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Abstract 11 

 12 
An evaluation of the environmental impact of construction systems that are composed of facades based on 13 

alveolar bricks and macroencapsulated phase change materials done using Life Cycle Assessment (LCA) 14 

is presented. Their energy consumption rates for both heating and cooling have been measured and 15 

registered in two experimental cubicles located in Puigverd de Lleida (Spain). This work examines if the 16 

reduction of the environmental impact that is reached due to the energy savings achieved during the 17 

operational phase of these cubicles compensates the increase of the environmental impact that is induced 18 

during the manufacturing phase. Theoretical case studies, such as assuming different climatization and 19 

weather conditions, are proposed and studied to determine the most suitable climatic conditions for using 20 

the alveolar bricks and PCM technologies. Within the context of the LCA study, it is concluded that the 21 

overall benefit of PCM is the highest when summer weather conditions throughout the whole year is 22 

theoretically assumed, where for different assumed lifetime periods of the cubicles the reduction of the 23 

overall global impact of the cubicle containing PCM ranges from 12 % to 14 % in comparison to the other 24 

cubicle without PCM.  25 

 26 

Key-words: Life Cycle Assessment (LCA), phase change materials (PCM), thermal energy storage 27 

(TES), buildings, energy efficiency. 28 

 29 

 30 

 31 
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1. Introduction 32 
 33 

The increasing consumption of natural resources during the last years is clearly represented by the high 34 

consumption rates of the building sector. For example, the energy demand for cooling and heating in 35 

buildings is increasing significantly, and thus, it is contributing largely to the total energy consumption 36 

and CO2 emissions.  The contribution of the corresponding energy consumption has been estimated to be 37 

around 40 % in Europe [1], demonstrating the huge potential for improving the energy efficiency of 38 

buildings. This can be done through modifying the constructive systems by using specific building 39 

technologies (such as trombe walls or double skin facades), insulating materials, and a recently applied 40 

technology, which is the incorporation of phase change materials into the building structure in order to 41 

increase the thermal energy storage capacity of envelopes and floors. The reduction of energy 42 

consumption and other natural resources during the operational, manufacturing and disposal (dismantling) 43 

phases of buildings can reduce the impact on the environment, achieving a more sustainable and 44 

environmentally friendly building sector. The criteria for analyzing the opportunities of achieving the 45 

required sustainability can be applied through adopting a Life Cycle Assessment (LCA) approach. 46 

 47 

LCA is a tool for evaluating the environmental impact of a product through analyzing the corresponding 48 

life cycle phases from cradle to grave. In case of buildings, LCA is mainly used to evaluate the 49 

environmental impact during the manufacturing phase, the operational phase and the dismantling phase. 50 

For example, LCA has been recently used in order to analyze the energy supply and installations in 51 

Spanish buildings [2]. A state of the art regarding the use of LCA in the building sector has been carried 52 

out by Zabalza et al. [3].  This research also proposes a simplified criterion for applying LCA in order to 53 

overcome the complexity of the analysis and the difficulties related to the energy certification 54 

applications. In addition, new methodologies and calculation methods are under research and 55 

development [4] and the influence of some simplifications is being investigated [5]. 56 

 57 

Papadopoulos and Giama [6] have applied LCA in order to examine the buildings environmental 58 

performance evaluation through insulation materials selection. In this study, it has been concluded that 59 

the use of the environmental performance evaluation in the building sector can help verifying the impact 60 

of insulation on energy consumption. Another study conducted by Huberman and Pearlmutter [7] has 61 
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focused on evaluating the environmental impact of specific building materials showing that the impact of 62 

their embodied energy represents about 60% of the over all life cycle energy consumption. Kofoworola 63 

and Gheewala [8] have conducted an LCA approach to examine the environmental impact of a typical 64 

commercial office building in Thailand, verifying that the operational stage is the predominant one in 65 

case of commercial buildings. Moreover, twenty five commercial buildings in Hong Kong have been 66 

studied by Chau et al. [9] highlighting the most impacting building materials and building services 67 

materials as well. All these studies demonstrate the significance of using LCA in order to examine the 68 

construction solutions, and search for alternative ones that achieve the required level of sustainability. 69 

 70 

Many constructive systems that encompass different building materials have appeared and have been 71 

considered in the recent years in order to improve the thermal behaviour of buildings; some of these 72 

solutions are trying to simplify the construction process as well [10]. For example, the use of a simpler 73 

construction system based on alveolar bricks instead of the common systems based on conventional 74 

bricks, air gap and insulating materials has been introduced in the last years with the aim of reducing the 75 

construction process time and complexity, and increasing the thermal inertia of the building walls. This 76 

solution has been further improved by embedding phase change materials (PCM) in the building envelope 77 

in order to further increase the thermal inertia of the whole system and hence reduce energy demand; this 78 

is especially important for reducing the cooling demand as it has been verified experimentally [11,12]. 79 

Besides, using the alveolar brick construction system without insulation has been proved to achieve 80 

similar energy savings to those accomplished by the conventional brick construction solutions that 81 

incorporates insulation materials. This conclusion is attributed to the high thermal inertia provided by the 82 

alveolar bricks constructive system [13,14]. However, an LCA is still needed in order to determine the 83 

global benefits of such solutions including the contribution of the relevant life cycle phases and taking 84 

into consideration the possible burdens shifting from one life cycle phase to another due to the use of such 85 

emerging technologies within the construction systems. 86 

 87 

Thus, the LCA approach in this article is applied to two experimental house-like cubicles that are made of 88 

alveolar bricks (with inner dimensions of 2.4x2.4x2.4 m) located in Puigverd de Lleida (Lleida, Spain). 89 

The location of the experimental setup represents a typical continental Mediterranean climate that is 90 

characterized by cold winters and dry hot summers. The list of the materials used in the cubicles 91 
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construction process will be used in evaluating the environmental impact of the manufacturing and 92 

dismantling phases. The temperature variations and the energy consumption rates of these cubicles have 93 

been monitored. The registered energy consumption values of the heating/cooling systems will be used 94 

for the operational phase impact evaluation [12]. Also, some theoretical case studies, such as different 95 

weather conditions and different heating and cooling methods, are studied in order to determine the most 96 

suitable conditions for using these technologies (alveolar bricks and phase change materials). 97 

 98 

Finally, these results will be compared to the ones obtained in a previous work [15] for three other 99 

cubicles that are built using a typical Mediterranean constructive system based on conventional bricks, air 100 

gap and insulation. The inclusion of PCM (Paraffin RT27 with peak melting point of 28 ºC, and salt 101 

hydrates SP25 A8 with peak melting point of 26 ºC, both PCMs from Rubitherm) in that type of systems 102 

has been examined as well. 103 

 104 

2. Methodology 105 

2.1. Construction solutions of the studied cubicles 106 
 107 

An LCA study is conducted to evaluate the environmental impact of two house-like cubicles located in 108 

Puigverd de Lleida (Lleida, Spain) (Figure 1), both of them with facades built with alveolar bricks; one 109 

without PCM (ALV), and the other one with the inclusion of macroencapsulated PCM. The PCM used is 110 

salt hydrates SP-25 A8 encapsulated in CSM (Compact Storage Modules) panels from Rubitherm [16] 111 

with melting temperature peak of about 28 ºC (ALV+PCM). The PCM panels are installed internally on 112 

the south and west walls and the roof. The envelope of the cubicles is composed of walls of alveolar 113 

bricks with interior coat of plaster and exterior coat of cement mortar (Figure 2 and Figure 3). The roof 114 

structure is based on a concrete precast beam, 5 cm of concrete slab, interior coat of plaster, insulating 115 

material (polyurethane), exterior coat of cement mortar and a double asphalt membrane that acts as a 116 

water proofing layer. 117 

 118 

The LCA results of the two alveolar brick cubicles presented in this work are to be compared to the 119 

results of another study that comprises three cubicles built using conventional bricks [15]. Those three 120 

cubicles are: a reference cubicle (REF - no insulation is installed on the walls), a polyurethane cubicle 121 
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(PU - 5 cm of sprayed polyurethane is installed on the south and west walls and the roof), and a 122 

polyurethane with PCM cubicle (PU+PCM – macroencapsulated RT-27 PCM and 5 cm of polyurethane 123 

are installed on the south and west walls and the roof). The envelope of each cubicle (described in [15]) is 124 

composed of an interior coat of plaster, perforated bricks, air gap, hollow bricks, and an exterior coat of 125 

cement mortar. The roof structure is the same as that of the alveolar brick cubicles. 126 

 127 

The construction materials of the considered cubicles constitute the inventory list that is needed to 128 

perform the impact assessment of the manufacturing and dismantling phases. 129 

 130 

2.2. Experimental set-up characteristics 131 
 132 

Inside the studied cubicles, the temperatures values and the energy consumption rates are monitored and 133 

registered. Pt-100 DIN B probes calibrated with a maximum error of ± 0.3ºC are used for measuring the 134 

surface temperatures of the walls and the roofs. A temperature transmitter for HVAC applications 135 

(ELEKTRONIK EE21FT6AA21) with accuracy of ± 2 % is used for measuring the internal humidity and 136 

air temperature. The energy consumption rates of the HVAC systems (heat pumps and electrical oil 137 

radiators) are measured with an electrical network analyser ARDETEM PECA 15. The energy 138 

consumption values are required to evaluate the environmental impact of the operational phase of the 139 

cubicles in order to quantify the impact induced during that phase. 140 

 141 

2.3. Life Cycle Assessment (LCA) 142 

 143 
According to the ISO 14040-43 standard series [17-20] that are specified for LCA, recommended steps 144 

are suggested in order to perform an LCA study efficiently: 145 

 Definition of goal and scope  146 

 Inventory analysis 147 

 Impact assessment 148 

 Interpretation of results 149 

 150 

The impact assessment step is the most data intensive within an LCA study; it is considered as a critical 151 

step because of the involvement of complex environmental modelling that result in transforming the 152 
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inventory list into impact categories that express the potential impact on the environment represented by 153 

the final indicators. Thus, several impact assessment methodologies have been developed in order to 154 

resolve this complexity, saving time and effort for the LCA practitioners and reducing the uncertainties in 155 

the data and environmental models. These methodologies are also called Life Cycle Impact Assessment 156 

(LCIA) methodologies [21,22]. The methodology used for performing the LCA study in this article is 157 

based on the impact assessment methodology Eco-Indicator 99 (EI99) [23] using the database EcoInvent 158 

2009 [24]. More information about the EI99 methodology will be detailed in the following subsections. 159 

This is the same impact assessment methodology that has been used in [15] so that the results of both 160 

articles can be compared. The LCA steps recommended by the ISO 14040-43 standard series are to be 161 

applied in the following subsections. 162 

 163 

2.3.1.  Goal and scope definition 164 
 165 
The aim of this study is to apply the LCA concept in order to examine the environmental impact of two 166 

house-like experimental cubicles that are mainly built using alveolar bricks and include phase change 167 

materials (Salt hydrates SP-25 A8 from Rubitherm). Furthermore, the results of this assessment are to be 168 

compared to the results of a previous work [15] regarding three cubicles of the same experimental set-up. 169 

The life cycle phases considered are the manufacturing, dismantling and operational phases. Based on [5], 170 

the construction of the cubicles is not taken into account since it has little impact and can be omitted. 171 

 172 

The general conditions assumed for applying the LCA in the two studied cubicles are as follows: 173 

 The considered lifetime for a cubicle is 50 years.  174 

 In order to simplify the analysis and to be consistent with the assumptions set for the previous 175 

study [15], the maintenance operations of the cubicles and the HVAC systems are considered 176 

equal for the ALV and PCM cubicles. Hence it does not produce any difference in the overall 177 

global impact. Notice that the cubicles structures are similar and the aim of the work is to 178 

compare between relative differences, this assumption will not significantly affect the results. 179 

 The electricity used considers the production mix corresponding to the Spanish energy 180 

production system. 181 

 No data is available in the EcoInvent database about the disposal of salt hydrates. Its value is 182 

estimated considering the same percentage for all the other used components to the total impact. 183 
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This estimation method is also used in [15] to calculate the disposal impact of PCM and does not 184 

affect significantly in the LCA study, since the disposal of both PCM (paraffins and salts 185 

hydrates) represents less than the 0.01% of the impact during the manufacturing and dismantling 186 

phase. 187 

 In order to compare the results of this article with those obtained in [15], the results of the 188 

manufacturing and dismantling phases are aggregated into one phase 189 

(Manufacturing/dismantling phase). 190 

 As detailed in subsection 2.2, to evaluate the operational phase impact, the measured energy 191 

consumption values from the cubicles are used (Table 2). Within this context, three different 192 

periods per year are defined: 193 

- Winter period: 4 months with similar heating demand to the third week of February 194 

2009. Comfort conditions are achieved using an electrical oil radiator with a set point of 195 

24 ºC [25]. 196 

- Summer period: 4 months with similar cooling demand to the fourth week of August 197 

2009. Comfort conditions are achieved using a heat pump with a set point of 24 ºC [25]. 198 

- No controlled temperature: 4 months without temperature control. 199 

 200 

LCA is accomplished for the following three theoretical case studies: 201 

1. Heat pump case study: a heat pump is used instead of the electrical oil radiator during 202 

the winter period to reduce the energy consumption for heating. This reduction is 203 

evaluated by the Coefficient of Performance of the heat pump (COP considered as 3). 204 

2. Summer weather conditions case study: since the selected PCM melts/solidifies around 205 

28ºC, then, in Mediterranean weather conditions, it only operates during the summer 206 

season. In order to increase its cycling throughout the year summer weather conditions 207 

are assumed to be predominant during the whole year (summer period of 12 months). 208 

This scenario might be used to study the environmental impact of using PCM in the 209 

building envelopes in a location with these constant hot environmental conditions over 210 

the year. 211 

3. Extension of the cubicles lifetime: some studies consider buildings lifetime to be 212 

between 50 and 100 years 0[26], 0[27]. Therefore, a parametric study considering 75 213 

and 100 years lifetime for the cubicles is also presented. 214 
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 215 

2.3.2. Inventory analysis 216 
 217 
In this step, the inventory list of all the materials used in the manufacturing/dismantling phase of the 218 

cubicles is shown. The energy consumption rates of the studied cubicles are quantified as well. The 219 

correlation between the cubicle components used in the manufacturing/dismantling phase and the 220 

EcoInvent data base is shown in Table 1. The measured energy consumption values for heating and 221 

cooling are shown in Table 2. 222 

 223 

2.3.3. Impact assessment 224 
 225 
According to the EI99 methodology and the requirements of this study, the environmental impact is 226 

evaluated and expressed through ten damage categories (Acidification & eutrophication, ecotoxicity, land 227 

occupation, carcinogenics, climate change, ionising radiation, ozone layer depletion, respiratory effects, 228 

fossil fuels, and mineral extraction). Those damage categories are further aggregated into three areas of 229 

protection that express the main aspects of environmental and societal concern: Human health, Eco 230 

system quality and natural resources. After extracting the inventory data needed from the data base, each 231 

damage category is evaluated according to equation (1): 232 

 233 

k
k

jkj LCIdIMP ꞏ,   (1) 234 

 235 

Where IMPj is the j damage category, dkj is the coefficient of damage extracted from the considered 236 

database [23] associated with the component k and damage j, and finally the LCIk is the life cycle 237 

inventory entry (i.e. kg of polyurethane). The results of equation (1) are single score indicators 238 

representing the potential impact on the environment through different damage categories. The coefficient 239 

of damage for the natural resources damage category is expressed in MJ of surplus energy needed for 240 

future extraction. For the ecosystem quality damage category, the coefficient of damage stands for the 241 

loss of species over a certain area, during a certain time (% plant, species / m2ꞏyear). Finally, the damage 242 

to human health is expressed as the number of years life lost and the number of years lived disabled 243 

(disability adjusted life years, DALYs). 244 

 245 
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The absolute value of these points is not very relevant as the main purpose is to compare relative 246 

differences between products. Lower impact score results mean lower impact on the environment and 247 

hence mean that the product associated with the results is more environmentally sound. These single 248 

score indicators from the EI99 methodology are convenient for the case studies of this article, as the 249 

impact of the cubicles and their relevant components on the environment can be easily interpreted and 250 

demonstrated [28]. 251 

 252 

3. Results and discussion 253 

In this section, the results of the impact assessment phase are interpreted and the environmental impacts 254 

caused by the studied cubicles and their components are evaluated. This is considered to be the fourth and 255 

last step within an LCA. 256 

 257 

3.1. Life Cycle Assessment of the real case study 258 

3.1.1. Manufacturing/dismantling phase 259 
 260 

A list of all the materials used in the construction of the studied cubicles and their environmental impact 261 

during the manufacturing/ dismantling phase is shown in Table 3. 262 

 263 

The component with the highest impact is the alveolar brick, with an impact around 66 % and 61% from 264 

the total in the ALV and ALV+PCM cubicles, respectively. In the ALV+PCM cubicle, PCM and 265 

aluminium represent about 4 % and 3.7 % of the total impact, respectively. 266 

 267 

The impact of each damage category during the manufacturing/dismantling phase is shown in row A of 268 

Table 4. The inclusion of macro-encapsulated PCM increases the environmental impact by 8% during the 269 

manufacturing/dismantling phase. 270 

 271 

 272 

 273 
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3.1.2. Operational phase 274 
 275 

The measured energy consumption values for heating and cooling (Table 2) are used to determine the 276 

impact during the operational phase of the cubicles. The impact of each damage category during the 277 

operational phase for the real case is shown in rows B and D of Table 4. 278 

 279 

For the winter period (row B of Table 4), no difference can be observed between the cubicles due to the 280 

addition of PCM, since in cold weather conditions, temperatures do not reach the melting point of the 281 

PCM; hence no energy savings are achieved [12].  282 

 283 

For summer period (row D of Table 4), the addition of PCM to the alveolar cubicle reduces the 284 

operational environmental impact by about 17 %. However, as it has been proved in previous 285 

experimental results [12], the rates of electrical energy consumption during the winter period are more 286 

than ten times higher than those during the summer period for the two cubicles. Thus, the effect of PCM, 287 

which is only effective under summer weather conditions, remains small. Those findings are represented 288 

by the year-round results of the operational impact of the ALV+PCM cubicle, which is only 1.3 % lower 289 

than that of the ALV cubicle. 290 

 291 

3.1.3. Global results 292 
 293 

Table 5 and Figure 4 show the results of the manufacturing/dismantling phase combined together with the 294 

operational phase for the real case. As expected, the cubicle with PCM presents the highest impact during 295 

the manufacturing/dismantling phase and the lowest impact during the operational phase. The inclusion of 296 

the PCM does not affect significantly the overall global impact (reduction percentage of about 0.8 %). 297 

Thus, this insignificant difference in the global impact points can be attributed to the following reasons: 298 

 The impact reduced during the operational phase is balanced out with the high impact induced 299 

during the manufacturing phase of the cubicle. 300 

 The energy consumption needed for heating is about ten times higher than that required for 301 

cooling. 302 
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 The operation period of the PCM is short, since it is active only during summer period, and 303 

hence the energy savings and the reduced impact on the environment are benefitted from during 304 

a short period. 305 

 306 

In the considered life cycle phases, it is noticed that the damage categories that contribute significantly to 307 

the total impact points are the fossil fuels and the respiratory effects. 308 

 309 

3.2. Life Cycle Assessment for the theoretical case studies 310 

3.2.1. First theoretical case study: heat pump  311 
 312 

In this case study, the electrical oil radiator is replaced by a heat pump as a heating system, reducing the 313 

operational impact of the cubicles during winter to one third due to a much higher efficiency (COP 314 

considered as 3). Row C of Table 4 and Figure 4 present the results for this case study. The important 315 

reduction of the operational impact during winter helps in highlighting the behaviour of the PCM during 316 

summer. 317 

 318 

3.2.2. Second theoretical case study: summer weather conditions throughout the whole 319 
year  320 

 321 

Previous experimental results [12] show that the use of PCM reduces the energy consumption and hence 322 

the environmental impact during summer since the PCM only works under these conditions. Therefore, 323 

the use of this technology in regions where summer weather conditions are predominant throughout the 324 

whole year is expected to achieve much better results regarding the energy savings and hence the 325 

environmental impact reduction. 326 

 327 

Row E of Table 4 shows the operational impact results of the two studied cubicles in these conditions 328 

where 50 years of lifetime is assumed. Considering the global results for this case study, as shown in 329 

Figure 4, the addition of PCM to the ALV cubicle reduces the impact by about 12 % (ALV+PCM), which 330 

is considered the best case study regarding the impact reduction achieved as a result of using PCM. 331 

 332 
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3.2.3. Third theoretical case study: extension of the cubicles lifetime to 75 and 100 years  333 
 334 

As it has been previously discussed, the use of PCM reduces the environmental impact during the 335 

operational phase but increases it during the manufacturing phase. Therefore, a longer lifetime operation 336 

of buildings will result in a reduction of the global impact when using PCM. Depending on some studies 337 

[26,27], different lifetime periods are estimated for buildings. Here, the environmental impact of the 338 

cubicles is evaluated considering 75 and 100 years of lifetime in order to analyze the payback time of 339 

applying the suggested construction system. 340 

 341 

This case study is considered as a two-layer theoretical case study, where the first layer is extending the 342 

lifetime of the cubicles to 75 and 100 years, and the second layer evaluates each scenario, which are: 343 

using electrical oil radiator (as in the real case study), using a heat pump (the first theoretical case study) 344 

and assuming summer weather conditions throughout the whole year (the second theoretical case study).  345 

 346 

As it is expected, results show that when the lifetime of the cubicles is extended and PCM is extensively 347 

used (summer conditions), slight increments in the global impact reduction are noticed between the two 348 

cubicles. In the case of 50 years life time, the ALV+PCM cubicle impact score points is about 12% lower 349 

than that of the ALV cubicle, while in case of 75 and 100 years life time, this difference is increased to be 350 

around 14% (Only 2% more of impact reduction) (Figure 4 to Figure 6). 351 

 352 

3.3. Comparison of the results of the alveolar brick cubicles with the conventional 353 
brick ones  354 

 355 
In a previous work, an LCA study was applied for three monitored cubicles with a construction system 356 

based on conventional bricks [15]. In that study, and specifically for the real case study (based on 357 

experimental results) of using an electrical oil radiator during winter and assuming a lifetime of 50 years 358 

for the cubicles, an impact reduction in the global impact of about 37% is recognized when PU is added 359 

to the reference cubicle. This reduction is achieved due to the decrease of the energy consumption in the 360 

operational phase for the cubicle insulated with PU, since the thermal transmittance of its walls has 361 

become much lower after adding the PU insulation. Besides, it was concluded that the addition of PCM 362 

does not lead to significant variations in the global impact results (only 0.4%) because the impact savings 363 

achieved during the operational phase are balanced out with the high impact generated during the 364 
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manufacturing phase. Besides, it is important to highlight that PCM is not working during winter season, 365 

which means that no energy savings are achieved during winter. Moreover, as it has been verified 366 

experimentally, the energy consumption required for heating is about ten times higher than that required 367 

for cooling. These facts have to be taken into consideration when observing the insignificant variation 368 

that may occur in the global results.  369 

 370 

A wider comparison that includes the real case study and the theoretical case studies between both 371 

construction systems (conventional and alveolar brick) with and without the inclusion of PCM can be 372 

done. It must be considered that real construction systems are studied and therefore the different facades 373 

do not present the same thermal transmittance in steady-state. The comparisons are highlighted as 374 

follows: 375 

 For the real case study, the reference cubicle presents the highest impact due to the lack of 376 

thermal insulation; this lack of insulation causes more heat flux through the cubicle envelopes 377 

and consequently leads to higher energy consumption rates for both heating and cooling 378 

demands. On the other hand, the lowest impact score is achieved by the PU and PU+CM 379 

cubicles (impact reduction of about 37% compared to the reference cubicle). However, the PU 380 

and the PU+PCM cubicle and all the other cubicles present very similar global impact results, 381 

with maximum differences of 2 % (Table 5). These results show that both insulated conventional 382 

bricks and alveolar bricks construction systems are comparable for Mediterranean continental 383 

climate conditions. 384 

 Also, the reference cubicle presents the highest impact for all the different damage categories. 385 

This is due to the higher energy consumption of this cubicle during the operational phase. Since 386 

the most of the electrical energy production is mainly based on fossil fuels, it strongly affects all 387 

the damage categories, especially fossil fuels and respiratory effects. On the other hand, the 388 

energy consumption rates for the other 4 cubicles (PU, PU+PCM, ALV, and ALV+PCM) are 389 

very similar. 390 

 For summer weather conditions throughout the whole year (the best case study for the PCM 391 

regarding the global impact reduction), and by excluding the reference cubicle from the 392 

comparison, it is found that the ALV cubicle represents the highest global impact points among 393 

all the cubicles. The global impact of the PU cubicle is about 13.5 % lower than that of the ALV 394 

cubicle. Only by using PCM within the alveolar construction system (ALV+PCM) the global 395 
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impact is reduced to a similar value to that of the PU cubicle. However, the PU+PCM cubicle 396 

further reduces the global impact (Figure 4). Therefore, in case of predominant summer weather 397 

conditions, the use of insulated conventional brick systems is much better than alveolar brick 398 

ones. Besides, the use of PCM in both construction systems presents similar reductions in the 399 

global impact (within the range of 10-12 %). 400 

 For the case study of extending the lifetime of the cubicles to 75 and 100 years, the reference 401 

cubicle, as expected, presents the highest impact. In case of assuming summer weather 402 

conditions throughout all the year, the PU cubicle achieves a reduction in the global impact with 403 

respect to the ALV cubicle of about 16%. This reduction value is further increased to 26% in 404 

case of adding PCM (PU+PCM cubicle). Adding PCM to the ALV cubicle decrease the impact 405 

points to a value that is similar to that of the PU cubicle. (Figure 5 and Figure 6). 406 

 407 

4. Conclusions and recommendations 408 
 409 

The environmental impact of alveolar brick construction systems with and without phase change 410 

materials (salt hydrates SP-25 A8 from Rubitherm) is analyzed using an LCA approach based on the Eco-411 

Indicator 99 methodology (EI99). The study is applied to real monitored cubicles; other theoretical case 412 

studies as well are investigated concerning different weather and operating conditions. 413 

 414 

The use of PCM did not significantly reduce the overall environmental impact under the experimental 415 

conditions considered. However, for some theoretical scenarios, the environmental benefits achieved by 416 

the PCM are enhanced (12-14% reduction in comparison with no PCM). 417 

 418 

 419 

From this work, some recommendations about the use of PCM in buildings can be drawn: 420 

- A higher storage capacity of the PCM may result in higher energy savings and therefore in a 421 

larger reduction of the environmental impact during the operational phase. 422 

- Developing phase change materials with lower embodied energy can help achieving 423 

sustainability within the life cycle of buildings by reducing the impact on the environment while 424 

avoiding the possible shifting of burdens of the operational phase to the manufacturing phase. 425 
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- Locations with weather conditions (and with daily temperatures around the phase change 426 

temperature of the PCM) that ensure a much longer operation of the PCM will increase the 427 

environmental impact reduction during the operational phase. 428 

- Long term operation of buildings will also reduce the environmental impact when using PCM, as 429 

shown in the case studies with extended lifetime for the cubicles (75 and 100 years). However 430 

the improvements were low (difference about 1-2 % compared to that of the case studies 431 

assuming 50 years lifetime). 432 

- The use of PCM that melts/solidifies within suitable temperature range during winter periods 433 

presents a huge potential to reduce the energy consumption, since the energy demand for heating 434 

is more than ten times higher than that for cooling. 435 

- For Mediterranean continental climate, the global impact induced by insulated conventional 436 

brick and alveolar brick construction systems is comparable. On the other hand, for summer 437 

predominant weather conditions, the use of insulated conventional brick construction system is 438 

better than the alveolar brick 439 

- Increasing the dependency of energy supplies on renewable energy resources can reduce 440 

significantly the impact related to the fossil fuels and respiratory effects damage categories. And 441 

consequently, within the different LCIA methodologies and the associated databases, 442 

considering the environmental impact using independent on-site renewable energy resources for 443 

manufacturing of building materials will be a necessity in this case.  444 

 445 

Moreover, new materials with lower environmental impact must be developed. This requires a new 446 

perspective when defining the desired properties and producing the materials. Nowadays only the 447 

technical specifications are considered, but in the future also the environmental ones should be included. 448 

For phase change materials, the improvement of the PCM and also its encapsulation must be considered. 449 

 450 
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Figure captions 529 
 530 
Figure 1. Experimental cubicles in Puigverd de Lleida (Lleida, Spain). 531 

Figure 2. Construction system of the Alveolar brick cubicle. 532 

Figure 3. Construction system of the Alveolar brick +PCM cubicle. 533 
 534 
Figure 4. Impact results for each cubicle and studied scenario for a lifetime of 50 years. 535 
Comparison between conventional (De Gracia et al. 2010) 0[15] and alveolar construction system. 536 
 537 
Figure 5. Impact results for each cubicle and studied scenario for a lifetime of 75 years. 538 
Comparison between conventional (De Gracia et al. 2010) 0[15]  and alveolar construction system. 539 
 540 
Figure 6. Impact results for each cubicle and studied scenario for a lifetime of 100 years. 541 
Comparison between conventional (De Gracia et al. 2010) 0[15]  and alveolar construction system. 542 

 543 
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