover and Kochenberger, 2003)
and other sources.

Thus, for our experiments we have fixed a number of skills ns, and we
have generated ns random endorsement subdigraphs of the synthetic base
graph G′, and then we have computed the corresponding pattern matrix
M(G′) (which we know that is realizable, since it arises from actual endorse-
ment digraphs). Then we applied Algorithm 2 on M(G′), and measured its
performance.

The initial endorsement subdigraphs of G were generated as follows: For
each endorsement digraph Di, edges were picked at random from G′, were
assigned a random orientation and were added to Di, until the number of
vertices with positive in-degree in Di was close to mii. The cost of this
initialization is O(|E|).

We have experimented with different values of ns (ns = 5, 10, 15, 20, 30,
40, 50) and different probability distributions for the arcs of the endorsement
digraphs, namely with uniform probabilities in the ranges (0, 1), (0, 0.35),
(0.35, 0.65), (0.65, 1).

Algorithm 2 converged in all cases with an exponential convergence rate,
i.e. the distance function decreased according to the rule y = aebx, with
a > 0 and b < 0. Figure 2 shows the convergence rate for one particular
experiment, namely ns = 50, and all frequencies taken uniformly in the
range (0.35, 0.65). As it can be seen, the values of the distance function can
be fitted almost exactly by an exponential y = aebx, with a = 0.01364 and
b = −0.02055.
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Figure 2: Typical evolution of the error function

With such a fast convergence rate, the running time of the algorithm
behaves as a linear function of ns. Figure 3 shows the behaviour of the
running time (or more precisely, the number of iterations) as a function of
the matrix size. The values correspond to the mean number of iterations for
random matrices with values in the range (0.35, 0.65). The linear regression
fit yields the function y = 12.76x − 61.95, which represents the data with
high accuracy.

The computational results obtained above provide criteria to fine-tune
the termination conditions of Algorithm 2. For example, they suggest that
a threshold of 10−5 is a reasonable criterion for termination.

In order to reduce the risk of getting trapped in a local minimum, we
can initialize the endorsement digraphs (Step 1 of Algorithm 2) in such a
way that the matrix M′ is as close as possible to M. There is of course a
tradeoff between the approximation of M′ to M and the computational effort
involved, but there are some simple heuristics that can give us a reasonably
close initial approximation to M(G) with little computational effort.

For example, we may construct a better first approximation to M by a
random ‘greedy’ procedure: Pick an edge at random, assign an orientation
to it, and assign the resulting arc to some endorsement digraph, so that the
assignment minimizes the distance function given in Eq. 3.

ρW(M,M′) =
∥∥W ◦ (M−M′)

∥∥ , (3)

where again ‖·‖ denotes the squared Frobenius matrix norm metric, and
‘◦’ denotes Hadamard matrix multiplication.
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Figure 3: Number of iterations as a function of ns

This procedure stops either when some approximation threshold is reached,
or when the distance function starts to increase steadily. The cost of this
initialization is slightly higher than the previous one, but asymptotically it
remains O(|E|).

4.3 Running time and scalability

In order to assess the actual running times, and thus appraise the feasibility
and scalability of our algorithms in practice, we have performed an addi-
tional set of experiments. Algorithm 1 was run with a number of iterations
ranging from 250 to 2000, at intervals of 250. For each number of iterations,
the algorithm was run five times, thus getting five different base networks.
Among these five networks we have chosen the one with the median num-
ber of vertices, and have used it as input for Algorithm 2, so as to attach
endorsements to it.

The experiments were performed on very affordable hardware, namely
an Acer Aspire 5749 laptop computer, equipped with an Intel Core i3-2330M
processor, and 4 GB RAM. The statistics of the experiments are collected
in Table 2.

For many practical purposes, a network of 1925 nodes is large enough,
and it can be generated and fitted with endorsements in about 7 minutes.
If we wanted a larger network we just have to run the algorithm for a longer
time. The base network, together with the endorsements, can be stored in
less than 30 KB using a data structure based on adjacency lists.

On the basis of the data collected in Table 2 we conclude that the run-
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Num. iterations 250 500 750 1000 1250 1500 1750 2000
Num. nodes 664 925 1185 1364 1605 1644 1824 1925
Num. links 918 1430 1932 2361 2852 3147 3567 3919
Time 1 20 38 61 93 131 137 181 200
Time 2 8 22 44 69 108 126 164 211
Total time 28 60 105 162 239 263 345 411

Table 2: Network generation times. ‘Time 1’ is the time taken to
generate the base network (in seconds). ‘Time 2’ is the
time taken to add the endorsements to the base network
(in seconds). The total time is just the sum of ‘Time 1’ and
‘Time 2’; it does not include other subsidiary tasks, such
as drawing the network.

ning time of Algorithm 1 is best approximated by the quadratic function
0.0000799 ×N2 − 0.06303 ×N + 26.75, where N is the number of vertices
of the network produced, while the running time of Algorithm 2 follows a
function 0.00008451 × N2 − 0.1778 × N + 73.5. Figure 4 provides a visual
comparison between the two running times.

By extrapolating these functions we can formulate predictions on the
actual time that it will take to generate a network of some specified size,
assuming that the behaviour of the programs remains stable. For example,
we should be able to generate a network of about 10, 000 nodes in five hours
approximately (on the same hardware), and a network of about 100, 000
nodes in a bit more than two weeks, provided that we had enough memory
to store it. Hence, the practical limit of our implementation would be some-
where in the order of X×104 nodes, which is satisfactory for a large number
of practical situations. Obviously, this limit can be greatly expanded if we
migrate to a more powerful computer.

5 Conclusions and future research

In this paper we have shown how to synthesize a network similar to the
social network LinkedIn, for simulation purposes. The construction process
consists of two stages:

I Construction of the base network, and

II Addition of the endorsements.

The first stage is formulated and implemented as a discrete-event sim-
ulation algorithm, which is interesting in its own right. Nevertheless, our
main contribution resides in the second stage, where the addition of endorse-
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Figure 4: Running time as a function of the number of nodes. ‘Time
1’ is the running time of Algorithm 1. ‘Time 2’ is the
running time of Algorithm 2.

ments is formulated in terms of a discrete optimization problem, which is
then efficiently solved via heuristics.

Our simheuristic approach is conceptualized in Figure 5. An incomplete
dynamic simulation model is executed. At the end of the execution, the
missing part is replaced with some static information, which is obtained
by means of statistical sampling and subsequent numerical processing (i.e.
optimization, approximation, etc.). The role of heuristics here is to provide
the missing data of the dynamic simulation model, by solving the associated
approximation/optimization problem.

The use of heuristics in this case is justified for two reasons:

1. The approximation/optimization problem may be computationally in-
tractable (such as Rep).

2. Even if the problem were tractable, the parameters to be approximated
are only estimates of the real parameters, hence it is not necessary
to find an exact solution; it suffices to find an approximate solution
within some approximation threshold. Therefore we can opt for the
most efficient solution method, which in our case is a combination of
simple heuristics.

It would be interesting to adapt this scheme to other situations in order
to better assess its usefulness and generality. For example, a straightforward
extension of this work would be to verify how this approach fits other social
networks equipped with the endorsement option, such as ResearchGate.
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Incomplete model

Approximation

Optimization

(heuristics)
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(snapshot)

Figure 5: Schematic representation of the model completion
simheuristic

In our particular case, there are several open questions related to the
endorsement approximation problem. First of all, it would be interesting
to establish further complexity properties of the problem, as well as its
relationship with other combinatorial optimization problems. We have been
unable to find any reference to Rip in the literature after 1990, which leads
us to suspect that very little is known about its complexity, besides the
fact that it is NP-complete. Additionally, the scope and effectiveness of
our heuristic solution should be determined more precisely. Finally, other
heuristics may be explored, which might yield better results.
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Appendix: Some definitions and notation

We review here the main definitions and notational conventions related to
graph theory and complex networks.

A directed graph, or digraph D = (V,A) is a finite nonempty set V of
objects called vertices and a set A of ordered pairs of vertices called arcs.
The order of D is the cardinality of its set of vertices V . If (u, v) is an arc, it
is said that u is adjacent to v, and v is adjacent from u. The set of vertices
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that are adjacent from a given vertex u is called the out-neighbourhood of
u. It is denoted by N+(u) and its cardinality is the out-degree of u, d+(u).
The in-neighbourhood of v (denoted N−(u)) is defined in an obvious way.

Given a digraph D = (V,A) of order n, the adjacency matrix of D is
an n × n matrix M = (mij)n×n with mij = 1 if (vi, vj) ∈ A, and mij = 0
otherwise. The sum of all elements in the i-th row of M will be denoted
Σmi∗, and it corresponds to d+(vi).

The distance from vertex u to vertex v is the length of the shortest path
from u to v. The diameter of D is the maximum distance among all ordered
pairs of vertices (u, v).

An undirected graph (or simply a graph) G = (V,E) is a finite nonempty
set V of objects called vertices and a set E of unordered pairs of vertices
called edges. Again, the order of G is the cardinality of its set of vertices
V . If (u, v) is an edge, we say that u and v adjacent to each other. The set
of vertices that are adjacent to a given vertex u is called the neighbourhood
of u. It is denoted by N(u), and its cardinality is the degree of u, d(u).

A graph G = (V,E) can be viewed as a symmetric digraph, i.e. a
digraph D = (V,A) where for each arc (u, v) ∈ A, the reverse arc (v, u) is
also contained in A. With this view, the definitions of adjacency matrix,
distance and diameter carry over naturally to graphs. The reader is referred
to Chartrand and Lesniak (2004) for additional concepts on graphs and
digraphs.

Graphs and digraphs are important as models of complex real-life net-
works, such as social, biological, or communication networks. In those set-
tings, vertices are usually called nodes and arcs or edges are usually called
links. Although complex networks are conceptually graphs (or digraphs),
and as such they inherit all graph properties (e.g. diameter), the study of
complex networks usually requires additional mathematical tools and tech-
niques, such as the tools of probability theory and statistics, which are less
frequent in graph theory.

For example, in a graph of manageable size we would be interested in
determining the exact degree sequence, i.e. the sequence of the degrees of all
vertices. On the other hand, in a large complex network we would be more
interested in describing the set of degrees as a probability distribution, such
as a power law P[k] ∼ k−λ, where k represents the degree of the nodes, and
λ is a constant parameter.

Power law distributions are usually called scale-free because of the re-
lation (ak)−λ = a−λk−λ ∼ k−λ. This type of distribution is typical of
networks generated by preferential attachment : When a new node arrives,
the probability of attaching it to an existing node x is proportional to the
degree of x. In other words, the rich get richer with time. For other degree
distributions, other models of generation, and additional concepts related to
complex networks, see Cohen and Havlin (2010).
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