
 

 

 

 

Document downloaded from:  

http://hdl.handle.net/10459.1/47889 

 

The final publication is available at:  

https://doi.org/10.1016/j.applthermaleng.2014.02.055 

 

 

 

 

Copyright  

cc-by-nc-nd, (c) Elsevier, 2014 

 

 

 

  Està subjecte a una llicència de Reconeixement-NoComercial-
SenseObraDerivada 4.0 de Creative Commons 
 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  

 

Numerical model evaluation of a PCM cold storage tank and 

uncertainty analysis of the parameters 

 

Gabriel Zsembinszki, Pere Moreno, Cristian Solé, Albert Castell, Luisa F. Cabeza 

GREA Innovació Concurrent, Universitat de Lleida, Edifici CREA, Pere de Cabrera s/n, 25001 Lleida, 

Spain. Tel.: +34-97-3003576; fax: +34-97-3003575. E-mail address: lcabeza@diei.udl.cat 

 

Abstract 

 

Thermal energy storage (TES) tanks for cold storage can be used for peak load shaving. This 

paper presents and evaluates a mathematical model where a TES tank is filled with commercial 

phase change material (PCM) flat slabs. The 2D model is used for simulating the outlet 

temperature of the heat transfer fluid, and also the heat transfer rate during the discharging 

process. The study includes the use of an approximation of the PCM specific heat (����;���) 
which corresponds to the parameter calculated in the previous iteration of the implicit finite 

difference method. Thus, an evaluation of the different model parameters is performed, based on 

the comparison between the computational time and accuracy of the different simulations. 

Moreover, the uncertainties in different input variables are also analysed in order to find out 

which variable should be known more accurately. The results show that using the approximated 

parameter ����;���  is a good solution for reducing the computational time despite a slight error 

increase in the case of using small time step in the simulation. Moreover, the inlet HTF 

temperature, and melting temperature, density and specific heat of the PCM are the main 

parameters to take into account in terms of uncertainty variables evaluation. 

 

Keywords: Phase change material; Thermal energy storage; Latent heat; Numerical simulations; 

Model optimization; HVAC systems. 

 

 

1 Introduction  

 

The use of thermal energy storage (TES) in cooling or heating systems, based on latent energy 

storage through phase change materials (PCM), presents some advantages such as compactness 

in comparison with sensible TES devices and the operational advantage of a nearly constant 

storage cycle-temperature [1]. A TES system based on the use of PCM can be implemented in 

different applications, such as solar heating installations, under floor heating, building 

envelopes, and HVAC systems [2-5]. Focusing only on HVAC applications, in countries where 
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there is a variable electricity tariff according to the consumption period, the use of a TES system 

offers the possibility of shifting the operating period of the system to off-peak hours, when the 

price of the consumed electricity is lower. 

 

Modeling the PCM storage tanks connected to a HVAC system is important because it allows 

making predictions about their thermal behavior. An acceptable numerical model should be able 

to describe the phase change heat transfer in both melting and solidification processes with 

reasonable reliability, as well as to present low computing time and resources. Different models 

of PCM thermal storage units are available in the literature, some of them being reviewed by 

Lacroix [6], Verma and Singal [7] and Zalba et al. [8].  

 

Vakilatojjar et al. [9] proposed a semi-analytical model of a slab PCM storage unit and the 

calculations were based on the finite elements method to predict the behaviour of the system. 

The unsteady two-dimensional problem was solved using the “Neumann Solution” presented by 

Carslaw and Jaeger [10]. Three models with different assumptions were compared in this study 

and they concluded that better performance of the system could be obtained by using smaller air 

gaps and thinner PCM slabs. Rostamizadeh et al. [11] developed a mathematical model based 

on an enthalpy formulation using finite difference model of an air heat exchanger when using 

rectangular PCM package. From the results they found a linear relationship between the mass of 

the PCM and the melting time. 

 

Bony and Citherlet [12] developed a numerical model of a water tank storage implemented in an 

existing TRNSYS type. The model, based on the enthalpy approach, allows the simulation of 

the tank filled with PCM modules made of different materials and different shapes such as 

cylinders, plates or spheres bed. Conduction and convection inside the PCM are taken into 

account, as well as at the interface between PCM and water. Some experimental measurements 

were performed to evaluate the potential of this model, and they showed good agreement 

between monitored data and simulations. 

 

Liu et al. [13] developed a one-dimensional liquid-based model which allowed for varying wall 

temperature along the direction of the heat transfer fluid (HTF), for analysing the thermal 

performance of a PCM thermal energy storage tank for cooling applications, consisting of 

several flat slabs parallel to each other. Two sets of experiments were used in order to validate 

the mathematical model, and the numerical results showed a reasonable agreement with the 

experimental ones in terms of outlet HTF temperature and heat transfer rate during the melting 

process. The model was also capable of predicting the melting time accurately. The work of Liu 

et al. [8] was later used in another study also by Liu et al. [14] to investigate the thermal 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
  

 

performance of the unit, examining the effects of the unit design and the operating parameters. 

In the present paper a mathematical model is presented and evaluated in terms of computational 

time needed by the software to simulate the system and the error produced when varying 

different parameters comparing with the reference case. 

 

In most of the cases the validation of a theoretical model is done by comparison with the 

experimental results [12,15,16]. However, the uncertainties of the input parameters and the 

effect of their propagation in the simulation results are barely taken into account. An uncertainty 

study provides the evaluation of the uncertainty in the model outputs induced by the uncertainty 

in the inputs. A study of uncertainty propagation analysis was presented by Dolado et al. [17]. 

The authors analysed the uncertainty propagation of a theoretical model which simulated a 

PCM-air heat exchanger. They analysed the most significant input parameters that affect the 

average heat rate exchanged in the first hour of the melting stage. The results indicated that, 

although uncertainty of the average phase change temperature had an important effect on the 

uncertainty of the response, it was not advisable to invest efforts in determining this parameter 

with an uncertainty better than ±0.25 ºC 

 

However, few studies in the literature have been focused on the study of uncertainty in input 

parameters, so further investigation is needed. In this paper, a mathematical model is developed 

for simulating the thermal behaviour of a TES tank for cooling applications. First, the model is 

evaluated in order to obtain the best relationship between computational errors and simulation 

time. In the second part of the paper the influence that the uncertainties in the different input 

variables may have on the results is evaluated, based on the comparison between the results 

obtained for a perturbed parameter value and the reference unperturbed case. 

 

2 Methodology 

 

2.1 Description and requirements of the TES unit 

 

The system studied in this paper is a PCM thermal energy storage tank for cold storage, which 

could be used for cooling applications (e.g. peak load shaving of cooling device). It uses 

commercially available flat slab of PCM [18] in order to store latent heat through phase change 

of the material enclosed inside the encapsulation. The amount and properties of the PCM used 

in the tank, whose dimensions are 1.25×0.27×0.31 m, were determined in a previous study by 

Moreno et al. [19].  
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The system uses 12 flat slabs, parallel to each other and stacked in two columns, and the HTF is 

circulating through the gap that exists between the different rows of PCM slabs, as shown in 

Figure 1. The specifications of the PCM encapsulation are shown in Table 1. 

 

According to the manufacturer, the PCM has a melting temperature of 10 ºC and a phase change 

enthalpy of 155 kJ/kg. However, experimental values of the PCM specific heat were used in the 

simulations, which were obtained from a DSC analysis with a Mettler-Toledo DSC 822e device 

and StarE v.11 software. The experimental curve showed lower melting enthalpy (around 110 

kJ/kg) and a melting temperature of 11.7 ºC. 

 

Water based HTF is employed in the system, so that the thermophysical properties of water 

were used in the simulations of the system for simplicity. An HTF flow rate of 0.6 m3/hour was 

used in the simulation since it is a common value in heating and cooling installations.  

 

2.2 Mathematical model 

 

A numerical model was built for simulating the discharging process of the TES tank, i.e., 

process during which the PCM melts. The implicit finite differences method was used for 

solving the energy balance equation of each node of PCM and also of the HTF, implemented in 

the Engineering Equation Solver (EES) software. A two-dimensional heat transfer inside the 

PCM was considered here, meaning that there is a temperature gradient inside the PCM in both 

parallel and perpendicular directions of the HTF. On the other hand, since the gap between two 

different slabs is small comparing to the PCM thickness, the HTF modelling is one-dimensional. 

This means that there is a temperature gradient inside the HTF parallel to its flow direction. A 

schematic representation of the TES is shown in Figure 2. 

 

In order to predict the thermal behaviour of the system during the discharging process different 

assumptions were made for simplifying the analysis: 

• The thermophysical properties of the PCM are constant in the liquid and solid phases, 

except the specific heat ����, which depends on the PCM temperature according to the 

DSC results. 

• There is no heat transfer between the TES unit and the surroundings. 

• All the PCM is initially at the same temperature (4.5 ºC) and in solid state. The initial 

temperature of the HTF inside the tank is also set to 4.5 ºC along the entire length, so 

that initially the PCM and HTF are in thermal equilibrium. 

• All the slabs containing PCM are identical to each other, and they have symmetric 

thermal behaviour with respect to the horizontal plane that crosses their centre. 
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• Natural convection inside the PCM liquid phase is not considered. 

• Thermal capacity of the encapsulation material is neglected. 

• Steady state is considered during each time interval of the finite difference method. 

• The simulations were run taking 8 hours as discharging time of the tank. This is because 

the tank could be coupled to a cooling device, so this time is considered as the working 

day time. 

  

Based on these assumptions, different energy balance equations can be made for the different 

PCM and HTF nodes. There are 9 formally different equations for the PCM nodes, depending 

on the relative position of the node inside the slab, 3 different equations for the slab wall, and 3 

equations for the HTF nodes. For instance, the energy balance equation for the most general 

inner PCM node (x,y) is presented in Equation 1, where 
��� is the thermal conductivity of the 

PCM (W/m·K), ∆x is the node length in X axis (m),  ∆y is the node height in Y axis (m), ���� is 

the PCM density (kg/m3), ���� (x,y) is the specific heat of the PCM node (x,y) (J/kg·K), ���� 

(x,y) is the temperature of the PCM node (x,y), and ����;��� (x,y) is the PCM temperature of the 

node (x,y) in the previous iteration:  

 


��� · �� · �����(���,�)�����(�,�)
�� � + 
��� · �� · �����(���,�)�����(�,�)

�� � + 
��� · �� ·  

· �����(�, ��)�����(�,�)
�� � + 
��� · �� · �����(�,���)�����(�,�)

�� � = ���� · �� · �� · ����(�, �) ·  

�����(�,�)�����,"#$(�,�)
�% � Equation (1) 

 

In a similar way, the energy balance equation for a general wall node x is given in Equation 2, 

where ℎ'�( is the convection heat transfer coefficient between the HTF and the wall (W/m2·K), 

�'�(  (x) is the HTF temperature of node x, Ts (x) is the wall temperature of the x position, kwall is 

the thermal conductivity of the wall (W/m·K), ����	(x,1) is the temperature of the PCM node 

(x,1) that is in direct contact with the wall, and *+,�� is the wall thickness (m): 

                            

ℎ'�( · ∆� · (�'�((�) − �/(�)) + 
+,�� · �� · �����(�,�)��0(�)
�12##

� + 
+,�� · *+,�� · ��0(���)��0(�)
∆� � +


+,�� · *+,�� · ��0(���))��0(�)
∆� � = 0  Equation (2) 

 

Finally, the energy balance equation for a general node of HTF is shown in Equation 3, where 

∆A is the contact surface area between slabs walls and HTF (m2), corresponding to position x, 

45  is the mass flow rate of HTF (kg/s), ���� is the HTF density (kg/m3), �'�( is the specific 

heat of the HTF (J/kg·K), H is the height of the duct where the HTF flows, which is equal to the 
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separation between the slabs rows (m), ∆t is the time step of the numerical method (s), and 

�'�(;���  (x) is the HTF temperature in the x position of the previous iteration: 

 

ℎ'�( · ∆6 · (�/(�) − �'�((�)) +45 · �'�( · (�'�((� − 1)) − �'�((�)) = �'�( · ∆6 · �'�( · '8 ·

��9:;(�)��9:;,"#$(�)
∆% �  Equation (3) 

 

The convection heat transfer coefficient ℎ'�( between slab wall and HTF is calculated by 

means of a procedure available in the EES software, which requires as input data the Reynolds 

and Prandtl numbers evaluated at the HTF bulk temperature, the ratio of tube length to 

hydraulic diameter, the ratio of the minimum to maximum dimension of duct, and the relative 

roughness of the tube wall. The procedure returns two Nusselt numbers for a given flow 

condition in a rectangular duct. One corresponds to a constant temperature wall and gives the 

lowest limit of this parameter, while the other corresponds to a constant heat flux and gives the 

highest value. In this study the constant temperature wall condition was assumed since this 

condition is more suitable when a phase change process occurs, but one should keep in mind 

that the actual Nusselt number may take any value between these two extreme limits. 

 

The instantaneous heat transfer rate during the discharging (PCM melting) process is inferred by 

means of Equation (4), which supposes that the heat transfer rate transferred by the HTF is 

equivalent to a temperature decrease between inlet and outlet: 

 

<5 = 4 ·5 �'�( · =�'�(;>? − �'�(;�@%A Equation (4)  

 

2.3 Numerical model evaluation 

 

The numerical model has different parameters that may affect results accuracy and also the time 

required by the simulations. It is expected that a high accuracy implies a large computing time 

and, equivalently, a short computing time leads to less precise and reliable results. For this 

reason, a first step was to find the best combination of parameter values, able to make 

acceptably accurate predictions with a reasonable computing time. 

 

There are mainly three parameters that affect the precision and time of the simulations: the 

number of PCM nodes Nx and Ny along the horizontal X-axis and vertical Y-axis, respectively, 

and the time step ∆t of the iteration process. Since the implicit finite difference method is used 

here, the time step is in principle unconditionally steady, and there is no limit for its value. This 
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is why the minimum value for ∆t = 4 s considered here corresponds to the limitations of the 

software computing capacity. 

 

Another issue related to the numerical model that was investigated was the use of some 

simplifications, aiming to reduce the computing time without affecting too much the precision. 

One of such simplifications consisted in the use of the PCM specific heat	����;���. This 

parameter corresponds to the specific heat calculated in the previous iteration of the implicit 

finite difference method, instead of using 	���� 	which is evaluated at the present iteration as a 

function of the (unknown yet) PCM node temperature. The temperatures are updated in the 

present iteration when this simplification is used.  

In order to find the better setup of model parameter values, three different values were 

considered for each parameter, and the model was then tested for all the possible combinations. 

For the number of PCM nodes Nx and Ny the values of 16, 10 and 4 were considered, while for 

the time step ∆t the values 4, 30 and 300 s were taken. As previously mentioned, ∆t = 4 s 

corresponds to the limitations of the software computing capacity, 30 seconds can be a suitable 

value for experimental data logging, and 300 seconds was selected as maximum time step. Each 

combination of parameter values was tested both for the specific heat	����, and for the 

approximation	����;���. With all this, a total of 54 different combinations were obtained and 

tested, using an ordinary Sony VAIO laptop with an Intel(R) Core(TM)2 Duo CPU T5800 @ 

2.00 GHz processor and 3.00 GB of RAM. 

 

The combination of parameter values, which should give the most precise results and also the 

largest computing time, is the one that has the highest number of PCM nodes and the least time 

step, i.e., Nx = Ny = 16, ∆t = 4 s, and the use of 	���� as the specific heat of the PCM. This 

combination was taken as the reference case and, although the results provided by this 

configuration are not free of error, it was supposed small and it was neglected. The results of the 

simulations inferred by the other cases were compared to the reference case. In order to quantify 

the precision of the different cases, specific statistical variables may be used. In this case, one is 

interested in comparing the predictions of different cases with the results of the reference case, 

so that mean absolute deviation (MAD) and mean absolute percentage error (MAPE) were 

chosen as measures of prediction accuracy. The first parameter gives an idea of the error in 

THTF;out, and has the advantage that it is an absolute error (and expressed in ºC) that can be 

compared to the precision of ordinary temperature probes used in real installations. If MAD is 

lower than this precision, then the case evaluated has acceptable error. 
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The MAD of the outlet HTF temperature THTF;out can be calculated by means of Equation (5), 

where the superscript “sim” refers to the value predicted by the simulation, the superscript “ref” 

means the value of the reference case, and n = (8 hours)/∆t is the number of iteration points: 

  

 B6C = �
?∑ =�'�(;�@%

/>E,> − �'�(;�@%
FGH,> A?

>I�   Equation (5) 

 

The MAPE measure is useful when the absolute value of the variable error is not of interest, but 

the relative error. In our case the interest lies in the evaluation of the MAPE by using the heat 

transfer rate since it is the main output parameter to evaluate the discharging process. Thus, the 

MAPE defined in Equation (6) was used for estimating the accuracy of the simulated heat 

transfer rate	</>E: 

 

	MAPE = �
N∑ OP

QRS,R-PUVW,R

PUVW,R X · 100	%N
ZI�   Equation (6) 

 

Finally, in order to find out the most appropriate values of the model parameters to be used for 

further analysis, both computing time and accuracy must be taken into account. Therefore, the 

product between the computing time and the MAPE was also calculated, as shown in Equation 

(7): 

 

	Product = aZbc·defg
�hh	%   Equation (7) 

 

The cases that minimize this parameter should be the ones to be taken into consideration for 

deciding the final configuration of model parameters. 

 

2.4 Analysis of uncertainties in input variables 

 

After evaluating the numerical model, the second step consisted of studying the effect that 

uncertainties in some of the input variable might have on the estimated results. There are 

different parameters that introduce uncertainty in the results, which were considered and 

classified into three groups: 

(i) PCM properties: density, specific heat, thermal conductivity, and melting 

temperature; 

(ii)  HTF properties: density, specific heat, flow rate and inlet temperature; 

(iii)  Heat transfer: convection coefficient between HTF and wall surface, and slab wall 

thermal conductivity. 
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The main source of uncertainties in these variables consists in the experimental measurement of 

material properties. When measuring the density and the specific heat of a PCM, the typical 

uncertainty ranges between 3–5% [20,21], so the larger value of 5% was considered in this 

study. The melting temperature of PCM may also be affected by experimental errors, and ±1ºC 

was supposed as uncertainty of Tmelt. 

 

In the case of the HTF properties, its density and specific heat depend on the bulk temperature 

of the HTF, which is inferred by means of Equation (8), where THTF;in is the inlet temperature of 

the current iteration, and THTF;out;old is the outlet temperature of the HTF, calculated in the 

previous iteration.  

 

�i@�j = �9:;;kl��9:;;"mn,"#$
8   Equation (8) 

 

In this paper the properties of the HTF were considered the same as for water evaluated at HTF 

bulk temperature, but one should take into account that they can be different, because the HTF 

may contain some additives in low concentrations. Since a priori these uncertainties are 

unknown, an error of ±5 % of the parameter value was considered, which is the same as for the 

PCM properties. 

  

An error in the HTF flow rate can also be considered for the simulations. In this study the 

chosen value was ±5%, which is slightly higher than accuracy of commercial flow meters 

(usually around ±2%). 

 

Regarding the inlet HTF temperature, a function approximation to linear dependence with time, 

from about 5 ºC initially to around 25 ºC after the period of 8 hours, was considered. The 

function is shown in Equation (9), where t is expressed in hours and varies between 0 and 8: 

 

�'�(;>?(o) = 5 + 2.5 · o  Equation (9) 

 

Nevertheless, this temperature evolution is a rough assumption and a real implementation of the 

system would probably have a distinct temperature profile. For this reason, an uncertainty of 1 

ºC in THTF;in was considered here. 

 

The convection heat transfer coefficient hHTF is estimated by means of procedures defined in 

EES software, which are based on empirical correlations and may also be affected by errors. 

Moreover, the geometrical characteristics of the ducts where the HTF flows may be slightly 
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different than supposed here, and the uncertainties in the HTF properties may also affect the 

estimated value for hHTF. As mentioned in Section 2.2 the value of the Nusselt number can vary 

between two extreme values given by the assumption of constant surface temperature and 

constant heat flux. The authors checked that the difference between them may be of the order of 

60 %. Consequently, an uncertainty of ±30% of the value given by the EES software was 

assumed for hHTF.  

 

Finally, the thermal conductivity of the slab wall is another parameter that introduces 

uncertainties in the model. The heat transfer through the slab wall is affected by different factors 

such as uncertainties in the wall thickness, or the existence of a contact resistance inside the 

slab, between the wall and the PCM. Thus, an uncertainty of ±5% was considered for the 

effective thermal conductivity of the slab wall. 

 

The reference values considered for the main inlet variables, along with their uncertainties, are 

summarized in Table 2. 

 

In order to study the effect of uncertainties in the inlet variables, different cases were prepared 

by making all the possible combinations of parameter values. The reference case corresponds to 

the reference values of the parameters shown in Table 2. The other cases were obtained from the 

reference one, by only modifying one parameter, while the rest of parameter values were left 

unchanged. Two cases were generated for each parameter, corresponding to the two extreme 

values of the uncertainty interval. Once all the cases were prepared, the model was first run for 

the reference configuration, followed by the other 20 cases, and the results of the simulations 

were then compared to the reference case.  

 

As a measure of precision of each simulation, the MAPE in the heat transfer rate was calculated, 

as shown in Equation (6). Another magnitude of interest was considered, the percentage error 

(PE) of the average heat transfer rate, defined in Equation (10), which is useful for measuring 

the accuracy of the predictions for the total heat exchanged in the entire discharging process. 

 

	PE = PstVUsuVQRS -PstVUsuVUVW

PstVUsuVUVW · 100	% = ∑ =PQRS,R-PUVW,RAv
Rwx

∑ PUVW,Rv
Rwx

· 100	%  Equation (10) 
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3 Results and discussion  

 

3.1 Selection of parameter values 

 

Different simulations were performed for all 54 cases obtained by combining all the possible 

values of the model parameters. For each simulation the computing time was registered, and the 

MAPE of the heat transfer rate was calculated in terms of the best case, which was taken as the 

reference case. The results of the simulations are shown in Table 3. 

 

The MAD of the outlet HTF temperature THTF;out was also calculated, and one obtained that it 

was less than 0.05 ºC for all the simulations, which is an acceptable error.  

From Table 3 it can be observed that the reference case required the largest computational time, 

with more than 1 hour, which is by far too high as to be considered suitable, despite the fact that 

it is the most precise. One also can observe that the use of the 	����;��� approximation leads to a 

significant reduction of the computing time in all cases, while the error generally increases 

except for a few cases where it actually decreases. Notice that the MAPE does not exceed 2.5% 

in any case , meaning that even with a poor choice of parameter values the predictions of the 

numerical model are quite good. 

 

Next, it was necessary to decide which of the above results was the most appropriate to be used 

for further investigations. Since the ideal model should have the smallest error with the lowest 

computing time, the selection criterion for searching the best case was that the product of 

computing time and error was minimum. Table 4 presents the results of the product (Time × 

MAPE)/100% for all cases. 

 

The results shown in Table 4 indicate that the best combinations correspond to the largest time 

step ∆t = 300 s and Nx = 4 or  Nx = 10 with Ny = 4, especially due to a very short computing time 

while the errors are not too large. On the other hand, still good choices could be the combination 

with ∆t = 4 s, Nx = 16, Ny = 16 or 10 and the use of the 	����;��� approximation, but their 

computing time is unacceptably long. 

 

However, taking 300 seconds as time step is not a suitable option when experimental studies are 

carried out, so in that regard ∆t = 30 s was considered to be more valid for further work. With 

this selection there are 5 cases having the minimum value of 0.6, so that any of these 

combinations could be a good choice. The two cases with Nx = 16 require the longest computing 

time, more than 5 minutes, and were rejected. The remaining three options are very similar; one 
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of them has longer computing time but smaller error, the second one has shorter computing time 

and higher error, while the last one has intermediate time and error. Since there is no preference 

between time and error, the combination with Nx = 10, Ny = 10 and 	����;��� was finally chosen 

as the better combination of parameter values, and was considered for subsequent 

investigations. 

 

3.2 Uncertainties in input variables 

 

After having evaluated the parameters of the numerical model, it was used for testing the 

influence of uncertainties in the different inlet variables on the results. The model was first run 

to obtain the reference curves of the outlet HTF temperature and the instantaneous heat transfer 

rate. The results are presented in Figure 3. 

 

The average heat transfer rate during the 8 hours considered for the discharging process for the 

reference case was Qaverage=354.8 W, equivalent to a total heat transfer of 1.02×107 J or 2.84 

kWh. Afterwards, the model was run for the other cases, and the simulated results were 

compared to the reference case. The MAPE of the instantaneous heat transfer rate, and also the 

PE of the average heat transfer rate over 8 hours were then calculated in order to check the 

deviations with respect to the reference case. The results obtained for all the runs are shown in 

Table 5. 

 

Table 5 shows that the maximum MAPE with respect to the reference case corresponds to the 

inlet HTF temperature THTF;in, which means that it is important to know the profile of this 

variable in order to obtain an accurate prediction for the heat transfer rate over the discharging 

period. This profile can be obtained by direct measurement of THTF;in, and if the “exact” 

measured values are within the ±1ºC uncertainty interval of the linear dependence shown in 

Equation (8), one should expect deviations less than the values shown in Table 5 for MAPE and 

PE. It should be remarked that although the MAPE in this case is relatively large, the PE of the 

average heat transfer rate is lower, and it is comprised within the interval ±3.4% with respect to 

the reference case. This means that the profile of the heat transfer rate is quite different with 

respect to the reference, though the total heat interchanged in the process is not too different 

(see Figure 4).  

 

Another inlet variable that may affect the heat transfer profile is the PCM melting temperature, 

with a MAPE around 5%. Figure 5 shows the heat transfer rate for the cases in which the PCM 

melting temperature is 1ºC below or above the reference case, and also the reference curve. 
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Again, in this case the PE of the average heat transfer rate is lower than the MAPE, and the 

error in the prediction of the total heat interchanged is less than 2%. 

 

The uncertainty in the PCM density and specific heat are also important, and from Table 5 one 

can see that they affect the results by 3.4%, both in MAPE and PE. This means that in this case 

although the profile of the heat transfer rate remains similar to the reference, it is shifted 

upwards or downwards due the uncertainties in 	���� and 	����.  

 

Uncertainties in the density and specific heat of the HTF are less important, producing a MAPE 

and PE of about 1.5%, which suggested that, in order to reduce the computing time, they could 

be considered constant for all the discharging process. In order to check that statement, another 

test was done with the simplifying assumption that Tbulk = 15 ºC, and all HTF properties were 

evaluated at this temperature. With this simplification, the computing time reduced to less than 

a half (Time = 98.7 s vs. 213 s), while the errors of the simulated heat transfer rate only 

increased slightly (MAPE = 0.327% vs. 0.303%), so that the product of time and error reduced 

at half: (Time × MAPE)/100% = 0.3 vs. 0.6. This result indicates that assuming constant HTF 

properties evaluated at the average temperature of the process (= 15 ºC) is a good option for 

considerably reducing the time, at the expense of a slight increase of the errors. 

 

The uncertainties in the other input variables, i.e. PCM thermal conductivity kPCM, HTF flow 

rate V, convection heat transfer coefficient hHTF, and slab wall thermal conductivity kwall, have a 

tiny effect on the results, especially on the PE of the average heat transfer rate, which is 

practically equal to that of the reference case.  

 

4 Conclusions 

 

A two-dimensional numerical model was developed and analysed in this paper for predicting 

the thermal behaviour of a cold storage tank, based on the use of PCM encapsulated in parallel 

flat slabs. Implicit finite difference method was used for predicting the outlet HTF temperature, 

and also the heat transfer rate during the discharging process. The computational time and the 

accuracy of the predictions were analysed for different cases obtained as combinations of 

parameter values, in order to find the best configuration of the model.  

 

It was found that using a small time step and a large number of PCM nodes one gets more 

accurate predictions, but the computing time is too long. However, the results showed that it is 

not worth using small time steps and a large number of nodes, since reasonable accurate 

predictions can still be obtained by using a time step as large as 300 s, and only 4 nodes in each 
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direction, while the computing time reduces drastically by 99.68% with respect to the reference 

case. 

 

The use of some simplifying approximations was also investigated, such as the use of 	����;���, 

or constant HTF properties. Using 	����;��� is a good solution for reducing the computational 

time despite a slight error increase in the case of using small time step in the simulation (e.g. 

∆t=4 s). If one is more interested in having a short computing time rather than accurate results, 

further approximations such as the use of constant HTF properties can be used.  

 

The influence of uncertainties in some of the input variables were also studied, in order to 

quantify their effect on the predictions, and also to find out which input variables should be 

known more accurately. Attention should be paid to the inlet HTF temperature profile, and also 

to some of the PCM properties, such as melting temperature, density, and specific heat.  
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Nomenclature 

∆A  Contact surface area m2 

∆t  Time step s 

∆x  Node length in X axis m 

∆y  Node length in Y axis m 

c  Specific heat J kg-1 K-1 

d  Wall thickness m 

h  Convection heat transfer coefficient W m-2 K-2 

H  Height of the duct m 

(x,y)  Node (x,y) 

k  Thermal conductivity W m-1 K-1 

m5   Mass flow rate kg s-1 

Nx  Nodes in vertical X-axis 

Ny  Nodes in horizontal Y-axis 

Q  Heat transfer rate W 

ρ  Density kg·m-3  

t  time h 

T  Temperature ºC 

V̇   Volumetric flow rate m3 h 

 

Subscript 

average  Average 

bulk  Bulk   

HTF  Heat transfer fluid 

in  Inlet 

old  Previous iteration 

out  Outlet 

melt  Melting 

PCM  Phase change material 

s  Surface of the encapsulation wall 

wall  Encapsulation wall 
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Superscript 

sim,i  Predicted value by the simulation   

ref,i  Reference case 

 

Abbreviations 

MAD  Mean absolute deviation 

MAPE  Mean absolute percentage error 

PE  Percentage of error 
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Figure captions 

 

Figure 1. Schematics of the PCM flat slabs distribution in the TES tank (left) and image of two 

PCM flat slabs (right). 

 

Figure 2. Schematic representation of the TES. 

 

Figure 3. Reference curves for the outlet HTF temperature and for the heat transfer rate. 

 

Figure 4. Heat transfer rate for different inlet HTF temperature. 

 

Figure 5. Heat transfer rate for different PCM melting temperatures. 
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Table 1. Flat PCM encapsulation specifications 

Parameter Value 

Flat length (m) 0.5 

Flat width (m) 0.25 

Flat thickness (m) 0.032 

Gap (m) 0.013 
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Table 2. Reference parameter values and uncertainties 

Variable 	����  	
��� 	����  Tmelt 	�'�(  	�'�(  V̇  THTF;in hHTF kwall 

Units kg/m3 W/m·K J/kg·K ºC kg/m3 J/kg·K m3/h ºC W/m2·K W/m·K 

Reference 

value 
1470 0.43 

DSC 

curve 
11.7 

Water 

at THTF 

Water 

at THTF 
0.6 Eq.(9) 

Given 

by EES 
0.5 

Error ±5% ±5% ±5% ±1 ±5% ±5% ±5% ±1 ±30% ±5% 
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Table 3. Computing time and MAPE of the heat transfer rate with respect to the reference case   

   Nx=16 Nx=10 Nx=4 

   	����  	����;���  	����  	����;���  	����  	����;���  

Δt=4 s 

Ny=16 
Time (s) 3890 2572 2643 1835 1603 1406 

MAPE (%) Reference 0.015 0.128 0.144 0.671 0.686 

Ny=10 
Time (s) 3097 1838 1961 1531 1147 1000 

MAPE (%) 0.029 0.026 0.11 0.124 0.649 0.664 

Ny=4 
Time (s) 1624 1319 1321 1147 923 864 

MAPE (%) 0.403 0.388 0.307 0.302 0.453 0.465 

Δt=30 s 

Ny=16 
Time (s) 617 339 395 258 244 205 

MAPE (%) 0.125 0.203 0.210 0.320 0.717 0.830 

Ny=10 
Time (s) 433 319 284 213 191 158 

MAPE (%) 0.129 0.190 0.199 0.303 0.699 0.812 

Ny=4 
Time (s) 225 183 181 161 126 118 

MAPE (%) 0.473 0.409 0.385 0.374 0.531 0.626 

Δt=300 s 

Ny=16 
Time (s) 68.6 39.9 49.5 27.2 28.9 17.7 

MAPE (%) 1.03 1.775 1.056 1.872 1.278 2.304 

Ny=10 
Time (s) 51.6 32.3 31.8 22.4 20.2 15.8 

MAPE (%) 1.033 1.762 1.058 1.859 1.274 2.287 

Ny=4 
Time (s) 22.6 17.3 18.3 14.7 13.6 12.3 

MAPE (%) 1.114 1.616 1.099 1.705 1.241 2.105 
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Table 4. Results for (Time × MAPE)/100% 

  Nx=16 Nx=10 Nx=4 

  	����  	����;���  	����  	����;���  	����  	����;���  

Δt=4 s 

Ny=16 Reference 0.4 3.4 2.6 10.8 9.6 

Ny=10 0.9 0.5 2.2 1.9 7.4 6.6 

Ny=4 6.5 5.1 4.1 3.5 4.2 4.0 

Δt=30 s 

Ny=16 0.8 0.7 0.8 0.8 1.7 1.7 

Ny=10 0.6 0.6 0.6 0.6 1.3 1.3 

Ny=4 1.1 0.7 0.7 0.6 0.7 0.7 

Δt=300 s 

Ny=16 0.7 0.7 0.5 0.5 0.4 0.4 

Ny=10 0.5 0.6 0.3 0.4 0.3 0.4 

Ny=4 0.3 0.3 0.2 0.3 0.2 0.3 
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Table 5. Average heat transfer rate and deviations produced by uncertainties  

Variable Units 
Reference 

value 

Tested 

value 

Qaverage 

(W) 

MAPE 

(%) 

PE 

(%) 

ρPCM kg/m3 1470 
1543.5 367.0 3.4 3.4 

1396.5 342.5 3.4 –3.4 

kPCM W/m·K 0.43 
0.45 355.0 0.6 0.1 

0.41 354.5 0.7 –0.1 

	����  J/kg·K DSC curve 
Ref. + 5% 367.0 3.4 3.4 

Ref. – 5% 342.5 3.4 –3.4 

Tmelt ºC 11.7 
12.7 360.1 5.1 1.5 

10.7 348.3 4.7 –1.8 

ρHTF kg/m3 Water at THTF 
Ref. + 5% 359.9 1.5 1.4 

Ref. – 5% 349.6 1.5 –1.5 

	�'�(  J/kg·K Water at THTF 
Ref. + 5% 359.9 1.5 1.4 

Ref. – 5% 349.6 1.5 –1.5 

V̇  m3/h 0.6 
0.63 354.9 0.3 0.0 

0.57 354.6 0.3 –0.1 

THTF;in ºC Eq. (9) 
Ref. + 1 366.7 11.0 3.4 

Ref. – 1 342.6 11.2 –3.4 

hHTF W/ m2·K Given by EES 
Ref. + 30% 355.2 1.5 0.1 

Ref. – 30% 353.9 2.6 -0.3 

kwall W/m·K 0.5 
0.525 354.8 0.2 0.0 

0.475 354.7 0.2 0.0 
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Highlights: 

• A model of PCM thermal energy storage for cooling applications is presented 
• The error and computational time of the simulations is evaluated 

• The effect of the input parameters uncertainty is also analysed  
• Some approximations of the parameters give important computational time 

reduction 
• The uncertainty of the inlet HTF temperature presents the highest influence 


