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ABSTRACT  

2-phenylethynesulfonamide (PES) or pifithrin-µ is a promising anticancer agent with 

preferential toxicity for cancer cells. The type of cell death and the molecular cascades 

activated by this compound are controversial. Here, we demonstrate PES elicits a 

caspase- and BAX/BAK-independent non-necroptotic necrotic cell death, since it is not 

inhibited by Necrostatin-1. This process is characterized by an early generation of 

reactive oxygen species (ROS) resulting in p53 up-regulation. Accordingly, thiolic 

antioxidants protect cells from PES-induced death. Furthermore, inhibiting the natural 

sources of glutathione with L-buthionine-sulfoximine (BSO) strongly cooperates with 

PES in triggering cytotoxicity. Genetically modified p53-null or p53 knocked-down cells 

show resistance to PES-driven necrosis. The predominant localization of p53 in 

chromatin-enriched fractions added to the up-regulation of the p53-responsive gene 

p21, strongly suggest the involvement of a transcription-dependent p53 program. On 

the other hand, we report an augmented production of ROS in p53-positive cells that, 

added to the increased p53 content in response to PES-elicited ROS, suggests that p53 

and ROS are mutually regulated in response to PES. In sum, p53 up-regulation by ROS 

triggers a positive feedback loop responsible of further increasing ROS production and 

reinforcing PES-driven non-necroptotic necrosis. 
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1. Introduction 

PES (2-phenylethynesulfonamide), also named pifithrin-µ, was first identified as a 

compound able to repress apoptosis induced by the translocation of p53 to the 

mitochondria [1]. Further studies have revealed that PES is an effective inducer of cell 

death with increased selectivity for cancer cells [2]. The pharmacological actions of PES 

include the blockage of both the proteasome and the autophagic process [3]. These to 

actions converge in increasing the proteotoxic stress of the highly metabolically-active 

cancer cells but, also, in inactivating proteins, such as p53, through its inclusion in 

insoluble aggregates [3]. This p53 inactivating mechanism, plus the fact that p53-

defective cells are not resistant to PES, has supported the idea of a null involvement of 

p53 in the process of cell death triggered by this molecule. Cell death, cell cycle arrest, 

senescence, DNA repair, glucose metabolism, ROS generation and autophagy are 

some of the cellular phenomena regulated by p53 [4]. p53 is the most frequently 

mutated tumor suppressor gene in human cancer [5,6]. Most cellular insults trigger 

intracellular signaling cascades that converge in p53 activation, for example DNA 

damage, viral infection, oncogene activation or ROS generation [4,7]. In response to 

these stimuli, p53 is stabilized and engages a plethora of molecular pathways, including 

both transcriptional and non-transcriptional events [4,8].  

Necrotic cell death was initially described as a passive mechanism of cell 

demise. For a while, necrosis became synonym of accidental death and was defined by 

its morphological traits [9]. However, further research uncovered necrosis as a 

regulated process in many instances [10,11]. Necroptosis is a type of regulated necrosis 

mediated by the activation of receptor-interacting protein kinase 1 (RIPK1) and RIPK3. 
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Necrostatin-1 is a RIPK1 inhibitory drug, which allows the inhibition and identification of 

necroptotic cell death [12]. 

We set out to gain a better understanding of how PES kills cancer cells. PES 

elicited a non-apoptotic, non-autophagic, non-necroptotic cell death in SH-SY5Y and 

HCT116 cells. Interestingly, PES triggered an early burst on ROS content, which was 

required for cytotoxicity. We observed a ROS-dependent increase in the p53 protein 

levels, mostly located at the chromatin-enriched fraction and followed by an increase on 

p21 content. p53 up-regulation boosted cell sensitivity to PES-mediated necrosis. In this 

sense, silencing p53 diminished the cytotoxic response to PES. In sum, our results 

indicate that ROS produced by PES trigger the up-regulation of p53, which, in turn, 

increases the production of ROS, resulting in a non-necroptotic form of necrosis. 

 

 

2. Material and Methods 

 

 

2.1 Cell culture and drug treatments 

Colon adenocarcinoma HCT116 and HCT116 p53-/- cells were obtained from Dr. 

Vogelstein’s laboratory [13]. The immortalized MEF Bax-/-Bak-/- and their WT 

counterparts were obtained from Dr. Korsmeyer’s laboratory [14,15]. SH-SY5Y, 

HEK293, U87MG, HeLa and HL-60 cell lines were obtained from the American Type 

Culture Collection. SH-SY5Y, HEK293, U87MG, HeLa and MEFs were maintained in 

DMEM, HL-60 in RPMI and all the colon-derived cells in McCoy’s media. All media were 
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supplied by Lonza (Rockland, ME, USA) and supplemented with 10% FCS (Gibco part 

of Invitrogen, Paisley, UK). PlasmocinTM (InvivoGen, San Diego, CA, USA) at 5 µg/ml 

final concentration was added as a prophylactic antibiotic. Cultures were regularly PCR-

tested to confirm mycoplasma-free conditions. Cultures were maintained at 37ºC in 

water-saturated, 5% CO2 atmosphere. Stock solutions of PES and the other chemicals 

were prepared in DMSO. From these stock solutions, drugs were delivered to the 

culture media and adjusted to the final concentrations reported in the text and figures. 

The serial dilution procedure was used in concentration-dependency determinations. 

 

 

2.2 Chemical reagents 

CellTiter 96® kit containing the reagent MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxy-methoxy phenyl)-2-(4-sulfophenyl)-2H-tetrazolium) was provided by Promega 

(Madison, WI, USA). Pierce Biotechnology (Rockford, IL, USA) provided Alamar blueTM 

Cell Viability Assay Reagent. Q-VD-OPh (Q-Val-Asp(non-methylated)-OPh) and 3-

methyladenine (3-MA) were obtained from Calbiochem part of Merck KGaA (Darmstadt, 

Germany). AcDEVDafc (Acetyl-Asp-Glu-Val-Asp-7-amino-4-trifluoromethyl-coumarin) 

was purchased from Enzo Life Sciences (Farmingdale, NY, USA). Dithiothreitol (DTT) 

was from Thermo Fisher Scientific (Waltham, MA, USA). Necrostatin-1 was purchased 

from Tocris Bioscience (Ellisville, MI, USA). Staurosporine (STS), Spautin-1, 

bisBenzimide (Hoechst 33342), PI (Propidium iodide), N-acetyl-L-cysteine (NAC) and L-

buthionine-sulfoximine (BSO) were supplied by Sigma-Aldrich (St. Louis, MO, USA).  

Unless otherwise stated, the non-listed reagents were also from Sigma. 
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2.3 Cell survival and cell death and nuclear morpho logy assessment 

To determine cell survival, MTS or Alamar blue reagents were used indistinctly. 

Both assays couple a nonspecific cellular reductase activity of viable cells to the 

reduction of a dye into colored (MTS) or fluorescent (Alamar blue) products, which are 

subsequently quantified. Percentage of viability was obtained by referring these values 

to the ones obtained with a population of vehicle treated cells. To assess cell death, 

cultures stained with PI, were trypsinized and subjected to flow cytometry analysis. 

Nuclear morphology was observed by direct fluorescence microscopy of cells in media 

containing 0.05 µg/ml bisBenzimide plus 12.5 µg/ml PI as previously described [11].  

 

 

2.4 Caspase activity 

Effector caspase activation (DEVDase activity) was obtained by quantifying the 

fluorescence released from Ac-DEVD-afc substrate after incubation at 37°C in the lysed 

cell cultures. This method has been validated and described in our previous work [16]. 

 

 

2.5 Overexpression of p53 

HCT116 p53-/- cells, plated at 1.2 x 106 in p35 wells, were transfected with 6 µg 

of pCMV-Neo-Bam p53 WT or pCMV-Neo-Bam [17] in combination with 0.6 µg of a 

plasmid containing GFP. DNA was prepared in Opti-MEMTM media (Life Technologies, 
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Carlsbad, CA, USA) before adding Turbofect transfection reagent (Thermo Fisher 

Scientific, Waltham, MA, USA) as described in the instructions manual. After 24 h, cells 

transfected were plated in M96 plates for drug treatment and cell viability assessment. 

 

 

2.6 Lentiviral production and infection 

FSV and FSV p53 lentiviral constructs were gently provided by Dr. Xavier Dolcet 

and Dr. Núria Eritja.  Vectors contained a U6 promoter for expression of short hairpin 

RNAs against p53 (GTCCAGATGAAGCTCCCAGAA) and the Venus variant of YFP 

under the control of an SV40 promoter for monitoring transduction efficiency. Lentiviral 

particles were produced in 293T cells co-transfected by the calcium phosphate method 

with the above plasmid plus plasmids coding for the envelope and the packaging 

systems (VSV-G and ∆8.9, respectively). The day after transfection, 293T cells were 

switched to media containing no anti-mitotics and left for 2–3 days. Supernatants were 

then harvested, filtered through a 0.45 µm filter, and directly added to cultures in the 

presence of Polybrene (Merck Millipore part of Merck KGaA, Darmstadt, Germany). 

 

 

2.7 Electron microscopy 

Cells were collected, washed twice in PBS (150 mM ClNa, 2.7 mM ClK, 8 mM 

Na2HPO4, 1.5 mM KH2PO4) and fixed for 30 min at 4 °C in 100 mM phosphate buffer 

(pH 7.4) containing 2.5% glutaraldehyde. After rinsing the pellets twice with PBS at 

4 °C, the cells were post-fixed in buffered OsO4, dehydrated in graded acetone and 
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embedded in Durcupan® ACM resin (Sigma-Aldrich, St. Louis, MI, USA). Ultrathin 

sections mounted on copper grids were counterstained with uranyl acetate and lead 

citrate. A transmission electron microscope (Zeiss EM 910) was employed to visualize 

the cellular ultrastructure. 

 

 

2.8 Intracellular ROS measurement 

The quantification of intracellular ROS was based on fluorescence of the 

compound DCF that results from cell metabolization and ROS action on the precursor 

compound 2’,7’dichlorofluorescin diacetate. Briefly, cells were seeded in 96 well plates.  

Media was replaced 48 h later by Phenol-red free Hank’s Balanced Salt Solution 

containing 10 µM DCF. After an incubation of 30 min, the reagent was removed and 

cells were washed with pre-warmed PBS. Cultures were then immediately incubated in 

full media containing the investigated drug. At the times desired, fluorescence was read 

at 485/530 nm (excitation/emission wavelengths) with a plate reader (Infinite® M200, 

Tecan, Maennedorf, Switzerland). 

 

 

2.9 Protein extraction and Western blotting 

To perform whole cell extracts, cells were lysed in a buffer containing 100 mM 

Tris/ClH pH 6.8, 1% SDS, 1 µM EDTA, plus the cocktail of protease inhibitors from 

Sigma followed by sonication. After a centrifugation at 12,000 × g for 15 min, a total 

protein extract was obtained. To obtain extracts from specific cell subfractions 
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(cytosolic, nucleoplasmic and chromatin-enriched), we followed the protocol described 

in a previous publication [18]. The protein concentration was determined by means of 

the DC Protein Assay (BioRad, Hercules, CA, USA). Volumes were calculated to 

equalize the protein load in SDS 12%-polyacrylamide gel electrophoresis. Following 

electrotransfer to 0.45 µm PVDF membranes (EMD Millipore part of Merck KGaA, 

Darmstadt, Germany), we applied the following antibodies: anti-p53 clone BP53-12 

(Upstate, part of Merck KGaA, Darmstadt, Germany), anti-p21 clone CP74 (Sigma, St. 

Louis, MI, USA), anti-lactate dehydrogenase (LDH) (RocklandTM Immunochemicals Inc., 

Boyertown, PA, USA), anti-polypyrimidine tract binding protein 1 (PTBP1) ab5642 

(Abcam, Cambridge, England, UK) and anti-GAPDH-Peroxidase clone GAPDH-71.1 

(Sigma, St. Louis, MI, USA). Immunoblots were finally developed with the ImmobilonTM 

reagent from Millipore part of Merck KGaA (Darmstadt, Germany). Chemiluminiscence 

was recorded and densitometric analysis was performed by means of a ChemidocTM 

apparatus and the Image Lab version 4.0.1 software from Bio-Rad. To quantify 

expression of p53, values of signal intensity were normalized to the appropriate signal in 

control extracts. Alternatively, to quantify p53 or p21 content in Fig. 6B or Fig. 7A, 

values of signal intensity were first referred to the values of GAPDH and then, 

normalized to a non-induced condition. 

 

 

3. Results 
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3.1 PES triggers caspase-independent non-apoptotic cell death  

 A panel of human-derived cell lines (SH-SY5Y from neuroblastoma, U87MG from 

grade III astrocytoma, HL-60 from acute promyelocytic leukemia, HEK293 from 

embryonic kidney, HeLa from cervical cancer, and HCT116 from colorectal carcinoma) 

was used to assay the cytotoxicity induced by increasing concentrations of PES. As 

shown in Fig. 1A, PES triggered loss of cell viability in a concentration-dependent 

manner. In support of previous observations, the non-tumor derived HEK293 cells 

displayed a greater resistance to PES-driven toxicity [2]. We focused our research on 

HCT116 and SH-SY5Y, two tumor-derived cell lines with different ontogeny, being SH-

SY5Y neatly more sensitive to PES than HCT116. Plasmatic membrane rupture by 

means of PI permeability was evaluated over time at concentrations of 12.5 and 25 µM 

PES in SH-SY5Y and HCT116, respectively. As shown in Figs. 1, B and C, 12.5 µM 

PES for 24 h in SH-SY5Y was equivalent to 25 µM for 48 h in HCT116. At these 

concentrations, 60% of SH-SY5Y and HCT116 cells were PI positive after 24 h and 48h, 

respectively. To assess whether the type of cell death was apoptotic, we double stained 

nuclei with bisBenzimide and Propidium iodide (PI). In these experiments, HCT116 and 

SH-SY5Y did not present evident chromatin condensation or nuclear fragmentation, 

which are distinctive traits of apoptosis. A similar behavior was observed in U87MG, 

HeLa, 293HEK and HL-60 cells when assaying concentrations of PES that at 24 h 

triggered death in 50% of the cell populations (results not shown). To sustain the 

absence of apoptotic death in HCT116 and SH-SY5Y, caspase activation (DEVDase 

activity) was evaluated through time. As expected, PES was unable to trigger caspase 

activation in both cell lines (Figs. 2A and B). As a control, we assessed caspase activity 
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in response to Staurosporine (STS), thus confirming the caspase functionality in both 

cell lines (Figs. 2A and B). Equivalent results were obtained when applying the same 

strategy to U87MG, HeLa, 293HEK and HL-60 cells (Fig. 2C). To further discard 

apoptosis as the predominant death process engaged by PES, we tested its effects on 

mouse embryonic fibroblasts (MEFs) defective in both, BAX and BAK. These proteins 

are key positive mediators at the mitochondrial or intrinsic pathway of apoptosis and, 

therefore, MEF Bax-/-Bak-/- cells become completely unresponsive to the stimuli that 

trigger it. As expected, MEF Bax-/-Bak-/- cells displayed resistance to STS as compared 

to their WT counterparts. However, deficiency of BAX and BAK provided no protection 

when cells were treated with PES (Fig. 2D). Altogether these results indicated that PES 

was triggering caspase- and BAX/BAK-independent cell death in HCT116 and SH-

SY5Y cells and suggested the involvement of a necrotic type of cellular demise. 

 

 

3.2 PES induces a non-necroptotic, necrotic type of  cell death  

Depending on the cellular model, PES either elicits caspase-independent [2,19] 

or caspase-dependent [20–22] cell death, or a mixture of both [23]. To gain insight on 

the kind of cell death induced by PES, we evaluated the protective effects of commonly 

used inhibitors of death. Blockage of either apoptosis with the broad caspase inhibitor 

Q-VD-OPh, necroptosis with RIPK1 inhibitor Necrostatin-1 or autophagy-driven cell 

death with 3-MA or Spautin-1, proved to be inefficient strategies to avoid PES-triggered 

cell death (Fig. 3A). Morphological studies by electronic microscopy remain one of the 

best methods to ascertain necrosis [9]. HCT116 cells displayed a morphological 
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phenotype consistent with its origin in colon epithelia, with cells establishing junctions at 

the contact sites and displaying mitochondria and Golgi apparatus in a polarized way at 

a side of the nucleus (Fig. 3B). Upon PES treatment, HCT116 cells underwent 

mitochondrial disruption and an increased cytoplasm vacuolization (Fig. 3C). Later in 

the process, cell membrane became ruptured and the cytoplasm severely unstructured 

(Fig. 3D). These traits were consistent with a necrotic type of cell death. Similar 

morphological changes were observed in PES-challenged SH-SY5Y cells, with images 

of severely disrupted mitochondria only after 12 h of treatment (Fig. 3F). Together, 

these results indicated PES triggered a non-necroptotic, necrotic type of cell death. 

 

 

3.3 ROS are pivotal elements in necrosis driven by PES 

When the intracellular antioxidant systems are overloaded, the excess of ROS 

leads to oxidative stress, to the damage of essential biological components and, 

eventually, to necrosis [9]. In an attempt to establish a potential link between PES-

driven necrosis and oxidative stress, we monitored the induction of ROS by PES in a 

time-dependent manner. At merely 30 min of PES treatment, we detected a significant 

increase in ROS content (Fig. 4A). To evaluate the relevance of the observed ROS in 

PES-driven necrosis, we assessed the effects of thiolic antioxidants, such as 

dithiothreitol (DTT) and N-Acetyl Cysteine (NAC) and confirmed they conferred a 

significant protection to PES-mediated necrosis in both SH-SY5Y and HCT116 cells 

(Figs. 4B and C). Efficient suppression of ROS by either DTT or NAC in combination 

with PES was controlled and confirmed by ROS quantification (data not shown). These 
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findings were consistent with necrosis being a consequence of ROS build-up in 

response to PES. To further validate the central role of ROS in PES-induced necrosis, 

HCT116 and SH-SY5Y cells were challenged with combinations of PES and L-

Buthionine sulphoximine (BSO). BSO is a specific inhibitor of γ-glutamylcysteine 

synthetase able to deplete the intracellular levels of glutathione [24,25]. BSO and the 

subsequent glutathione depletion are not toxic for most cells unless subjected to 

oxidative stress [26]. Therefore, HCT116 and SH-SY5Y cells were pre-incubated with 

BSO and exposed to sublethal concentrations of PES. Under these circumstances, we 

reported a significant increase of ROS content (Fig. 4D). Thus supporting BSO 

improves generation of ROS by PES. Next, we applied this combination to our 

experimental paradigms and assessed the impact on their survival. Accordingly, BSO 

strongly cooperated with sublethal concentrations of PES to trigger cell death in 

HCT116 and SH-SY5Y cells (Fig. 4E). This cooperation was also detected in other cell 

lines, for instance U87MG and HeLa cells, which were more resistant to PES-deadly 

actions (Fig. 1A). Together, these findings reinforced the involvement of ROS in PES-

triggered necrosis. 

 

 

3.4 p53 participates in PES-driven necrosis  

p53 is a pivotal stress sensor that responds to a great variety of cell insults by 

orchestrating cell demise. Besides apoptosis and autophagic cell death, p53 is also 

involved in necrosis [27–29]. To ascertain the involvement of p53 in PES-triggered 

necrosis, we used HCT116 cells and their p53-deficient counterparts. HCT116 p53-/- 
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cells required higher concentrations of PES to get the same amount of cell death found 

in HCT116 cells, after 24 h of treatment (Fig. 5A). Indeed, leakage of the membrane in 

HCT116 p53-/- cells was significantly protected (15.6±8.1 % of PI-positive cells) when 

compared to HCT116 (45.5±7.7 % of PI-positive cells) (Fig. 5B). To better demonstrate 

the observed differences were due to p53 and not to unrelated phenomena, we 

reintroduced a functional p53 into HCT116 p53-/- cells. Transient transfection of p53 

sensitized HCT116 p53-/- cells to PES-driven cell death (Fig. 5C). These data were in 

agreement with p53 being implicated in PES-driven necrosis.  

 

 

3.5 p53 is predominantly located at the chromatin-e nriched cellular fractions in 

response to PES   

Since PES blocks the transcription-independent p53 translocation to 

mitochondria [1], we surmised the observed p53-dependent susceptibility could rely on 

its transcriptional activity, which consists in the regulation of a specific set of genes by 

binding to p53-responsive elements [30]. To do so, p53 needs to be located at the 

nucleus, more precisely at the chromatin-enriched fraction. Therefore, direct proof of 

this localization was necessary to substantiate p53 was modulating transcription of 

target genes. To experimentally find this evidence, we first interrogated the presence of 

p53 in chromatin-enriched fractions after challenging cells with PES. Using a previously 

described method to precisely separate cellular extracts into specific fractions [18], SH-

SY5Y extracts were subfractionated into a cytoplasmic fraction, enriched in 0.1% triton-

soluble proteins (C) and two nuclear fractions, one enriched in hydrosoluble proteins or 
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nucleoplasm (N1) and the other, containing the insoluble and chromatin-bound proteins 

(N2). In healthy non-treated SH-SY5Y cells, most of the p53 content was found in either 

nucleoplasmic- or chromatin-enriched fractions. However, after PES treatment, p53 was 

preferentially found in the chromatin-enriched fraction (Fig. 6A). Precisely, p53 

surpassed the control by 3 folds in the nucleoplasmic fraction and 6 folds in the 

chromatinic one (Fig. 6A). Purity of the fractions was controlled by the presence of the 

cytoplasmic enzyme lactate dehydrogenase (LDH) and nuclear polypyrimidine tract 

binding protein 1 (PTBP1). These data supported that PES was up-regulating p53, 

which located at the nucleus, where probably it was triggering the transcription of p53-

responsive genes involved in a form of oxidative stress-regulated necrotic cell death. To 

validate this up-regulation in a time-dependent manner, total levels of p53 in SH-SY5Y 

cells were studied over a 24 h period of treatment. A notable increase of p53 content 

was evident at 6 h, before any sign of necrosis occurred (aprox. 2.4 folds over time 0, 

Fig. 6B). In parallel, abundance of one of the best-known transcriptional targets of p53, 

p21 [31,32], was monitored. Kinetics of p21 paralleled those of p53 (Fig 6B). Similar 

results were obtained with HCT116 cells (not shown). Overall, these results were 

suggestive of a functional p53, activating transcription in response to PES. Finally, we 

considered that specific inhibition of p53 would be of paramount importance to assess 

its role in cell death. To do so, endogenous p53 was specifically silenced with a 

lentivirus carrying an shRNA against p53 (shp53). We observed an increase in the 

resistance of HCT116 (Fig. 6C) and SH-SY5Y (Fig. 6D) cells to PES-induced necrosis 

in any of the concentrations employed. Efficiency of p53 down-regulation was assessed 
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and found to be greater than 80% by Western-blot (data not shown). Therefore, we 

concluded that a p53-dependent program was involved in necrosis triggered by PES.  

 

 

3.6 ROS and p53 form a positive feedback loop in PE S-mediated necrosis  

p53 can either be activated in response to oxidative stress or, alternatively, 

generate ROS through transcription-dependent mechanisms [7]. Several experiments 

were performed to distinguish between these two possibilities. First, SH-SY5Y cells 

were either treated with PES plus or minus DTT and p53 content was assessed by 

Western-blot (Fig. 7A). Cells challenged with PES up-regulated p53 by 35 folds 

compared with untreated cells. Although single DTT treatment increased p53 by 10 

folds, combination of DTT and PES resulted in a 15 folds increase. In other words, in 

the presence of DTT, PES triggered a mere increase of 1.5 folds over DTT, indicating 

that p53 up-regulation was mainly a response to the generation of ROS. Second, we 

evaluated the production of ROS in p53-null cells stimulated with PES. At times when 

p53 was up-regulated by PES, HCT116 p53 -/- cells generated significantly lower 

amounts of ROS than HCT116 cells (Fig. 7B). In sum, we showed ROS up-regulated 

p53 and p53 promoted ROS generation. Therefore we propose the existence of a 

positive feed back loop between p53 and ROS in the process of PES-mediated 

necrosis.  

 

 

4. Discussion 
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Here, we describe PES induces cytotoxicity in cell lines of different ontogeny. 

Cell death by this compound is caspase-independent and presents a prominent 

cytoplasmic vacuolization. The nuclei of PES-injured cells do not show morphological 

traits of apoptotic cell death. Moreover, PES promotes an early induction on the 

intracellular ROS content that, in turn, is a key event for the cytotoxic process. This 

oxidative stress is responsible of an up-regulation of p53, which participates in PES-

driven cell death. Notably, down-regulation or genetic suppression of p53 makes cells 

more resistant to necrosis induced by PES. Localization of p53 in the chromatin-bound 

fraction and up-regulation of p21 indicate the involvement of a transcription-dependent 

p53 program in PES-driven necrosis. Finally, we also present evidence of PES eliciting 

a positive feedback loop between ROS and p53, which results in the final necrotic 

outcome. 

p53, also known as the “guardian of the genome”, is a pivotal element in the cell 

response to chemotherapeutic agents. The fact that p53-defective cells remain sensitive 

to PES-induced cell death is taken as a proof of its irrelevance in the process [2,21]. 

Nonetheless, up-regulation of p53 in response to PES is reported in multiple cell lines 

[2,3]. There exists only one exception in which PES triggers p53-independent apoptosis, 

without p53 up-regulation [21]. Under these premises, we interrogated the involvement 

of p53 in genetically modified experimental paradigms: HCT116 and their isogenic 

HCT116 p53-/-, HCT116 p53-/- cells overexpressing a functional p53, and, finally, 

HCT116 and SH-SY5Y cells with diminished levels of p53. Regardless of the genetically 

modified paradigm, p53 exerted a positive role, increasing PES-triggered necrosis. 

Moreover, we have provided evidences of p53 transcriptional involvement since p53 
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remains in the appropriate nuclear compartment for transcription modulation and 

content of p21 is increased. 

Blockade of RNA polymerase II-mediated transcription induces p53 accumulation 

in mitochondria, being the critical factor for eliciting p53-dependent, but transcription-

independent, apoptosis [33].  On the contrary, PES is a well-known inhibitor of p53 

translocation to mitochondria [1] with no reported effects on transcription. Applying the 

former reasoning, PES-driven global increase of p53, having its movement to the 

mitochondria impeded, could act as a permissive event for p53 transcription-dependent 

necrosis to occur. Despite our findings, high concentrations of PES are cytotoxic in 

HCT116 p53-/- cells. Our explanation to this phenomenon is the loss of drug specificity 

at the highest concentrations employed. Our data also evidence that PES triggers cell 

death in p53-null cells, such as HL-60. In this regard, when high concentrations of PES 

are used, we cannot rule out the involvement of other members of the p53 family of 

transcription factors, such as p63 or p73, which all share amino acid sequence identity 

in the DNA-binding domain, and thus could present redundant functions in the 

regulation of gene expression [34]. 

The critical role of ROS in the regulation of necrotic pathways [35,36], prompted 

us to characterize them in our paradigms. Oxidative stress occurs as a consequence of 

the imbalance between the rate of ROS production and neutralization by specific 

detoxifying proteins, frequently leading cells to death either by apoptosis or necrosis. 

We found an accumulation of ROS at times as early as 30 min after PES treatment. 

Moreover, thiolic antioxidants conferred the highest protection facing PES when 

compared to the other compounds tested (Fig. 3A). To our knowledge, only one report 
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exists about ROS involvement in the lethal mode of action of PES [22]. However, the 

authors show that PES triggers apoptosis rather than necrosis. Two main issues need 

to be taken into account in their work: the delayed kinetics of ROS accumulation, 

starting at 4 h of treatment, and the non-tumor origin of their cellular model, which is 

based on rainbow trout, gill-derived, cells. In addition we report a pharmacological 

cooperation between PES and BSO that translates into an increased ROS content and 

a greater cytotoxicity. This cooperation reinforces our conclusion about PES-mediated 

ROS generation but, in addition, it raises strategic implications for cancer therapy. In our 

laboratory, we have observed BSO to be minimally toxic for cells unless subjected to 

other simultaneous stresses. This is consistent with BSO being well tolerated by 

humans in clinical assays [37,38]. The association of BSO and anticancer drugs in not 

new, it has been described, for example, with retinoids in neuroblastoma [39], 

melphalan or cisplatin in ovarian  cancer [40,41],  vitamin D in breast cancer [42], or 

azathioprine in colon and hepatic carcinoma [43]. We have no knowledge about PES 

toxicity in humans. However, BSO combined to PES will probably allow the reduction of 

PES doses, not decreasing its efficacy and minimizing its nonspecific effects. 

Multiple lines of evidence exist on the mutual regulation of p53 and ROS. For 

instance, DNA damage by ROS triggers an alarm response with p53 as the central 

player. Moreover, ROS activate phosphorylation cascades trough p38α MAPK and ERK 

ending up in p53 stabilization [44]. Finally, oxidation of cysteine residues in p53 modifies 

its DNA binding activity and the transcription of specific genes [45]. Our data evidenced 

ROS inhibition attenuates p53 increase in response to PES, thus positioning ROS 

upstream of p53 up-regulation. On the other hand, p53 can promote ROS generation by 
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transcriptionally inducing enzymes, such as quinone oxidoreductase or proline oxidase, 

or pro-oxidant genes, such as BAX, PUMA and p66Shc [45]. Similarly, p53-mediated 

suppression of antioxidant genes such as manganese superoxide dismutase (MnSOD), 

could finally impinge on the ROS content [45]. Though p53 is known to respond to ROS 

by inducing either anti-oxidant or pro-oxidant genes, it has been suggested that the 

severity of the stimulus could be critical in making this decision [46]. In support of the 

pro-oxidant role of p53, we found that HCT116 p53-/- cells generate a limited amount of 

ROS when compared to HCT116 (Fig. 7B).  

Our results using multiple cell lines are consistent with previous data reporting 

PES elicits a caspase-independent cell death characterized by a prominent cytoplasmic 

vacuolization [2]. The same authors report a null effect of up-regulating the anti-

apoptotic BCL-XL protein on PES-induced cell demise. In the same line, we have found 

that MEF Bax-/-Bak-/- cells remain fully sensitive to PES-triggered cell death. Since 

these cells are fully resistant to apoptosis through the intrinsic pathway [15], these data 

prove that death pathways engaged by PES are clearly unrelated to apoptosis. 

Consistently, in primary effusion lymphoma PES triggers a caspase-independent cell 

death mediated by lysosomal permeabilization [19]. Nonetheless, in other cellular 

models, apoptosis seems to be the main type of cell death caused by PES [20–22]. To 

complete the picture, a simultaneous mixture of both caspase-dependent and 

independent cell death was found in pancreatic cell lines treated with PES [23]. These 

data, which seem to be contradictory, can be explained by differences in the cell death 

behavior, inherent to each cellular model. Alternatively, taking into account our results, 

another plausible explanation would be the different cellular ability to buffer PES-driven 
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oxidative stress. Indeed, it is broadly accepted that ROS have the capability to modulate 

apoptosis. For instance, low concentrations of H2O2 trigger caspase-dependent 

apoptosis while higher amounts elicit necrosis and impair caspase activation [47]. In this 

sense, it is known that direct oxidation of the cysteine from the catalytic center of 

caspases is able to inhibit these proteases [47]. Along the same line, our results prove 

first, that PES is unable to promote the activation of caspases in multiple cell lines (Fig. 

2 A, B and C) and second, that the pan-caspase inhibitor Q-VD-OPh is unable to protect 

cells from PES-driven necrosis (Fig. 3A).  

Pioneer studies cataloged cell death processes into three main morphological 

categories: apoptosis, autophagic cell death and necrosis. Through time, the need of a 

more precise definition has become evident and the evaluation of new biochemical 

parameters has implemented the original classification [48]. Similarly, pharmacological 

strategies have been set up to distinguish between these processes of cell death. 3-MA 

and Spautin-1 are compounds known for its activity suppressing autophagy [49–51]. 

Our data showed neither 3-MA nor Spautin-1 were able to block cell death in response 

to PES. The absence of protection suggests the induction of autophagy is not involved 

in the mechanism of death by PES. Additionally, it is known that PES impairs the 

autophagy-lysosome systems, resulting in a accumulation of autophagic vacuoles and 

generation of proteotoxic stress [2,19]. Furthermore, combination of PES with 3-MA or 

Spautin-1 enhances cytotoxicity in SH-SY5Y cells, thus suggesting autophagy could be 

playing a protective role, instead. MEFs Atg5-/- are unable to perform the classical 

autophagy pathway [52] and thus, they are a valuable tool to study the involvement of 

autophagy under different settings. Experiments from our laboratory have revealed that 
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MEFs Atg5-/- display a greater susceptibility to PES-driven death (data not shown). We 

believe these results are consistent with the role of autophagy attenuating proteotoxicity 

[53] and thus, diminishing the proteotoxic stress inflicted by PES. 

Necrosis is morphologically characterized by rounding of the cell, a gain in cell volume 

(also known as oncosis), organelle swelling, lack of internucleosomal DNA 

fragmentation, and plasma membrane rupture [54]. Despite its early association to 

accidental forms of cell death, new data link it to regulated forms of cell demise, 

otherwise known as “programmed necrosis”. In this sense, necroptosis is currently the 

best characterized form of programmed necrosis [55]. In our experiments, the absence 

of protective effects of the combination of Necrostatin-1 and PES, indicates PES 

triggers a non-necroptotic necrosis. While the physiological relevance of alternative 

forms of cell death remains under study, there is no doubt about the spontaneous 

appearance of mechanisms to elude them. These mechanisms are clearly linked to 

chemoresistance in cancer. For instance, overexpression of PDIA6, a protein disulfide 

isomerase, is one of the mechanisms accountable for the increased chemoresistance of 

lung adenocarcinoma to cisplatin-induced necroptosis [56]. Similarly, ROS-induced 

miR-21 promotes apoptotic resistance of vascular smooth muscle cells to oxidative 

stress [57]. Infectious myocarditis presents both forms of cell death: apoptosis and 

necrosis. Forced expression of miR-21 reduces apoptotic myocarditis through the down-

regulation of programmed cell death 4 (PDCD4) messenger [58]. Nevertheless, the 

overexpression of the same microRNA has no impact reducing necrotic-type 

myocarditis [58]. In conclusion, we believe that inducers of non-canonical forms of 

programmed necrosis harbor a great potential for new-line pharmacological therapies.  
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FIGURE LEGENDS 

FIGURE 1. PES-driven cell death is concentration and time dependent. A. The cell lines 

indicated in the graph were treated for 24 h with increasing concentrations of PES. Cell 

viability was calculated by the MTS reduction assay. B. SH-SY5Y and C, HCT116 WT 

cells were exposed to the indicated concentrations of PES. Cell death by PI staining 

was quantified over time.  Each value in the graphical representation is the average ± 

S.D. of at least 3 independent experiments with 3 independent measurements per 

experiment. 

 

FIGURE 2. PES triggers caspase-independent non-apoptotic cell death. A. SH-SY5Y 

cells were challenged with 12.5 µM PES or STS 250 nM and the time course of caspase 

activation (DEVDase activity) was determined. Activity is measured in arbitrary 

fluorescence units (a.f.u). Each point is the average ± S.D. of 6 independent 

measurements. The plotted profile is representative of 3 independent experiments. 

***P<0.001 (Student’s t-test referred to time 0). B. HCT116 cells were treated with 25 

µM PES or 250 nM STS and processed as in A. C. U87MG, HeLa, 293HEK and HL-60 

were subjected for 12 h to 20, 25, 50 or 15 µM PES respectively. In parallel, cells were 

exposed to vehicle (V) or STS 250 nM for 12 h. Caspase activation (DEVDase activity) 

was quantified as above. D. MEF defective in BAX and BAK proteins and their WT 

controls were treated for 24 h with 30 µM PES or, alternatively, with 1 µM STS. Cell 

viability was measured by the MTS reduction assay. Bar value is the mean ± S.D. of at 

least 3 independent determinations in 3 independent experiments. 
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FIGURE 3. PES triggers a non-necroptotic, necrotic type of cell death. A. After a 

preincubation of 3 h with 10 µM QVD-OPh (QVD), 25 µM Necrostatin-1 (Nec), 10 mM 3-

MA (3-MA) or 10 µM Spautin-1 (Spautin), PES was added for 12 h at a concentration of 

25 µM for HCT116 and 12.5 µM for SH-SY5Y cells. A control of vehicle-treated cells 

was included (C). Cell survival was quantified by Alamar blue. When a combined 

treatment was performed (PES + inhibitor), Alamar blue values were referred to the 

ones of the cells treated with the inhibitor alone. Bar value is the mean± S.D. of at least 

3 independent experiments with three independent measurements per experiment. **P< 

0.005 (Student’s t-test referred to PES-treated control). B. Transmission electron 

microscopy of HCT116 in untreated conditions. C. HCT116 cells treated for 48h with 25 

µM PES, displaying an early necrotic phenotype. D. HCT116 treated as in C, showing a 

more advanced necrotic phenotype. Arrows indicate areas of discontinued plasmatic 

membrane. E. Control SH-SY5Y cells untreated. F.  SH-SY5Y cells treated with 12.5 

µM PES for 12h. Arrowhead indicates the multilamellar autophagosome structure 

shown at higher resolution in the inset. Nu: Nuclear chromatin. G: Golgi apparatus. m: 

mitochondria. Black asterisks: Vacuoles. White asterisks: Dilated mitochondria with 

disrupted cristae. 

 

FIGURE 4. ROS are pivotal elements in necrosis by PES. A. HCT116 cells were treated 

with 25 µM PES or DMSO (Vehicle) for the times indicated in the x-axis. Quantification 

of ROS was performed as described in the methods section and expressed as arbitrary 

fluorescence units (a.f.u) generated by DCF. B. SH-SY5Y cells were pre-incubated for 1 

h with 1.25 mM NAC or 500 µM DTT before adding 12.5 µM PES or DMSO (Vehicle) for 
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an additional 24 h period. Cell death was measured by flow cytometry and the count of 

PI stained cells. C. HCT116 cells were treated with 25 µM PES for 48 h and analyzed 

as reported for SH-SY5Y in B. ***P<0.001 (Student’s t-test referred to PES-treated 

control). D. HCT116 and SH-SY5Y cells were either pre-incubated with BSO or left 

untreated. After a 3 h pre-incubation, PES was added at 6.25 µM for an extra 8 h 

period. ROS fluorescent signal was referred to the one of the DMSO (Vehicle) treated 

cells. ***P<0.001 (Student’s t-test referred to PES-treated control). E. Cell lines 

indicated in the x-axis were pre-incubated for 3 h with 50 µM BSO or left untreated. PES 

was then added at the concentrations reported in the x-axis. Cell survival was 

determined by the Alamar blue procedure. Bar value is the average ± S.D. of at least 3 

independent experiments with 3 independent measurements. ***P<0.001 (Student’s t-

test referred to PES-treated control). 

 

 

FIGURE 5. p53 participates in PES-driven necrosis. A. HCT116 WT and HCT116 p53-/- 

cells were challenged with the indicated concentrations of PES for a period of 24 h. Cell 

survival was assessed by MTS reduction. Plots represent the average ± S.D. of at least 

3 independent experiments with 3 independent determinations. B. HCT116 and 

HCT116 p53-/- were treated for 48 h with 25 µM PES. Cell death was determined by 

flow cytometry count of PI stained cells. Bar value equals mean ± S.D. of at least 3 

independent experiments with 3 independent measurements. C. HCT116 p53-/- cells 

transfected with a plasmid carrying a functional p53 (p53) or empty (Vector) were 

subjected to PES treatment. Cell survival by MTS reduction was evaluated after 24 h. 
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Results are the average ± S.D. of at least 3 independent experiments with 3 

independent determinations. **P< 0.005 ; ***P<0.001 (Student’s t-test). 

 

FIGURE 6. p53 is predominantly located at the chromatin-bound subfractions in 

response to PES. A. SH-SY5Y cells were treated for 6 h with PES 12.5 µM (P), 

Staurosporine 1 µM (STS) or left untreated (C).  Cells were next subjected to 

subfractionated extractions as reported in the text.  Cytosolic (Cyt), nucleoplasmic (N1) 

and chromatin-enriched (N2) extracts were obtained. These extracts were analyzed by 

Western-blot with p53, LDH and PTBP1 antibodies as stated in the figure. NB refers to 

the membrane stained with naphtol blue to assess an even loading of protein per 

fraction.  Next to the image the quantitation of p53 content in N1 and N2 fractions 

expressed as “normalized signal intensity” to the p53 in left untreated extracts (C) and 

performed as described in the methods section. Results are the average ± S.D. of 2 

independent experiments.  B. SH-SY5Y cells were treated with PES 12.5 µM for the 

indicated times. Total extracts were obtained and p53 and p21 content was detected by 

Western-blot. GAPDH was used to control protein loading. The quantification of p53 and 

p21 content referred to GAPDH is indicated below each panel. Image is the result of 

one representative experiment out of two C. HCT116 cells were infected with a virus 

carrying a shRNA against p53 or an empty one. Cell survival was assessed by MTS and 

referred to the values of vehicle treated cells. Results are the average ± S.D. of at least 

3 independent experiments with 3 independent measurements per experiment. D. SH-

SY5Y cells were processed and viability assessed as stated before in C for HCT116. 

**P< 0.005 ; ***P<0.001 (Student’s t-test). 
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FIGURE 7. ROS and p53 mutually regulates each other in response to PES. A. SH-

SY5Y cells were pre-incubated with 500 µM DTT or left untreated. Then exposed to 

12.5 µM PES or vehicle for 6 h. Total protein extracts were performed and analyzed by 

Western-blot with p53 and GAPDH antibodies. GAPDH was used to control the protein 

load. Below, quantitation of the p53 expressed as “normalized signal intensity” to the 

p53 in left untreated extracts and performed as described in the methods section. 

Results are the average ± S.D. of 2 independent experiments. B. HCT116 and HCT116 

p53-/- isogenic cells were treated with 25 µM PES for 6 h. Quantification of ROS was 

referred to a control with DMSO (vehicle). Quantification procedure is described in the 

methods section and expressed as arbitrary fluorescence units (a.f.u) generated by 

DCF. *P<0.01; (Student’s t-test). 
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