
University of Lleida
Polytechnic School

Degree in Computer Engineering

Final project report

DGGA
Distributed Gender-Based Genetic Algorithm for the Automatic

Configuration of Algorithms

Author: Josep Pon Farreny

Director: Carlos Ansótegui
Co-director: Kevin Tierney

Lleida - September 8, 2014

Acknowledgements

I would like to thank all the people that have helped me during this project. First
of all, I want to thank my director, Carlos Ansótegui, for guiding me during this
project, his constant support and the time he has spent resolving my doubts, even on
weekends and vacations. Secondly, to my co-director, Kevin Tierney, for the interest
he has shown and for clarifying me any obscure detail of the implementation of GGA.
Thirdly, I would like to offer my gratitude to Fernando Cores, who provided valuable
and constructive comments.

I also want to thank those close to me, my family who has had to bear with
my irritable mood, my girlfriend who, in addition, has given me her support and
reminded me that there was more in life than this project, and an special mention
to my uncle for his support, even when he was living a difficult situation.

Finally, even though these lines do not make sense for him, I would like to thank
Puc, who, no matter how I felt, has constantly put a smile on my face making each
day a little bit better.

Puc

Contents

1 Introduction 5

1.1 Objectives . 6

1.2 Document structure . 7

2 State of the art 8

2.1 Automatic configuration algorithms . 8

2.1.1 Gender based Genetic Algorithm (GGA) 9

2.2 Distributed architectures for high performance computing 11

2.2.1 Computer cluster . 12

2.2.2 Job scheduler . 12

3 GGA architecture 14

3.1 Class diagram . 14

3.2 Execution sequence . 24

4 DGGA architecture 27

4.1 Class diagram . 27

1

4.1.1 New classes . 29

4.1.2 Modified classes . 34

4.2 Communication protocol . 35

5 DGGA implementation 38

5.1 Libraries . 38

5.1.1 C++ . 38

5.1.2 Boost . 39

5.2 Tools . 39

5.2.1 Git . 39

5.2.2 GNU C++ Compiler . 40

5.2.3 LLVM C++ Compiler . 40

5.2.4 GNU Emacs . 40

5.2.5 GNU Make . 40

5.2.6 Eclipse . 40

5.2.7 GDB . 41

5.2.8 Valgrind . 41

5.3 Implementation details . 41

5.3.1 Master module . 42

5.3.2 Worker module . 42

5.3.3 Parameters parsing . 42

5.3.4 Genome evaluation . 43

5.3.5 Specific Linux child process management 44

2

5.3.6 Serialization . 44

5.3.7 Communication . 45

5.3.8 Signal handling . 46

5.4 Fixed bugs . 47

5.4.1 GGASharedMemory destructor 47

5.4.2 GGAParameterTree destructor 47

5.4.3 Target algorithm command parsing 47

5.4.4 GGAParameterTree XML parsing 47

5.4.5 Evaluation results propagation 48

5.4.6 CPU timeout per evaluation . 48

6 Experimental evaluation 49

6.1 Stress tests . 49

6.2 Automatic configuration of a SAT Solver 51

7 DGGA installation and execution guide 54

7.1 Installation guide . 54

7.1.1 Prerequisites . 54

7.1.2 DGGA distribution . 55

7.1.3 Third party libraries . 56

7.1.4 How to get Boost . 56

7.1.5 How to build DGGA . 57

7.2 Execution guide . 58

3

7.2.1 DGGA execution parameters 58

7.2.2 Tuning configuration files . 61

7.2.3 Execution environment wrappers 63

7.2.4 Example: automatic configuration of Lingeling 64

8 Project chronology 70

9 Conclusions and future work 77

4

Chapter 1

Introduction

Combinatorial optimization problems arise in many domains: scheduling and plan-
ning, software and hardware verification, knowledge compilation, probabilistic mod-
elling, bioinformatics, energy systems, smart cities, social networks, computational
sustainability, etc. From a computational point of view, many optimization problems
are NP-hard meaning that is unlikely that they admit a polynomial-time algorithm.
The good news is that some real problems are already efficiently solved by state-
of-the-art Constraint Programming algorithms [1] and many others are only slightly
beyond the reach of these algorithms.

There are different algorithms with complementary strengths and weaknesses,
which additionally expose parameters that need to be tuned for peak performance.
Not considering these issues leads to lost performance in industrial and academic
applications. For example, from the Satisfiability (SAT) competitions that take place
every year since 2002, we have learnt that no solver dominates over all the instances.
Therefore, it seems reasonable to have a pool of SAT solvers, and given a SAT instance
try to predict their expected running time in order to choose the best candidate.
This is known as the algorithm selection problem, which consists of choosing the
best algorithm from a predefined set, to run on a problem instance [2]. Algorithm
portfolios tackle this problem. Portfolios have been shown to be very successful in
SAT [3] and CP [4]. The first successful algorithm portfolio for SAT was exploited
by SATzilla 2007 [3].

A related topic to the algorithm selection problem, tackled by portfolios, is the
automatic configuration problem, which consist of choosing the best configuration of
the parameters of a given algorithm to run on a problem instance. We will refer also
to this process as the tuning of a solver.

5

Automatic configuration has been shown to be a key piece of the puzzle to come up
with efficient solvers. For example, it has been observed that SAT solvers can exhibit
a quite different performance depending on how they are tuned (parametrized) [5,6].
Indeed, we can see every possible configuration of a solver as a new solver. Recently,
the techniques developed for solving the automatic configuration problem have been
integrated to create instance-specific tuners. For example, Hydra [4] the parameter
tuner ParamILS [5] and ISAC [7] uses the parameter tuner GGA [6].

From a practical point of view, algorithm configuration has already achieved
dramatic speed-ups of state-of-the-art algorithms for formal verification and mixed
integer programming on various benchmarks of industrial relevance (e.g. hardware
verification and process planning & optimization). For example, it has been success-
fully applied to improve the performance of IBM CPLEX, a commercial solver used
widely in industry.

It is natural to think about the algorithm configuration problem as a search
problem over the space of possible configurations of the solver. Therefore, the search
algorithm we use to solve this problem, as many others algorithms, can be also paral-
lelized. “Parallelism is the wave of the future.. and always will be” is a famous quote
in the parallel computing community cited into the introduction of [8]. Thanks to
the rapid growth of multi-core architectures, clusters of computation, p2p networks,
etc., that future is becoming closer. There has been already significant work in par-
allelizing, for example, SAT solvers [9], and some attempts on MaxSAT solvers [10].
Also, both portfolio and automatic configuration tools can also greatly benefit from
parallel computing.

1.1 Objectives

The main goal of this project is to provide a distributed automatic configuration tool.
In particular, we will extend the state-of-the-art automatic configuration tool GGA.
In order to reach our goal, we will work on the following objectives:

• Identify strengths and weaknesses of the current GGA design.

• Redesign the architecture of GGA to make it more modular and extensible.

• Identify the most suitable existing technologies for supporting a distributed
version of GGA on massive computing facilities: clusters, grids, etc.

• Design and implement a distributed version of GGA (DGGA).

6

• Evaluate the performance of DGGA on algorithms for hard combinatorial prob-
lems by experimenting with highly parametrizable state-of-the-art SAT algo-
rithms.

1.2 Document structure

This document is structured into 9 chapters.

Chapter 1 corresponds to the introduction of this project.

Chapter 2 reviews the state of the art in automatic configuration algorithms and
distributed architectures for high performance architectures.

Chapter 3 presents the architecture of the automatic configuration tool GGA. We
present the class diagram of the main classes and the execution diagram of the main
process.

Chapter 4 presents the architecture of DGGA. This is the distributed version of
GGA and constitutes the original contribution of this project. We present the class
diagram of the main classes and the details of the communication infrastructure to
hold the distributed architecture.

Chapter 5 describes the details of the implementation of DGGA tool. Addition-
ally, it presents a list of fixed bugs in the original GGA tool.

Chapter 6 presents the experimental evaluation we have conducted to evaluate the
soundness, robustness and performance of the approach. The target algorithms and
instances to be configured which come from Constraint Programming applications
and Operations Research applications.

Chapter 7 corresponds to the installation guide of the DGGA tool. We also
include a fully detailed execution example.

Chapter 8 details the chronology of the projects summarizing and dating all the
tasks conducted.

Finally, Chapter 9, presents the conclusions of this project and the future research
lines.

7

Chapter 2

State of the art

In this chapter, we will present an overview of the of automatic configuration algo-
rithms and we will particularly focus on a Gender based Genetic Algorithm (GGA)
which is the starting point of this project. We make clear that a significant portion
of the description comes from [6].

Once we have described GGA, since the goal of the project is to parallelize this
tool, we will also briefly review the distributed architectures for high performance
computing on which the distributed version DGGA will be deployed.

2.1 Automatic configuration algorithms

Several approaches exist in the literature for the automatic tuning of algorithms.
The first methods were created for tuning specific algorithms for a certain task. [11]
devised a modular algorithm for solving constraint satisfaction problems (CSPs) and
used a combination of exhaustive enumeration of all possible configurations and a
parallel hill-climbing technique to automatically configure the system for a given CSP
with an associated set of training instances. [12] classified local search (LS) approaches
for SAT by means of context-free grammars and devised a genetic programming
approach to select a good LS algorithm for a given set of SAT problems. [13] embedded
a sequential parameter optimization approach in a wider framework for the design of
evolutionary algorithms.

To tune the continuous parameters of general algorithms, [14] suggested an ap-
proach that determines good parameters for individual training instances. These
parameters are found by trying configurations where parameters are at their extreme

8

values and then fitting a regression function to the parameter/value tuples obtained
in this way. The minimization of the resulting function yields a set of parameters for
the given instance. A parameter set for the entire collection of instances was then
obtained by averaging the parameter tuples for the individual instances.

Tuning problems with small sets of parameter configurations were considered
in [15], a setting which is closely related to that in algorithm portfolios [16, 17]. In
this case, it is possible to race the different algorithms against each other, whereby a
statistical test is used to eliminate inferior algorithms before the remaining algorithms
are run on the next training instance.

In [18] Oltean used evolutionary algorithms by means of linear genetic program-
ming. The genome of an individual is an encoding of an actual C-program for the
problem to be solved, and crossover and mutation operators are problem dependent.
The linear genetic program generates new individuals which replace the current worst
individual in the population.

The CALIBRA system, proposed by [19], starts with a factorial design of the
parameters. Once these initial parameter sets have been run and evaluated, an
intensifying local search routine is started from a promising design, whereby the
range of the parameters is limited according to the results of the initial factorial design
experiments. The only system we know of that can configure arbitrary algorithms
with very large numbers of parameters was proposed by [20]. Their system, called
ParamILS, conducts an iterated local search, whereby a special technique is used to
limit the number of training instances that need to be run for each parameter set
by focusing the test runs on promising parameter sets. In particular, a new set of
parameters is not considered better than the current best until it has been evaluated
on at least as many training instances as the current best. If a very large set of
training instances is available, this approach allows quick movement through the
search space while still avoiding an “over-tuning” effect which would be caused by
considering few training instances only.

2.1.1 Gender based Genetic Algorithm (GGA)

In [6] it is proposed a genetic algorithm for the problem of configuring solvers. There
are two main reasons for this choice of approach. First of all, genetic algorithms
are known to be very robust with respect to optimization problems that have un-
desirable objective landscapes [21]. Note that, in ordinary optimization, we usually
have the freedom to adjust the objective in such a way that it is better suited for
sequential local search which often yields good solutions faster than population-based
approaches. In contrast, in our setting, where the target algorithm is given and the
effect of changing parameters is a priori unknown, we must be able to cope with what-

9

ever objective landscape we encounter. The other reason is that genetic algorithms
are inherently parallel. When trying to assess which individuals are competitive (the
most time-intensive step in solver configuration), genetic algorithms allow us to race
them against each other. Therefore, the time spent for the evaluation is determined
by the good parameter sets, and this saves a lot of time in practice. In order to really
exploit this last aspect, in [6] it is introduced the concept of gender in the genetic
algorithm. It is proposed to apply different selection pressure on the two gender
populations. In particular, it is applied intra-specific competition only in one part
of the population (competitive individuals or genomes). Individuals in this group
must compete for the right of mating, and only the fittest in each generation win the
right to mate with some of the individuals of the opposite gender (non-competitive
individuals or genomes). The individuals in this other group are not subjected to
intra-specific selection.

In the following, we describe the specific GGA that follows the structure of a
typical Genetic Algorithm.

GGA distinguish three types of target algorithm parameters: continuous and integer
parameters, both associated with an upper and lower bound, and categorical values
that come with an explicit list of feasible values. In addition GGA has the input
parameters (X, P, M, A, S) which are used in the following way:

• Initialization: first, we randomly initialize the population and assign a gender
C (for competitive) or N (for non-competitive) and an “age” of 1 to A years
uniformly at random to each individual. In our experiments, we set A to 3.

• Mating Rules: among the individuals with gender C, we select the top X%
(in our experiments we set X to 10%). These have gained the right to mate
in this season. 200/A% of individuals of gender N are assigned uniformly at
random to one of the mating individuals of gender C. The individuals of gender
C then mate with all individuals of gender N which have been assigned to them.

• Crossover: each mating of a couple of genomes results in one new genome
with age 0 and random gender. The genome of the offspring is determined by
traversing the parameter tree top-down.

The parameter tree is the representation of the target algorithm parameters as
an And/Or tree (see e.g [22]), where:

– Each node is labelled with a parameter or the additional label “&”, and
each algorithm parameter is associated with at least one node.

– Nodes associated with continuous or integer parameters have at most one
child, and And-nodes have at least two child-nodes.

10

– The children of categorical nodes partition the set of values that their
parent parameter can take. Branches leading to the children are labelled
by the respective value(s) of the categorical parameter.

• Mutation: as a final step to determine the offspring’s genome, with probability
M% we mutate the value of each parameter (in our experiments, we set M to
10%). If we mutate a categorical parameter, we choose a new value in its domain
uniformly at random. For continuous and integer parameters, we choose a new
value according to a Gaussian distribution where the current value marks the
expected value and the variance is set as S% of the parameter’s domain. In
our experiments, we set S to 10%.

• Death: after the new offspring is created, all individuals’ ages are increased
by 1. Those with age greater than A are removed from the population. In
combination with the mating rules that only 200/A% of individuals of gender
N mate in every season, this stabilizes the total population size.

2.2 Distributed architectures for high performance com-
puting

A distributed computer system consists of multiple software components that are
on multiple computers, but run as a single one. There is no clear distinction be-
tween “distributed computing” and “parallel computing”, in fact the same system
may be characterized as “parallel” and “distributed”. A distributed system composed
by multi-core computers is inherently running concurrently in parallel.

We can consider that parallel computing is composed by tightly coupled compo-
nents, while the components of a distributed computing system are loosely coupled.
Therefore we can classify concurrent systems using the following criteria:

• In parallel computing, all processors may have access to a shared memory to
exchange data.

• In distributed computing, the processors do not have access to shared memory
and data is exchanged by passing messages between them.

Current clusters for high performance computing allow to have both types of
concurrent systems since as we will see in the next section, they are composed by
nodes with their own private memory that can cooperate. Moreover, each node
usually corresponds to a multi-core computer where all jobs running on it can access
to shared memory.

11

In this project, since we will follow a Master-Worker pattern where Workers
run on independent computers, we will use the term “distributed” to reference the
parallelization of GGA.

2.2.1 Computer cluster

A computer cluster is a set of loosely or tightly connected independent computers,
with common hardware components, that work together as a single system. The
computers of a cluster are usually connected to each other through fast Local Area
Networks (LAN) and share the same file system.

Within a computer cluster we can identify three different types of nodes:

• Master node: it is in charge of the cluster administration and has the sched-
uler and several parallel libraries.

• Submit/Interactive nodes: they are the users entry points and are mainly
used to launch jobs.

• Computational nodes: these are the nodes where the jobs are executed.

2.2.2 Job scheduler

A job scheduler, also known as distributed resource management system (DRMS), is
a computer application for controlling unattended background program execution. It
is the responsible of the properly distribution of the resources of a distributed system
among the requested jobs.

A global view of a job scheduler has two main modules:

• A Distributed resource management (DRM) module, which is in charge
of managing the resources of the system.

• A Scheduler module, which is the responsible to instruct to the DRM what
to do with the available resources. It is also in charge of monitoring the jobs
and managing them at run time.

The scheduler module uses different policies to grant that all the jobs can be
executed avoiding resource conflicts between them. Some examples are:

12

• First In First Out (FIFO): it is the simplest algorithm. It simply queues jobs
in the order that they arrive.

• Round-Robin (RR): the scheduler assigns a time unit per job and cycles
through them.

• Shortest Job First (SJF): it requires an estimation of the required execution
time of each jobs. Then, the jobs are arranged based on that estimation.

• Multilevel queue: this policy is used when the jobs can be classified into
groups based on properties like CPU time or IO access. Each queue has a
preassigned priority and its own scheduling algorithm.

There are several implementations of job schedulers, but in this project we are
focused in the batch-queue schedulers, which are the most widely used in computer
clusters.

A batch-queue scheduler is an specific implementation of a job scheduler. In this
type of schedulers the available resources are grouped in one or several queues. By
grouping resources, a queue is automatically imposing some resource limitations to
the jobs. Besides this physical limitations, a queue can also be configured to force
additional logical limitations or requirements to the jobs.

SGE

The Sun Grid Engine (SGE), originally developed by Sun Microsystems and contin-
ued by Oracle under the name Oracle Grid Engine, is a batch-queue system used
in high-performance computing (HPC) clusters running on UNIX-like operating sys-
tems or Windows with the SFU or SUA extensions. The system is responsible of
accepting, scheduling, dispatching and managing, standalone, parallel or interactive
user jobs and the resources requested for those jobs.

13

Chapter 3

GGA architecture

This chapter aims to provide a general vision of the original GGA. In particular,
we will focus on those parts which had been substantially modified to create the
distributed version of GGA (DGGA).

First, we will present the simplified class diagram of GGA that describes the
structure of a system by showing the system’s classes, their attributes, operations
(or methods), and the relationships among objects. Then, we will discuss the main
execution sequence of GGA.

3.1 Class diagram

The current GGA system involves up to 16 classes. For the sake of clarity, we present
in figure 3.1 only the critical classes needed for describing the general functionality
of the system. These classes are: GGATournament, GGALearningStrategy, GGASe-
lector, GGARunner, GGASharedMemory, GGAGenome and GGAParameterTree.

Class GGATournament

The class GGATournament manages the overall tuning process. First of all, from
the current population of genomes, divided into competitive and non-competitive, it
sends to GGASelector the competitive genomes. From GGASelector it retrieves the
set of winners. Then, it applies the crossover operation of individuals from the non-
competitive genomes and the set of winners to get new genomes. The new genomes
are mutated and labelled as non-competitive or competitive. Finally, those genomes

14

G
G

A
G

e
n

o
m

e
-m

_
g

e
n

o
m

e
:m

a
p

<
st

ri
n

g
,G

G
A

V
a

lu
e

>
-m

_
g

e
n

d
e

r:
G

e
n

d
e

r
-m

_
a

g
e

:i
n

t
+

m
u

ta
te

()
:v

o
id

+
co

rs
so

ve
r(

o
th

e
r:

G
G

A
G

e
n

o
m

e
*)

:G
G

A
G

e
n

o
m

e
*

G
G

A
P

a
ra

m
e

te
rT

re
e

-m
_

ro
o

t:
G

G
A

T
re

e
N

o
d

e
*

-m
_

cm
d

:G
G

A
C

o
m

m
a

n
d

*
-m

_
se

e
d

e
d

G
e

n
o

m
e

s*
+

p
a

rs
e

T
re

e
F

ile
(f

ile
:s

tr
in

g
):

b
o

o
l

+
c

o
m

m
a

n
d

()
:G

G
A

C
o

m
m

a
n

d
*

+
ro

o
t(

):
G

G
A

T
re

e
N

o
d

e
*

1
*

G
G

A
S

h
a

re
d

M
e

m
o

ry
+

c
re

a
te

S
e

m
a

p
h

o
re

()
:i

n
t

+
cr

e
a

te
S

h
a

re
d

M
e

m
o

ry
(s

iz
e

:i
n

t,
p

tr
:i

n
t*

&
):

in
t

+
cr

e
a

te
S

h
a

re
d

M
e

m
o

ry
(s

iz
e

:i
n

t,
p

tr
:d

o
u

b
le

*&
):

in
t

+
d

e
le

te
S

e
m

a
p

h
o

re
(i

d
:i

n
t)

:v
o

id
+

d
e

le
te

S
h

a
re

d
M

e
m

o
ry

(p
tr

:i
n

t*
,s

h
m

id
:i

n
t)

:v
o

id
+

d
e

le
te

S
h

a
re

d
M

e
m

o
ry

(p
tr

:d
o

u
b

le
*,

sh
m

id
:i

n
t)

:v
o

id

G
G

A
R

u
n

n
e

r
-m

_
e

va
ls

:i
n

t*
-m

_
p

e
rf

o
rm

a
n

ce
:d

o
u

b
le

*
-m

_
o

b
jV

a
l:

d
o

u
b

le
*

-r
u

n
C

o
m

m
a

n
d

(i
n

t
su

b
S

e
m

a
p

h
o

re
,

ch
a

r*
 p

ip
e

c,

ch

a
r

**
cm

d
,

in
t

in
d

e
x)

+
ru

n
(d

o
n

e
S

e
m

a
p

h
o

re
:i

n
t,

 s
e

lf
S

e
m

a
p

h
o

re
:i

n
t,

su
b

S
e

m
a

p
h

o
re

:i
n

t)
:

vo
id

G
G

A
L

e
a

rn
in

g
S

tr
a

te
g

yP
a

ra
b

o
la

+
in

st
a

n
ce

s(
g

e
n

e
ra

ti
o

n
:i

n
t)

:
In

st
a

n
ce

V
e

ct
o

r
G

G
A

L
e

a
rn

in
g

S
tr

a
te

g
yS

te
p

+
in

st
a

n
ce

s(
g

e
n

e
ra

ti
o

n
:i

n
t)

:
In

st
a

n
ce

V
e

ct
o

r
G

G
A

L
e

a
rn

in
g

S
tr

a
te

g
yL

in
e

a
r

+
in

st
a

n
ce

s(
g

e
n

e
ra

ti
o

n
:i

n
t)

:
In

st
a

n
ce

V
e

ct
o

r
G

G
A

L
e

a
rn

in
g

S
tr

a
te

g
yE

xp
+

in
st

a
n

ce
s(

g
e

n
e

ra
ti

o
n

:i
n

t)
:

In
st

a
n

ce
V

e
ct

o
r

G
G

A
L

e
a

rn
in

g
S

tr
a

te
g

y
-i

n
st

a
n

ce
s:

 G
G

A
In

st
a

n
ce

s*
+

in
st

a
n

ce
s(

g
e

n
e

ra
ti

o
n

:i
n

t)
:

In
st

a
n

ce
V

e
ct

o
r

G
G

A
S

e
le

ct
o

r
-m

_
ru

n
n

e
rs

:G
G

A
R

u
n

n
e

r*
+

s
e

le
c

t(
e

v
a

ls
:i

n
t&

,

p

a
rt

ic
ip

a
n

ts
:G

e
n

o
m

e
V

e
ct

o
r,

in
st

a
n

ce
s:

In
st

a
n

ce
V

e
ct

o
r)

:
G

e
n

o
m

e
V

e
ct

o
r

G
G

A
T

o
u

rn
a

m
e

n
t

-m
_

p
o

p
:G

G
A

P
o

p
u

la
ti

o
n

*
+

ru
n

()
:

v
o

id
+

n
e

x
tG

e
n

e
ra

ti
o

n
()

:v
o

id
-p

e
rf

o
rm

S
e

le
ct

io
n

(i
n

st
a

n
ce

s:
co

n
st

 I
n

st
a

n
ce

V
e

ct
o

r&
):

co
n

st
 G

e
n

o
m

e
V

e
ct

o
r&

-p
e

rf
o

rm
C

ro
ss

o
ve

r(
co

n
st

 G
e

n
o

m
e

V
e

ct
o

r&
):

G
e

n
o

m
e

V
e

ct
o

r
-p

e
rf

o
rm

M
u

ta
ti

o
n

(c
h

il
d

re
n

:G
e

n
o

m
e

V
e

ct
o

r&
):

G
e

n
o

m
e

V
e

ct
o

r&

F
ig
ur
e
3.
1:

G
G
A

si
m
pl
ifi
ed

cl
as
s
di
ag

ra
m

15

too old for the generation are eliminated. This process is repeated until a predefined
stop criterion is achieved.

Main members:

• m_pop: an object of class GGAPopulation that contains the tournament’s pop-
ulation divided in two vectors: one for the competitive genomes and another
for the non-competitive ones.

Main methods:

• void run()

This method starts the routine that manages the overall tuning process.

• void nextGeneration ()

Perform all the required steps to create the individuals of the next generation.

• const GenomeVector performSelection(
const InstanceVector& instances)

Selects the best individuals of the competitive population.

Parameters

– instances [in]
A vector with the instances to evaluate the competitive individuals.

Return value

A vector with references to the best individuals of the population.

• GenomeVector performCrossover(const GenomeVector&
winners)

Performs the crossover between the individuals returned by
performSelection() and the non-competitive population. To generate
new individuals.

Parameters

– winners [in]
A vector of references to competitive GGAGenomes.

Return value

A vector of new GGAGenomes. Result of combining the winners with the
non-competitive population.

16

• GenomeVector& performMutation(GenomeVector& children)

Mutates the genome of all the provided individuals.

Parameters

– children [in, out]
A vector with references to the individuals to mutate.

Return value

The reference to the vector children provided as parameter.

Dependencies: GGAGenome, GGALearningStrategy and GGASelector

Class GGALearningStrategy

The class GGALearningStrategy is in charge of selecting the instances used by GGA-
Tournament, at each generation, to select the most fit genomes of the current gener-
ation. It has 4 different implementations, with a different selection policy each.

Main members:

• m_instances: a pointer to the list of selectable instances.

Main methods:

• virtual InstanceVector instances(int generation)

Selects the instances to test the specified generation of individuals. The default
implementation is return all the instances.

Parameters

– generation [in]
The generation for which select the instances.

Return value

A vector with references to the selected instances.

17

Class GGALearningStrategyLinear

Specific implementation of GGALearningStrategy that returns randomly selected
instances. The amount of selected instances increases linearly respect to the number
of generations.

Class GGALearningStrategyStep

Specific implementation of GGALearningStrategy that returns randomly selected
instances. The amount of selected instances increases discretely respect to the number
of generations.

Class GGALearningStrategyParabola

Specific implementation of GGALearningStrategy that returns randomly selected
instances. The amount of selected instances increases in a parabola-like way, with
respect to the number of generations.

Class GGALearningStrategyExp

Specific implementation of GGALearningStrategy that returns randomly selected
instances. The amount of selected instances increases exponentially respect to the
number of generations

Class GGASelector

The class GGASelector manages the assignment of the competitive genomes to the
available computational resources, and retrieves the winners from the set of the com-
petitive genomes at the current generation.

Main members:

• m_runners: a vector of runners used to compute the performance of each
genome.

Main methods:

18

• virtual GenomeVector select(
const GenomeVector& participants ,
const InstanceVector& instances ,
int& evals)

Performs several tasks. First assigns the available computation resources to the
set of competitive individuals. Then executes a bunch of runners to gather the
performance of those individuals, and finally selects the winners.

Parameters

– participants [in]
The list of individuals to evaluate.

– instances [in]
The list of instances to evaluate the participants.

– evals [out]
The number of evaluations performed during the selection process.

Return value

A vector with references to the best individuals after the evaluation.

Dependencies: GGARunner

Class GGARunner

The GGARunner class executes the target algorithm, using the parametrization of a
given genome on the instances provided by the GGALearningStrategy, to compute
the performance of the genome.

Main members:

• m_evals: the number of evaluations performed to compute the genome perfor-
mance.

• m_performance: a vector that contains the performance of the genome for each
tested instance.

• m_objVal: the sum of all the values in m_performance.

Main methods:

19

• void run(int doneSemaphore , int selfSemaphore ,
int subSemaphore)

Executes the evaluation routine for each instance.

Parameters

– doneSemaphore [in]
The identifier of the semaphore used to notify that some runner has fin-
ished.

– selfSemaphore [in]
The identifier of the semaphore used to notify that this specific runner has
finished.

– subSemaphore [in]
Not Used.

• void runCommand(int subSemaphore , char* pipec ,
char** cmd , int index)

Executes the command to test the target algorithm with the genome
parametrization, on one of the instances, and recover execution statistics.

Parameters

– subSemaphore [in]
Not Used.

– pipec [in]
The name of the named pipe, used to communicate the GGA process with
the child process running the target algorithm.

– cmd [in]
The command to execute the target algorithm, with an specific
parametrization on one of the test instances.

– index [in]
The index of the current test instance to use.

Class GGAGenome

The GGAGenome class, represents an individual of the tournament population.

Main members:

• m_genome: it is a map that contains the parametrization of the target algorithm.

• m_gender: stores information about the gender of the individual.

20

• m_age: the age of the individual.

Main methods:

• void mutate ()

Modifies the genomic information of this individual.

• GGAGenome crossover(GGAGenome* other)

Creates a new GGAGenome by mixing the genomic information of this genome
an the given one.

Parameters

– other [in]
Another individual of different gender.

Return value

A new individual result of crossing the information of this and the given one.

Class GGASharedMemory

The class GGASharedMemory is an utility class composed entirely by static methods.
It provides an abstraction layer over some operating system’s IPC mechanisms, and
can also generate random names to create named pipes.

Main methods:

• int createSharedMemory(int size , int*& ptr)

Creates a block of integers in shared memory.

Parameters

– size [in]
The number of integers to allocate in shared memory.

– ptr [out]
Reference to the pointer used to access the block of memory.

Return value

The identifier of the allocated block of memory.

21

• int createSharedMemory(int size , double *& ptr)

Creates a block of doubles in shared memory.

Parameters

– size [in]
The number of doubles to allocate in shared memory.

– ptr [out]
Reference to the pointer used to access the block of memory

Return value

The identifier of the allocated block of memory.

• void deleteSharedMemory(int* ptr , int shmid)

Deletes the specified block of integers.

Parameters

– ptr [in]
Pointer to a previously allocated block of memory.

– shmid [in]
The identifier of the block of memory pointed by ptr.

• void deleteSharedMemory(double* ptr , int shmid)

Deletes the specified block of doubles.

Parameters

– ptr [in]
Pointer to a previously allocated block of memory.

– shmid [in]
The identifier of the block of memory pointed by ptr.

• int createSemaphore ()

Creates a semaphore initialized to 0.

Return value

The identifier of the recently created semaphore.

• void deleteSemaphore(int id)

Deletes the specified semaphore.

Parameters

– id [in]
The identifier of a semaphore.

22

Class GGAParameterTree

The class GGAParameterTree contains the parameter tree of the target algorithm
along with the command to test it, and optional user provided genomes. It is also
the responsible of parsing and verifying the algorithms configuration file.

Main members:

• m_root: the root of the parameter tree.

• m_cmd: the command to execute the target algorithm.

• m_seededGenomes: the list of user provided genomes.

Main methods:

• bool parseTreeFile(std:: string file)

Parses the XML file with the target algorithm configuration.

Parameters

– file [in]
The path to the XML file with the tree configuration.

Return value

True if there is no error parsing the file, false otherwise.

• GGATreeNode* root()

Return value

A reference to the root of the parameter tree, or NULL if there is no tree.

• GGACommand* command ()

Return value

A reference to the command to execute the target algorithm, or NULL if there
is no command.

23

3.2 Execution sequence

This section explains the sequence of steps performed by GGA (see figure 3.2) to try
to find the best possible configuration of an algorithm , i.e., the genome with the
best performance, respect to a given test set of instances, and a restricted time and
memory resources.

Initially, GGA loads the data provided by the user. This data corresponds to:
the solver to tune and its parameters, the test set of instances and some execution
parameters of the GGA tool itself (see Chapter 7). With this data GGA creates a
randomly generated population, i.e., set of genomes, that corresponds to the first
generation.

From now on, class GGATournament leads the main configuration process. This
configuration process lasts to a user defined number of generations. Within each
generation, class GGATournament performs three main steps: the selection of the
instances to evaluate the competitive genomes of the current population, the actual
evaluation of these genomes, and the update of the population for the next generation.

In order to select the instances for the evaluation of the genomes, class GGA-
Tournament interacts with class GGALearningStrategy. The latter, returns a subset
of instances depending on the selection strategy defined by the user (see previous
section for the details of the strategies).

The competitive genomes and the selected subset of instances are then sent to
GGASelector to evaluate their performance and select a percentage of winners.

Class GGASelector starts the selection process by distributing the competi-
tive genomes in several balanced mini-tournaments. After the counterbalance, for
each mini-tournament, it creates a GGARunner instance per genome. Then, each
GGARunner is executed, into a separated process, to evaluate the genomes of the
current mini-tournament asynchronously. Notice that the size of a mini-tournament
is at most the number of cores of the machine where GGSelector is running.

When all the GGARunners for a given mini-tournament have finished, class
GGASelector selects a percentage of the winners from the current mini-tournament.

Once all the mini-tournaments have finished, class GGASelector returns the set
of all the winners to class GGATournament, which creates the next individuals of the
generation by crossing the winners with the non-competitive genomes of the current
generation. These new genomes are then mutated to introduce more diversity to the
population.

24

m
u

ta
te

()

F
o

r
e

a
ch

n
e

w
 g

e
n

o
m

e

lo
o

p
 #

g
e

n
e

ra
ti

o
n

s

F
o

r
e

a
ch

 m
in

i-
to

u
rn

a
m

e
n

t

a
g

e
P

o
p

u
la

tio
n

()

«
d

e
st

ro
y»

«c

re
at

e»

b
a

la
n

ce
T

o
u

rn
a

m
e

n
ts

()

F
o

r
e

a
ch

n
o

n
-c

o
m

p
e

ti
ti

ve
 g

e
n

o
m

e

g

e
n

o
m

e
:G

G
A

G
e

n
o

m
e

 c

ro
ss

o
ve

r(
ra

n
d

W
in

n
e

r)

:G
G

A
G

en
om

e

in
st

a
n

ce
s:

In
st

a
n

ce
V

e
ct

o
r

in
st

a
n

ce
s(

g
e

n
e

ra
ti

o
n

)

:G
G

A
L

e
a

rn
in

g
S

tr
a

te
g

y

w
in

n
e

rs
:G

e
n

o
m

e
V

e
ct

o
r

o
b

jv
a

lu
e

:d
o

u
b

le
o

b
jV

a
lu

e
()

a
sy

n
ch

ro
n

o
u

s
n

o
ti

fi
ca

ti
o

n
ru

n
(w

in
n

e
rS

e
m

,
se

lfS
e

m
,

su
b

S
e

m
)

se
le

ct
(e

va
ls

,
co

m
p

P
o

p
,

in
st

a
n

ce
s)

:G
G

A
R

un
ne

r
:G

G
A

S
el

ec
to

r
:G

G
A

T
o

u
rn

a
m

e
n

t

F
ig
ur
e
3.
2:

G
G
A

si
m
pl
ifi
ed

se
qu

en
ce

di
ag

ra
m

25

Finally, before starting with the next generation, the age of the individuals of the
current population is increased and the older ones are discarded and removed from
the population of genomes.

26

Chapter 4

DGGA architecture

In this chapter, we present the distributed architecture of DGGA (see figure 4.1).
DGGA has been designed trying to reuse as much as possible the original GGA
extended with a lightweight communication component.

In the following sections, we present the class diagram showing only the main
classes, and the communication protocol employed in the distributed environment.

4.1 Class diagram

DGGA has been designed so that it can be run transparently on a single machine as
the original GGA, or on any cluster with a shared file system. Moreover, although it
is not covered in this project, the design allows to deploy DGGA on any distributed
architecture (that guarantees uniform computing resources) without applying any
substantial modification.

In figure 4.1, we can see that DGGA follows the typical Master-Worker pattern.
Basically, the Master sends to each Worker a set of genomes to be tested on a set
of instances. The Workers are responsible on evaluating the genomes on the set of
instances and send the results to the Master.

The Master basically corresponds to the class GGATournament in GGA. Class
DGGARemoteSelectorMaster replaces class GGASelector in GGA to make transpar-
ent the communication with the Workers. The Worker corresponds to the classes
GGASelector and GGARunner in GGA. Class DGGARemoteSelectorWorker wraps
class GGALocalSelector, GGASelector in GGA, making the communication trans-

27

re
a

d
y

C
o

m
m

u
n

ica
tio

n
 In

te
rfa

ce
 via

 S
o

cke
ts

c
o

n
n

e
c

t

m
a

n
a

g
e

W
o

rke
rs()

la
u

n
ch

W
o

rke
rs()

b
a

la
n

ce
M

in
iT

o
u

rn
a

m
e

n
ts()

D
G

G
A

::R
e

m
o

te
S

e
le

cto
rM

a
ste

r

lo
o

p

d
isco

n
n

e
ct

se
n

d
 w

in
n

e
rs

s
e

n
d

 m
in

i-to
u

rn
a

m
e

n
t

se
n

d
 co

n
fig

u
ra

tio
n

re
q

u
e

st co
n

fig
u

ra
tio

n

s
td

o
u

t

w
ra

p
p

e
r.sh

 G

E
N

O
M

E
 +
 IN

S
T

A
N

C
E

p
o

st(ctrl_
se

m
a

p
h

o
re

)

co
m

p
u

te
P

e
rfo

rm
a

n
ce

()

w
a

it4
(p

id
, sta

tu
s, ...)

re
a

d
(p

ip
e

)

p
ip

e
() +

 fo
rk

() +
 e

x
e

c
v

p
()

«
T

h
re

a
d

»

fo
r e

a
ch

 r in
 ru

n
n

e
rs

re
tu

rn
 w

in
n

e
rs

se
le

ctW
in

n
e

rs()

r.ru
n

(ctrl_
se

m
a

p
h

o
re

)

fo
r e

a
ch

 g
 in

 g
e

n
o

m
e

s

ru
n

n
e

rs.a
d

d
(R

u
n

n
e

r(g
, in

sta
n

ce
s))

se
le

ct(g
e

n
o

m
e

s, in
sta

n
ce

s)

G
G

A
L

o
ca

lS
e

le
cto

r

D
G

G
A

::R
e

m
o

te
S

e
le

cto
rW

o
rke

r

W
o

rk
e

r

G
G

A
::T

o
u

rn
a

m
e

n
t

M
a

ste
r

F
igure

4.1:
D
G
G
A

generalarchitecture
overview

28

parent for the GGA system.

Going into more detail, in figure 4.2 we can consult the class diagram of the main
classes in DGGA. We basically distinguish two groups, the new set of classes, and
the set of classes inherited from GGA that have been modified.

4.1.1 New classes

Below, we describe the new four classes we have added respect to GGA: DG-
GARemoteSelectorMaster, DGGARemoteSelectorWorker, DGGATcpAcceptor and
DGGATcpConnection. Finally, we present the GGA classes that have been mod-
ified.

Class DGGARemoteSelectorMaster

The DGGARemoteSelectorMaster has three main tasks. First it assigns the com-
petitive genomes to the available computational resources, creating one or several
mini-tournaments. Then it starts several Workers, and finally manages the commu-
nication with the Workers and recovers the results.

Main members:

• m_start_worker_cmd: the command that must be executed to start DGGA
Workers.

• m_acceptor: an object of the class DGGATcpAcceptor responsible of managing
the acceptance of new DGGATcpConnections.

• m_connections: a vector of DGGATcpConnections with all the active Workers.

Main methods:

• virtual GGAGenomeVector select(int& evals ,
const GGAGenomeVector& participants ,
const GGAInstanceVector& instances)

Distributes the available computational resources among the set of competitive
individuals and, starts some Workers. Then enters an event based loop, driven
by the communication protocol, until the selection has finished.

Parameters

29

1

1

*

1 1

1

D
G

G
A

T
cpA

cceptor
-m

_new
_connection_handler:N

ew
C

onnectionH
andler

+
se

tN
e

w
C

o
n

n
e

ctio
n

H
a

n
d

le
r(n

ch
:N

e
w

C
o

n
n

e
ctio

n
H

a
n

d
le

r):vo
id

D
G

G
A

T
cpC

onnection
-m

_disconnection_handler:D
isconnectionH

andler
-m

_new
_m

essage_handler:N
ew

M
essageH

andler
+

co
n

n
e

ct(h
o

st:co
n

st strin
g

&
, p

o
rt:u

in
t1

6
_

t):b
o

o
l

+
clo

se
():vo

id
+

se
n

d
M

e
ssa

g
e

(m
sg

:co
n

st strin
g

&
):vo

id

D
G

G
A

R
em

oteS
electorW

orker
-m

_selector:G
G

A
LocalS

elector
-m

_connection:D
G

G
A

T
cpC

onnection
+

co
n

n
e

ct(ip
s:co

n
st S

trin
g

V
e

cto
r&

, p
o

rt:u
in

t1
6

_
t)

+
ru

n
():vo

id

G
G

A
LocalS

elector
-m

_runners:G
G

A
R

unner*
+

se
le

ct(e
va

ls:in
t&

,
participants:G

en
om

eV
ector,instances:InstanceV

ector): G
enom

eV
ector

D
G

G
A

R
em

oteS
electorM

aster
-m

_connections: std::se
t<

D
G

G
A

T
cpC

onne
ction
::pointer)

+
se

le
ct(e

va
ls:in

t&
,

participants:G
en

om
eV

ector,instances:InstanceV
ector): G

enom
eV

ector

G
G

A
G

enom
e

-m
_

g
e

n
o

m
e

:m
a

p
<

strin
g

,G
G

A
V

a
lu

e
>

-m
_

ge
n

de
r:G

en
d

er
-m

_
a

g
e

:in
t

+
m

u
ta

te
():vo

id

G
G

A
P

aram
eterT

ree
-m

_root:G
G

A
T

reeN
ode::pointer

-m
_

cm
d

:G
G

A
C

o
m

m
a

n
d

*
-m

_
se

e
d

e
d

G
e

n
o

m
e

s:std
::ve

cto
r<

G
e

n
o

m
e

M
a

p
>

+
p

a
rse

T
re

e
F

ile
(file

:strin
g

):b
o

o
l

+
co

m
m

a
n

d
():G

G
A

C
o

m
m

a
n

d
*

+
ro

o
t():G

G
A

T
re

e
N

o
d

e
::p

o
in

te
r

G
G

A
R

unner
-m

_
e

va
ls:in

t
-m

_
p

e
rfo

rm
a

n
ce

:ve
cto

r<
d

o
u

b
le

>
-m

_objV
al:double

-ru
n

C
o

m
m

a
n

d
(cm

d
:co

n
st S

trin
g

V
e

cto
r&

,
index:const size_t)

+
ru

n
(ctrlS

e
m

:in
te

rp
ro

ce
ss_

se
m

a
p

h
o

re
&

): vo
id

G
G

A
LearningS

trategyP
arabola

+
in

sta
n

ce
s(g

e
n

e
ra

tio
n

:in
t): In

sta
n

ce
V

e
cto

r
G

G
A

LearningS
trategyS

tep
+

in
sta

n
ce

s(g
e

n
e

ra
tio

n
:in

t): In
sta

n
ce

V
e

cto
r

G
G

A
LearningS

trategyLinear
+

in
sta

n
ce

s(g
e

n
e

ra
tio

n
:in

t): In
sta

n
ce

V
e

cto
r

G
G

A
LearningS

trategyE
xp

+
in

sta
n

ce
s(g

e
n

e
ra

tio
n

:in
t): In

sta
n

ce
V

e
cto

r

G
G

A
LearningS

trategy
+

in
sta

n
ce

s(g
e

n
e

ra
tio

n
:in

t): In
sta

n
ce

V
e

cto
r

«
in

te
rfa

ce
»

G
G

A
S

elector

+
se

le
ct(e

va
ls:in

t&
,

participants:G
en

om
eV

ector,instances:Insta
nce

V
ector): G

enom
eV

ector

G
G

A
T

ourna
m

e
n

t
-m

_pop:G
G

A
P

opulation*
+

ru
n

(instan
ce

s:G
G

A
Instan

ces): void
+

n
e

xtG
e

n
e

ra
tio

n
():vo

id
+

cu
rre

n
tG

e
n

e
ra

tio
n

():in
t

-p
e

rform
S

e
le

ctio
n

(in
sta

n
ce

s:co
n

st In
stan

ce
V

e
cto

r&
):co

n
st G

e
n

o
m

e
V

e
cto

r&
-p

e
rfo

rm
C

ro
sso

ve
r(co

n
st G

e
n

o
m

e
V

e
cto

r&
):G

e
n

o
m

e
V

e
cto

r

1
1

1
11

*

1

F
igure

4.2:
D
G
G
A

sim
plified

class
diagram

.

30

– evals [out]
The number of evaluations performed during the selection process.

– participants [in]
The list of individuals to evaluate.

– instances [in]
The list of instances to evaluate the participants.

Return value

A vector with the best individuals selected by the Workers.

• void startWorkers ()

Starts some Workers using the user provided command.

• bool sendTourney(DGGATcpConnection :: pointer con)

Sends a mini-tournament to the specified Worker (connection).

Parameters

– con [in]
The connection to which send the tournament.

Return value

True if a mini-tournament was sent, false otherwise.

• void recoverResults(const std:: string& str)

Extracts the results from the given string.

Parameters

– str [in]
A constant reference to a string with the results of a mini-tournament.

Class DGGARemoteSelectorWorker

The DGGARemoteSelectorWorker has only one responsibility, manage the commu-
nication with the Master. All the other components are inherited from GGA with
slight modifications.

Main members:

• m_selector: an instance of the original GGA selector used to select the winners
of a mini-tournament.

31

• m_connection: an instance of DGGATcpConnection that handles the connec-
tion with the Master.

Main methods:

• bool connect(const StringVector& ips , uint16_t port)

Tries to connect to any of the provided IPs at the specified port.

Parameters

– ips [in]
A list of IPs to connect to.

– port [in]
The connection port.

Return value

True if a connection is established, false otherwise.

• void run()

Runs the Worker main loop until either the tuning process finishes or there is
a communication error.

Class DGGATcpAcceptor

The class DGGATcpAcceptor is an event based acceptor for TCP connections. It
listens to an specific address and port, and calls a hook function whenever a new
connection is accepted.

Main members:

• m_new_connection_handler: an instance of the type NewConnectionHandler
that will be called when a new connection is accepted.

• m_acceptor: an instance of the underlying acceptor object.

Main methods:

• void setNewConnectionHandler(NewConnectionHandler nch)

32

Sets the new connection event hook function.

Parameters

– nch [in]
It can be either a C-like function or a boost::function, with the restriction
that should return void and accept a DGGATcpAconnection::pointer as
the unique parameter.

Class DGGATcpConnection

The class DGGATcpConnection is a wrapper over a TCP connection that hides all
the communication issues. It sends and receives a predefined format of messages, and
uses events to notify any communication change.

Main members:

• m_disconnection_handler: an instance of the type DisconnectionHandler that
will be called when the connection is finished.

• m_new_message_handler: an instance of the type NewMessageHandler that
will be called when a new message is received.

Main methods:

• bool connect(const std:: string& host , uint16_t port)

Tries to connect to the specified address (host:port). If the return value is true,
this connection can be used to send and receive data.

Parameters

– host [in]
An IP or host name to connect to.

– port [in]
The connection port.

Return value

True if a connection is established with the given address, false otherwise.

• void close()

Closes a previously established connection. After this method, this connection
can not be used to send or receive data.

33

• void sendMessage(const std:: string& msg)

Sends the given message to the other end of the connection. This function fails
if a connection have not been already established.

Parameters

– msg [in]
The message to send.

4.1.2 Modified classes

During the development of DGGA, we have modified some of the classes inherited
from GGA, in order to make more easy to implement the modifications required to
distribute the original GGA tool. Below, we list the modifications we have made to
the main classes of GGA already introduced in Chapter 3.

Class GGASelector

This class was renamed as GGALocalSelector. We reused the name GGASelector for
an interface, which defines the methods required by GGATournament, to perform the
selection of the best genomes. This interface is the one that allows the distributed
architecture to be transparent for the GGATournament class.

Class GGARunner

Basically we have shaved this class by erasing unrequired attributes and simplifying
methods.

Class GGAGenome

The crossover() method has been refactored as a non-friend, non-member function.
This change was made following the principles explained in Effective C++ [23](Chap-
ter 4, Item 23), to make the code more flexible, clean and with better encapsulation.
These are important points to cover when modifying any software.

34

Class GGASharedMemory

The functionality provided by this class was replaced by a better and cross-platform
implementation provided by the Boost project. While GGASharedMemory only cov-
ers the creation of semaphores, and shared memory blocks of integers and doubles,
using the Unix IPC mechanisms. Boost offers a more mature and cross-platform im-
plementation, of threads, shared memory, semaphores, and other interprocess com-
munication mechanisms.

Class GGAParameterTree

Originally, this class had a significant amount of code devoted to deal with mem-
ory management. We changed all the member raw-pointers to smart-pointers and
removed almost all the memory management code.

4.2 Communication protocol

The communication protocol of DGGA has been designed bearing in mind, that
it must be cross-platform and easy to implement and debug. For this reason, we
decided to use a text-based protocol over TCP. Any other transmission protocol with
less guarantees than TCP is not reliable with the actual design.

In this project the classes that use this protocol are: DGGARemoteSelectorMas-
ter and DGGARemoteSelectorWorker.

The whole protocol can be split in 4 major steps: connection, configuration,
execution and disconnection.

Connection

This is the first step and involves different actions in both ends of the communication.

On one side, the Master opens a TCP connection to listen to an specified port
on all network interfaces. After that, it is ready to accept incoming connections.

On the other side, the Worker opens a TCP connection and connects to one of
the Master’s computer network interfaces at the port that the Master is listening to.

35

Once a connection between the Master and a Worker is established. The connec-
tion is in the INIT state, and the Worker starts the greeting sequence composed by
the following messages:

1. Worker → Master: DGGA_HELLO

2. Master → Worker: DGGA_ACK

That sequence guarantees that the other end of the communication is aware of
the protocol, and the connection switches to the CONFIG state .

Configuration

This step follows the greeting sequence, when the connection is in the CONFIG state.
Its purpose is to guarantee that the Workers share the same configuration than the
Master, and that the mini-tournaments will be properly executed.

The sequence of messages of this step, involves 4 fixed messages and one that
is the textual serialisation of the Master’s configuration. After the sequence, the
connection is in the IDLE state.

1. Worker → Master: DGGA_GET_CONFIGURATION

2. Master → Worker: DGGA_CONFIGURATION_BEG

3. Master → Worker: <configuration data [serialised]>

4. Master → Worker: DGGA_CONFIGURATION_END

5. Worker → Master: DGGA_ACK

Notice that the second and the fourth messages are used to enclose the serialised
data. Therefore, it is not necessary to know the size of the serialised data in advance.

Execution

This step is performed every time the Master has to evaluate the competitive
genomes. When Master requires the execution of the tests, it can only redirect
this request to the Workers that are in the IDLE state.

36

The sequence starts with two messages, the objective of these messages is to ensure
that the other end is online and that there are no communication errors. After this
check, the Master sends the mini-tournament to the Worker. The connection is now
in the WORKING state. Finally, when the Worker has finished the tests, it sends
the results back to the Master and the connection switches again to the IDLE state.

1. Master → Worker: DGGA_POLL

2. Worker → Master: DGGA_READY

3. Master → Worker: DGGA_TOURNEY_BEG

4. Master → Worker: <mini-tournament data [serialised]>

5. Master → Worker: DGGA_TOURNEY_END

6. Worker → Master: DGGA_RESULTS_BEG

7. Worker → Master: <results data [serialised]>

8. Worker → Master: DGGA_RESULTS_END

Notice that the third, the fifth, the sixth and the eighth messages are used to
enclose the serialised data like in the Configuration step.

Disconnection

The disconnection step takes advantage of the TCP protocol, there is no specific
message or sequence to notify to the other end an imminent disconnection. The idea is
that any TCP level disconnection is treated as a common event in the communication
protocol, which reduces the complexity of writing specific disconnection sequences.

On one side, the Master is responsible of closing all the connections when the
configuration process has finished. Hence any disconnection is treated as a com-
munication error. When that happens, the Master rolls-back any mini-tournament
assigned to the disconnected Worker. Then, it polls all the Workers whose connection
is in the IDLE state, to start the mini-tournament again. Finally, if there are more
mini-tournaments, it tries to start a new Worker.

On the other side, the Worker expects a disconnection when it is in the IDLE
state, but it does not expect such event when it is in any other state. In any case, the
Worker finishes its execution after it is disconnected from the Master. In addition, if
the disconnection happens when the Worker is in the WORKING state, it also has to
finish the execution of the child processes that are executing the target algorithm.

37

Chapter 5

DGGA implementation

In this chapter, we will explain the implementation of DGGA. First, we will review
the libraries and the development tools. Secondly, we will describe how the project
is structured in modules and their main implementation details. Finally, we will list
the bugs we found in the original GGA and how we have fixed them.

Since this project is based on and extends GGA, it inherits some of its characteris-
tics. For example, the programming language (C++) and libraries. Moreover during
the development of DGGA, some of the original modules of GGA were modified,
removed or replaced, to serve better the purpose of this project.

5.1 Libraries

Initially, GGA used external libraries from two projects: GNOME [24] and Boost [25],
but since the Boost project itself covers all the requirements and it is implemented
in the same programming language as the project, being the integration simpler, we
decided to replace the GNOME XML library with its Boost equivalent.

5.1.1 C++

As mentioned before, C++ is the language used in the original implementation of
GGA. This language was initially designed by Bjarne Stroustrup [26] to mid-80s, as
an extension of the C language [27].

38

C++ supports three different programming paradigms: structured programming,
template programming and object oriented programming. In addition its standard
library offers a set of data structures, iterators and algorithms, which release the
developer from the low-level details. However its C inheritance, still allow the devel-
opers to work at low-level when they require it.

This project takes advantage of the standard library of C++, while it uses its
low-level capabilities to communicate with the operating system API.

5.1.2 Boost

The Boost project is widely used in C++ projects. Its main goals are: offer generic
cross-platform solutions to daily C++ problems and work along with the C++ stan-
dard library. For this reason the C++ Standards Committee has included some of
its libraries in the C++11 release. In addition its licence allows use all its libraries
in any kind of project.

We have used the following Boost libraries: System, Filesystem, Regex, Timer,
Program Options, Serialization, Chrono, Iostreams, Thread. To perform file system,
network, multi-threading and serialization tasks.

5.2 Tools

In this section, we briefly explain the different tools used during the development of
this project. All of them are open source and cross-platform.

5.2.1 Git

Git [28] is a distributed revision control and source management system. Initially
designed and developed by Linus Torvalds for the Linux kernel in 2005, and has since
become the most widely adopted version control system for software development.

Some known projects and businesses that use Git are: Google, Facebook, Microsoft
Twitter, Linkedin, Netflix, Android, X-org, Eclipse, GNOME, KDE, Linux Kernel.

We used Git to control the changes performed to the project’s source code and
as a backup system, with 3 computers having an entire copy of the repository.

39

5.2.2 GNU C++ Compiler

GNU Compiler Collection or GCC [29] is a collection of front ends for different
programming languages. One of them is the g++, which is the C++ compiler, and
the main compiler of this project.

5.2.3 LLVM C++ Compiler

LLVM [30] is a collection of modular and reusable compiler and toolchain technolo-
gies. Like GCC it has different front ends, including one for the C++ language called
clang++.

This compiler was used during the development, since it is the default compiler
for the Mac OS X Mavericks operating system [31].

5.2.4 GNU Emacs

GNU Emacs [32] is the GNU implementation of the Emacs text editors family, the
original version was released by Richard Stallman in 1985. Nowadays is one of the
most powerful editors with over 2000 built-in commands that can be combined into
macros for automate work.

We used this editor to edit DGGA files and to write this document.

5.2.5 GNU Make

GNU Make [33] is the GNU implementation of the Make utility, which automatically
builds executable programs and libraries form source code by reading the build rules
specified in files called makefiles.

We used this tool to build the DGGA executable without repeating the build
sequence each time.

5.2.6 Eclipse

Eclipse [34] is an integrated development environment (IDE) written in Java. It
was originally conceived as a Java editor, but thanks to its plug-in system it can be

40

adapted to work with C++ projects in different platforms, and also interact with the
Git system.

We used it at the beginning of the project, when the several utilities included in
the system helped us identify the different parts of the original GGA.

5.2.7 GDB

GDB [35] or the GNU Debugger is a program that offers extensive facilities for tracing
and altering the execution of a computer program. Initially written by Richard
Stallman in 1986 as part of the GNU system is now included as a basic utility in
some Linux distribution and other Unix-like Operating Systems.

We used it in very few cases to find the source of some estrange DGGA errors

5.2.8 Valgrind

Valgrind [36] is a programming tool for memory debugging, memory leak detection,
and profiling. Its original author was Julian Seward and nowadays is a community
project with multiple authors.

Its usage helped us to identify and fix some memory bugs and leaks on the original
GGA.

5.3 Implementation details

This section provides a more detailed vision of the implementation of the different
modules of DGGA.

The source code is distributed in two main directories include/ and src/ (see
Chapter 7 for more details on the installation structure). The first one contains
the header files, with extension .hpp, and the latter contains the source files, with
extension .cc. Inside those directories, the new DGGA modules are located under
the directory dgga/.

41

5.3.1 Master module

The Master module was designed in a way that it reuses the original GGA imple-
mentation supplanting only the GGASelector class.

Initially, the GGATournament class had an instance of GGASelector as a mem-
ber. Since we only needed to modify the selection process, we replaced this member
with an interface and created two implementations of that interface. One with the
same behaviour as the old GGASelector but called GGALocalSelector, and another
one that executes the selection process in distributed computers, transparently to
GGATournament, called GGARemoteSelectorMaster. Therefore, when DGGA has
to run as the original GGA, the main routine simply instantiates a GGATournament
with the local selector, and likewise, if it has to run as DGGA, the main routine
instantiates a GGATournament with the remote master selector.

Involved files: DGGARemoteSelectorMaster.hpp, DGGARemoteSelectorMas-
ter.cc, GGASelector.hpp, GGALocalSelector.hpp, GGALocalSelector.cc, GGATour-
nament.hpp, GGATournament.cc

5.3.2 Worker module

The Worker module was designed as a wrapper around the original GGASelector
class.

When DGGA is executed to run as a Worker, it creates an instance of GGARe-
moteSelectorWorker (this is the wrapper), which has an instance of GGALocalSelec-
tor as a member, and starts the communication process with the Master through class
DGGATcpConnection. Each time the wrapper receives the instruction to execute a
mini-tournament, it translates the information received for the GGALocalSelector,
which executes the tournament as if it was the original GGA. After the execution,
the wrapper recovers the results and sends them back to the Master.

Involved files: DGGARemoteSelectorWorker.hpp, DGGARemoteSelector-
Worker.cc, GGALocalSelector.hpp, GGALocalSelector.cc, GGATournament.hpp,
GGATournament.cc

5.3.3 Parameters parsing

DGGA accepts several command line parameters as GGA (see Chapter 7.2 for a
detailed list).

42

The DGGA parameter parsing differs substantially respect to the one in the
original GGA. The original parsing has been reimplemented with Boost program
options, which in addition of automatically parse the parameters, performs some
type and range tests.

The set of parameters of GGA has also been extended with 6 new parameters to
configure the distributed system:

• master : boolean flag to indicate that the program must act as the Master of
DGGA.

• worker : boolean flag to indicate that the program must act as a Worker of
DGGA.

• ip <x.x.x.x>: specifies an IP to connect to the Master. It can be used several
times.

• port <integer>: specifies the port to connect to the Master.

• nodes <integer>: specifies the desired number of Workers.

• start-workers-wrapper <file_path>: specifies the wrapper used to start the
Workers. The script specification is explained in Chapter 7.

Involved files: GGAOptions.hpp and GGAOptions.cc

5.3.4 Genome evaluation

This is one of the main steps of the whole configuration process. In DGGA we have
introduced several changes respect to the original GGA.

Initially, GGA used a complicated structure of children and grandchildren pro-
cesses in order to gather the performance of each parametrization. This also involved
using shared memory and several interprocess synchronization mechanisms.

We could not afford that in DGGA, which in addition has to deal with network
management, serialization and the synchronization of the distributed components.
For this reason we reimplemented this part from scratch.

The new approach uses one thread and one child process per genome evaluation,
removing the shared memory, reducing the interprocess synchronization part, and,
since a thread is lighter than a process, reducing the load of the whole system.

43

Each time DGGA has to execute a performance test, it creates a new thread and
then forks a child process that runs the target algorithm. Once the child has finished
the performance is recovered through the system call wait4() , which provides access
to the statistics of the process.

This part was implemented using the Boost thread library, because it offers a
portable C++ like way to create and manipulate threads, and the POSIX functions
to create and manage child processes: fork() and wait4() .

Files involved: GGARunner.hpp and GGARunner.cc

5.3.5 Specific Linux child process management

An important point, not covered in the original GGA, was the properly management
of the child processes, used to evaluate the genomes, when their parent dies.

After some research, we found that there is no easy cross-platform solution to solve
this problem. The most commented solution was based on periodically querying the
parent process identifier. We can not implement this solution in DGGA, because we
can not control the target binary behaviour.

Our approach is based on a Linux specific system call: prctl() . Using that
function we specify to the Linux kernel that, whenever the parent of the child process
dies, the process must automatically receive the signal SIGKILL, which can not be
captured and its default behaviour is to terminate the process immediately.

Files involved: GGARunner.cc

5.3.6 Serialization

In order to interchange the necessary data between the different distributed compo-
nents of DGGA we needed a way to transform the information in one computer’s
main memory, and recover it in another computer.

This task is performed by the Boost serialization library, which offers several
options and formats to serialize data. In our implementation we used the default
text-based format, that automatically transforms each C++ type into a predefined
text representation and separates different data with white spaces.

The chosen format is not as easy to debug as an XML or JSON format and

44

requires the data to be recovered in the same order as it is serialized but, is lighter
than other text-based formats.

As a class is a user defined type, the library does not know how it must be
serialized. To achieve that, the library offers an interface that must be implemented
by each class that we want to serialize.

The code below, shows an example of a class extended to be serializable with
Boost serialization.

1 class gps_position
2 {
3 private:
4 // This grants the library access to the private data members
5 friend class boost:: serialization :: access;
6

7 // When the class Archive corresponds to an output archive , the
8 // & operator is defined similar to <<. Likewise , when the
9 // class Archive is an input archive the & operator is

10 // defined similar to >>.
11 template <class Archive >
12 void serialize(Archive & ar, const unsigned int version)
13 {
14 ar & degrees;
15 ar & minutes;
16 ar & seconds;
17 }
18

19 int degrees;
20 int minutes;
21 float seconds;
22

23 // ... amazing code beyond this comment ...
24 };

Involved files: GGAInstance.hpp, GGAInstance.cc, GGAGenome.hpp,
GGAGenome.cc, GGAParameter.hpp, GGAParameter.cc, GGAParameterTree.hpp,
GGAParameterTree.cc, GGAValue.hpp, GGAValue.cc,

5.3.7 Communication

When testing different network communication systems, we found that most of them
were too complicated to be combined with an already working system, or that they
required a complex infrastructure. Finally, we decided to use the Boost Asio library,
which offers a portable sockets API and a single-threaded asynchronous system based
on events.

45

Another option was to use MPI, but we wanted the user to use DGGA as the
original GGA. Therefore, the user must be able to use it without installing additional
middleware. In addition, we wanted a system that uses the avaliable resources as soon
as possible and recovers from possible faliures in some Workers, things that MPI does
not allow.

The designed system detects 3 events: connection, message received and discon-
nection. All those events are controlled by an IO service object provided by Boost
Asio, responsible of invoking the appropriated handler when an event occurs.

Above that infrastructure we have created different handlers in each side of the
communication that match each state of the communication protocol. When a mes-
sage is received, the current active handler processes the information and acts ac-
cordingly by: sending a response, executing another routine, storing information or
changing the handler.

Involved files: DGGARemoteSelectorMaster.hpp, DGGARemoteSelectorMas-
ter.cc, DGGARemoteSelectorWorker.hpp, DGGARemoteSelectorWorker.cc, DG-
GATcpAcceptor.hpp, DGGATcpAcceptor.cc, DGGATcpConnection.hpp, DGGATcp-
Connection.cc

5.3.8 Signal handling

One of the main obstacles of this project was the properly management of the system
signals. The fact that a signal can interrupt the execution at any time, can produce
unexpected behaviour if we ignore them. In addition, as the system runs several child
processes to evaluate the performance of the competitive genomes, an unexpected
signal can leave those processes as zombies wasting resources.

GGA used the simple signal handling mechanism provided by the C standard
library: signal() , which does not offer enough guarantees for this project. The main
problem of this approach is that multiple signals can interrupt each other leaving the
handling routine in an unstable state.

Our solution was to use the POSIX replacement sigaction() , which offers a reli-
able signal management system. Allowing the developer to specify several restrictions
before, during and after the signal handling routine.

Involved files: main.cpp

46

5.4 Fixed bugs

During the development of DGGA, since we tried to reuse as much as possible of the
original GGA, we found some bugs that we had to fix. In what follows, we present
the most representative bugs and how they have been fixed.

5.4.1 GGASharedMemory destructor

Fixed an error triggered by a map out of range access. The destructor routine has
not taken into account that a map iterator is in an unstable state after removing it
from the map.

5.4.2 GGAParameterTree destructor

Fixed a double memory free when deleting the parameter tree nodes using shared
pointers. A shared pointers keeps a tree nodes alive while there is an active reference
to it, and automatically deletes it when the last reference goes out of scope.

5.4.3 Target algorithm command parsing

Fixed several memory leaks when parsing the command line parameters for the target
algorithm. The previous routine used C standard library functions like strtok()
to parse each individual parameter. The new version based on regular expressions
uses C++ objects, that automatically releases the memory when the parsing function
goes out of scope.

5.4.4 GGAParameterTree XML parsing

Fixed several memory leaks when parsing the XML file with the parameter tree
information. The leaks were automatically fixed when changing the library used to
parse the XML, from the old C like solution, to the new C++ like version, which
automatically releases all the allocated memory when the parsing function goes out
of scope.

47

5.4.5 Evaluation results propagation

When a genome has been tested on an instance, the result is stored so the next time
it is not necessary to run the test again. The error was that this propagation was
performed without the penalty factor.

5.4.6 CPU timeout per evaluation

When an evaluation is executed, it is supposed that the user has configured the target
algorithm to finish its execution after an specified amount of seconds.

In order to avoid running the evaluation indefinitely, due to a user miss configura-
tion, we have integrated a CPU timeout in DGGA, with a grace period of 30 seconds,
that kills the execution process when it has exhausted the available time.

48

Chapter 6

Experimental evaluation

In this chapter, we present an intensive experimental investigation on the soundness,
robustness and performance of DGGA. Our target algorithm, in order to carry this
experimental evaluation, is a SAT solver.

We run our experiments on a cluster featured with Intel Xeon CPU E5-2620 @
2.00GHz processors and a memory limit of 3.5 GB. Each machine runs an instance
of Linux 2.6.32 and the compiler used to build DGGA was gcc 4.4.6, and we used 11
of the 12 CPU cores to evaluate the genomes and 1 to carry the communication.

6.1 Stress tests

In this section, we present the tests we conducted to evaluate the robustness of the
design and implementation of DGGA.

We have performed the following stress tests:

• Run DGGA while no one is using the cluster, without forcing any error.

– Expected behaviour: the Master process starts correctly and spawns
the specified amount of Workers. As the Workers are executed by the
scheduler, the tuning process starts and finishes a few hours later without
problems.

• Run DGGA while other users are using the cluster, without forcing any error.

49

– Expected behaviour: the Master process starts when the cluster has
enough resources. After this, it proceeds requesting the specified amount
of Workers. However, since there are not enough resources for all of them,
only some of the Workers start their execution. The tuning process fin-
ishes. i.e., the Master has the results. However, notice that only a fraction
of the Workers have conducted the whole process while the rest have re-
mained in the queue. At some point these remaining Workers will be
accepted for execution in the cluster. Then, they will try to connect to
the Master that has already finished its execution. At this point, they
detect the Master is no longer alive and they finish safely.

• Run DGGA while no one is using the cluster and some Workers are killed
randomly.

– Expected behaviour: the Master proceeds as in the first test. After
some time, we kill some of the Workers using the qdel command. The
Master detects the disconnections, rolls-back the mini-tournaments and
requests new Workers. The rolled-back data is then sent to another
Worker.

Finally, after having repeated this sequence 3 times, the configuration
process finishes as in the first test.

• Run DGGA while other users are using the cluster and some Workers are killed
randomly.

– Expected behaviour: The Master process starts correctly and requests
the specified amount of Workers. Initially, the cluster is busy and all the
Workers are pending to be executed. After a while, the jobs of the other
users finish and the Workers start their execution. Then, the other users
enqueue more jobs and we kill some Workers to let them execute their
jobs. After killing the Workers the Master proceeds as in the second test,
requesting more Workers. Once again, when the jobs of the other users
finish, the last requested Workers start their execution.

Finally, the system finishes the execution properly.

• Run DGGA and after having the system working, kill the Master.

– Expected behaviour: The Master process starts and spawns the re-
quested amount of Workers. After some time and before the configuration
process has finished, we kill the Master. Then, each Worker detects that
the Master is no longer alive and they finish safely.

50

In this case we can not get the results, but the system releases all the
resources as soon as the anomaly is detected.

After performing these test we can conclude that DGGA is able to recover from
different errors as long as the Master is alive.

6.2 Automatic configuration of a SAT Solver

In this section, we analyse the soundness and performance of DGGA configuring the
SAT solver lingeling [37]. The data sets used to conduct this experiments are part
of the Algorithm Configuration Library (ACLIB) [38].

In order to compare different aspects of the configuration process, we have config-
ured lingeling with two different evaluation timeouts, leaving all the other parameters
with their default values (see Chapter 7.2.1). In particular we have configured lin-
geling for 30 and 300 seconds. Tables 6.1 and Table 6.2 show the results achieved
by the default parametrization of lingeling (“default lingeling” at tables) versus the
parametrizations found for each set of instances after tuning lingeling with DGGA
(tuned lingeling).

In Table 6.1 we can see that the configured version with a timeout of 30 seconds,
outperforms the default one in 13 of the 16 data sets within the same timeout. In
7 sets of instances the tuned lingeling is able to solve more instances, being this
particularly dramatic for sets: circuit fuzz, K3 v300-c1279 and K3 v275-c11172. In
many of the sets where the default lingeling already solves all the instances, the tuned
lingeling is able to improve the average run time, being this particularly dramatic on
sets: SWV calysto GZIP v1.2.4 and SWV calysto XINETD v2.3.14, where we can
see speed-ups of more than one order of magnitude.

Despite of the good results for the majority of the data sets, there are three sets
that have not been improved. After reviewing the logs of the configuration process, we
suspect that this performance degradation is related to the instance selection module.
The issue is that not all the instances in a test set are used during the tuning process
and some may be repeated too often among generations. This is certainly something
to be improved and has to do with a better balance of the instances selection.

In Table 6.2 we can observe that the version configured with a timeout of 300
seconds outperforms clearly the default lingeling as in the experiment with 30 seconds
timeout. The achieved results are similar to the ones in the 30 seconds test, the
tuned lingeling has solved more instances and when both versions have solved all the
instances for a particular set, the tuned lingeling is faster.

51

Instance set # Instances tuned lingeling default lingeling
Circuit fuzz 884 4,94(684) 7,61(649)
CSSC regression tests 171 0,01(171) 0,02(169)
LABS 701 2,20(441) 3,13(444)
UNSAT unif K5 600 0,94(600) 1,81(600)
UF250 100 3,58(100) 2,49(100)

K3

v200-c853 100 0,34(100) 0.53(100)
v225-c960 100 0,96(100) 1,41(100)
v250-c1066 100 3,10(100) 5,57(100)
v275-c1172 100 8,66(98) 11,67(80)
v300-c1279 100 13,09(70) 10,41(42)
v325-c1385 100 13,00(18) 12,56(61)

SWV calysto

DSPAM v3.6.5 100 0,14(100) 1,14(100)
GZIP v1.2.4 90 0,05(90) 13,32(89)
HSAT 279 0,19(279) 1,92(274)
WINE v0.9.27 80 0,30(80) 1,81(80)
XINETD v2.3.14 55 0,38(55) 10,75(54)

Total 3660 3086 3042

Table 6.1: Solved instances in 30s. Average time in seconds and (amount of solved
instances)

The main improvement in this experiment is that DGGA has been able to find a
configuration for the K3 data set, that is better than the default one in all the K3
subsets. That leads us to think, that the specific sub set that is improved in contrast
with the 30 seconds results, has instances that lingeling is not able to solve in 30
seconds, no matter which parametrization we use. Hence DGGA is not able to find
any good configuration for that subset with a timeout of 30 seconds.

Even though we have set a timeout ten times bigger for this experiment, there
are two sets of instances that DGGA is still not able to configure effectively, clearly
showing that there are some points where DGGA needs to be improved since it is
seeded initially with the default configuration fro lingeling

52

Instance set # Instances tuned lingeling default lingeling
Circuit fuzz 884 18,78(783) 21,15(776)
CSSC regression tests 171 0,03(171) 0,01(169)
LABS 701 14,64(501) 14.84(499)
UNSAT unif K5 600 0,94(600) 1,76(600)
UF250 100 1,48(100) 2.49(100)

K3

v200-c853 100 0,41(100) 0,50(100)
v225-c960 100 1,07(100) 1,41(100)
v250-c1066 100 3,52(100) 5,64(100)
v275-c1172 100 8,90(100) 18,31(100)
v300-c1279 100 23,84(100) 50,10(100)
v325-c1385 100 85,31(100) 107,53(61)

SWV calysto

DSPAM v3.6.5 100 0,12(100) 1,14(100)
GZIP v1.2.4 90 0,04(90) 13,32(89)
HSAT 279 0,17(279) 2,90(279)
WINE v0.9.27 80 0,27(80) 1,99(80)
XINETD v2.3.14 55 0,37(55) 12,25(55)

Total 3660 3359 3308

Table 6.2: Solved instances in 300s. Average time in seconds and (amount of solved
instances)

53

Chapter 7

DGGA installation and execution
guide

This chapter describes how to perform the installation of DGGA and shows an exe-
cution example of the tool on the SAT solver lingeling [37].

7.1 Installation guide

In this section, we show how to perform a local installation of DGGA. First of all,
we list the hardware and software prerequisites needed for the installation. Then, we
proceed on how to obtain DGGA’s source code, install the necessary libraries and
finally, build DGGA.

7.1.1 Prerequisites

To install the software you need a computer with at least 1 GB of free disk space
running a Unix-like operating system, a bash-compatible shell, and the following
standard command-line development tools:

• A C++ compiler, preferably the GNU g++ [29] compiler or any other that
already delivers C++11 STL features in C++03 mode. This tool is the respon-
sible of transforming source code written in C++ into an executable. All the
source code of DGGA is written in C++ and no other compiler is needed.

54

• A Make tool, with the same extensions than GNU make [33] in its version 3.8
or later. Make is a utility that automatically builds executable programs and
libraries from source code.

• A command line version of the Git client [28] in its version 0.99 or later. Git
is a distributed revision control and source code management system. This is
the system we have used to develop DGGA.

7.1.2 DGGA distribution

DGGA is publicly available through a Git repository. To get a copy of the last
version, open a shell and type:

$ git clone https://jponf@bitbucket.org/jponf/dgga.git

The previous command will download the last version of DGGA into a new di-
rectory called dgga into the working directory. This is the directory structure of
dgga:

dgga
include

dgga
net

src
dgga

net
examples

clasp

The source code of DGGA is located in sub-directories include/ and src/. Direc-
tory include/ contains all the .hpp files with the declaration of the classes, methods
and functions. Directory src/ contains the declarations in .cc files. See section ...
for further information.

Directory examples/ contains several XML files which describe solvers to tune
and their parameters (see Section 7.2.2). In particular, we can find the following
solvers: satenstein [39] and clasp [40]

55

7.1.3 Third party libraries

The DGGA distribution makes use of several third party libraries of the Boost project.
Here we show how to perform a local installation of the Boost libraries, in case they
are not already in your system. These libraries will be installed inside the DGGA
directory (see previous Section).

DGGA has been developed with Boost 1.54, and it is the one covered in this
guide. However, any version above 1.45, meets the requirements for this project.

Before starting the installation you must create a new directory called lib inside
DGGA’s main directory. This is where we will install the Boost libraries after building
them.

[/path/to/dgga]$ mkdir lib

7.1.4 How to get Boost

The most reliable way to get a copy of Boost is to download a distribution from
SourceForge [41]. In particular, we have to follow these steps:

1. Select any version 1.XX of Boost above 1.45 from http://www.boost.org/
users/history.

2. Download the file boost_1_XX_X.tar.bz2.

3. Move into the DGGA directory and execute:

• $ cd dgga

• $ tar -xjvf /path/to/ boost_1_XX_X.tar.bz2

How to build Boost

At this point we have all the required elements to build the set of Boost libraries.
This guide only covers the installation of the static version of the libraries. If you
choose to build the shared version, you may need to modify the environment variable:
LD_LIBRARY_PATH, to let the final DGGA binary find dynamically the libraries at run
time.

To build the libraries simply execute the following commands in the specified order:

56

http://www.boost.org/users/history
http://www.boost.org/users/history

• $ cd /path/to/ dgga/boost_1_XX_X

• [/path/to/dgga/boost_1_XX_X]$./bootstrap.sh --prefix=‘pwd‘/build

• [/path/to/dgga/boost_1_XX_X]$./b2 link=static

• [/path/to/dgga/boost_1_XX_X]$./b2 install

• [/path/to/dgga/boost_1_XX_X]$ mv build/include/boost ../include

• [/path/to/dgga/boost_1_XX_X]$ mv build/lib/libboost*.a ../lib

7.1.5 How to build DGGA

The installation is quite straightforward since all the steps needed to compile and
install DGGA are specified into a Makefile.

If you also have followed the previous section or your system has the Boost li-
braries in the default compiler paths, there is no need to change anything. Otherwise,
you may need to modify lines 41 to 47 of the Makefile, to instruct the compiler where
the Boost libraries are located.

The last step before building DGGA is to choose which version we want. There
are two versions: debug and release. As the name suggests, the debug version is used
to test and develop the tool. For production purposes, use the release version since
it can be about 10 times smaller.

Finally, the building process consists in moving to the DGGA’s directory and
execute make.

• $ cd /path/to/ dgga

• For the debug version: [/path/to/dgga]$ make debug

• For the release version: [/path/to/dgga]$ make release

After executing the previous commands you will find a new directory, build/, into
DGGA’s directory. The structure of the directory may be different depending on the
selected version but a generic view should be this one:

57

dgga
build

debug
bin
obj

release
bin
obj

...

The DGGA binary for the specified version is located into the corresponding bin
directory (<version>/bin/).

7.2 Execution guide

This section contains a simple explanation of how to execute DGGA. First of all, we
discuss the execution parameters of DGGA. Then, we present the configuration files
needed to describe the configuration or execution parameters of the target algorithm
and the set of instances used to evaluate the performance of a particular genome or
configuration.

Next, we describe both how to adapt DGGA and the target algorithm on a
particular distributed execution environment. This task is in charge of what we call
execution environment wrappers.

Finally, we introduce an example of how to execute DGGA to tune the SAT solver
lingeling [37] in a Rocks Cluster distribution.

7.2.1 DGGA execution parameters

DGGA inherits all the execution parameters of GGA extended with six new parame-
ters. In what follows, we will show how to execute DGGA, and the list of parameters
with a brief explanation of each one.

$./dgga <param_tree_file> <instances_seed_file> [parameters]

The first two parameters are mandatory and must be specified in the given order:

• <param_tree_file>: the path to the XML configuration file defining the pa-

58

rameter tree. See next section for a detailed explanation.

• <instances_seed_file>: the path to the instances seed file with the instances
to tune the algorithm. See an example in next section.

The rest of the parameters are optional:

• -g/--generations arg : maximum number of generations (default value: 100).

• -p/--population_size arg : size of the initial population. This can vary over
the course of the algorithm, but generally doesn’t stray more than 25% (default
value: 100).

• -t/--num_threads arg : mini-tournament size. Number of members to run
simultaneously (default value: 4).

• -w/--pct_winners arg : percentage of winners per mini-tournament [0.0, 1.0]
(default value: 0.125).

• --is arg : number of instances at the start of the tuning (default value: 5).

• --ie arg : number of instances at the end of the tuning (default value: 100).

• --gf arg : generation at which to reach the amount of instances specified with
the parameter --ie (default value: -1).

• --seed arg : seed for the internal random engine (default value: current time
in seconds).

• --seeded_genomes arg : number of "seeded genomes" to create from some set
of default parameters (default value: 0).

• --pe arg : penalty applied to the evaluation of those genomes that reach the
timeout time per instance (default value: 1.0).

• --max_evals arg : maximum number of evaluations allowed to find the best
configuration. This is not strict, but a best effort will be made to come close
to this number (default value: 2147483647).

• -m/--mutation_rate arg : the probability that a parameter is mutated when
generating new individuals (default value: 0.1).

• --st arg : sub-tree split probability [0.0, 1.0] (default value: 0.1).

• --sp arg : sigma percentage. Determines sigma for the Gaussian distribution
of the random engine (default value: 1.0).

• -v/--verbosity arg : verbosity level [0, 5] (default value: 2).

59

• --ga arg : maximum age of a genome (default value: 3).

• --rt arg : if false, DGGA tunes for output, rather than runtime. The last line
of the algorithm output must be the objective value to minimize [true, false]
(default value: true).

• --nc arg : if true, DGGA normalizes all the continuous variables (default value:
false).

• --su1 arg : if true, sends SIGUSR1 before sending SIGTERM to kill the eval-
uation processes (default value: false).

• --ls arg : specifies the learning strategy (default value: 1). {0 = TESTING, 1
= Linear, 2 = Step, 3 = Parabola, 4 = Exponential}

• --lsd arg : generation at which start the learning strategy. Until then --is
instances will be used (default value: 0).

• --lss arg : number of generations per step for the step strategy (default value:
5).

• --tacl arg : target algorithm CPU timeout in seconds (default value: 30).

• --tc arg : tuner CPU timeout in seconds (default value: 2147483647).

• --twc arg : tuner wall-clock timeout in seconds (default value: 2147483647).

• --conf_file arg : specifies a configuration file. Command line options are
preferred (default value: "").

• --traj_file arg : path of the trajectory file (default value: "").

• --scen_file arg : specifies a scenario file as used by ParamILS/SMAC. Note:
this file overrides certain command line options (default value: "").

• --master: the presence of this flag indicates that the process must act as the
Master of DGGA.

• --worker: the presence of this flag indicates that the process must act as a
Worker of DGGA.

• --ip arg : specifies an IP to connect to the Master. It can be used several times
to specify more than one IP.

• --port arg : specifies the port to connect to the Master (default value: 6789).

• --nodes arg : specifies the desired number Workers. It is mandatory when
"--master" is specified.

• --start-worker-wrapper arg : specifies the path to the wrapper that the Mas-
ter will use to start the Workers (default value: "").

• -h/--help: prints the help message and exits.

60

7.2.2 Tuning configuration files

DGGA depends on two main configuration files. A XML configuration file, with
the configuration of the target algorithm, and an instances seed file, with the list of
instances to tune the algorithm.

XML configuration file

This file provides to DGGA all the necessary information about the target algo-
rithm and its configuration or execution parameters. It also provides user defined
parametrizations and the command to run the algorithm. The format of this file, as
mentioned before, is XML

Below, we show and describe the structure of the XML file:

1 <algtune>
2
3 <cmd>/path/to/algorithm_binary $instance $seed $cutoff
4 $param1 $param2 $param3 $param4
5 </cmd>
6
7 <seedgenome>
8 <variable name="root" value="0" />
9 <variable name="param1" value="3" />

10 <variable name="param2" value="b" />
11 <variable name="param3" value="5.654" />
12 <variable name="param4" value="12" />
13 </seedgenome>
14
15 <node type="and" name="root" start="0" end="0">
16 <node type="and" name="param1" prefix="--param1=" start="0" end="4"/>
17 <node type="or" name="param2" prefix="--param2=" categories="a,b">
18 <node type="and" name="param3" prefix="--param3=" start="5.5" end="7.5"/>
19 <node type="and" name="param4" prefix="--param4=" start="10" end="20"/>
20 </node>
21 </node>
22
23 <forbidden>
24 <forbid>
25 <setting name="param1" value="0" />
26 <setting name="param2" value="a" />
27 </forbid>
28 <forbid>
29 <setting name="param3" value="6.0" />
30 <setting name="param4" value="15" />
31 </forbid>
32 </forbidden>
33 </algtune>

61

All the specification of the target binary is enclosed within the <al-
gtune></algtune> tags.

The second pair of tags of the file, <cmd></cmd>, contain the command that
DGGA must use to execute the target algorithm. The variables $instance, $seed and
$cutoff are special variables that tell DGGA where to put: the path to the instance,
the seed and the target binary cutoff. If you do not need one of them for your
algorithm, you can simply omit it. The rest of the parameters ($param1 - $param4)
correspond to parameters to be tuned.

Next, the <seedgenome></seedgenome> tag specifies settings of the parameters
to insert into the initial population. Each <variable /> tag, specifies the name of a
parameter and the value for it to take in the genome.

The next portion of the file specifies the parameter tree itself. The tree is specified
by a single node corresponding to the root of the tree. All node tags that are not a
child of this root node will be ignored.

Each <node> tag my have any number of nodes underneath it. <node>s may
have one of two types: "and" or "or", which will be described in a moment. Each
node is either categorical, discrete or continuous. Categorical nodes have the "cate-
gories" attribute specified (see param2). Discrete parameters have "start" and "end"
specified with integer values (see param1 and param4). Floating point parameters
are specified like discrete parameters, except with floating point numbers in start
and end (see param3). Prefix indicates what text to prefix to the parameter in the
command line, and is optional.

As mentioned before a node can be either an "and" node or an "or" node. An
"and" node indicates that the child nodes should all be present whenever the parent
node is present in the parameter settings of a genome. An "or" node means that only
the node corresponding to the selected branch should be included in the settings.
In other words, or nodes allow users to select between categorical parameters, and
associate a branch of the parameter tree with the parameter. This relationship is
used within the optimization to find good parameters. In the example above, param2
has two settings: ’a’ and ’b’. Setting ’a’ is associated with the branch of param3 and
setting ’b’ with param4.

The final part of the XML file specifies which parameter combinations are forbid-
den to be used together. Each <forbid></forbid> block specifies a set of parameters
that may not be found together. In the example above, param1 may not be 0 at the
same time that param2 is ’a’ (and vice-versa); and param3 may not be 6.0 when
param4 is 15. Notice that as floating point values are not represented exactly, it is
unlikely that the constraint will ever be hit.

62

Instances seed file

This file contains lines with pairs of values, the first element is the seed of the instance
and the second is the path to the instance file. These values correspond to the
variables $seed and $instance mentioned in the previous point.

Below, we show the structure of this file with three instances:

1 1425435 /path/ to / one_instance
2 68764 /path/ to / another_instance
3 35634 /path/ to /yet_another_one

Notice that if the path to the instance is a relative path, then, it must be relative
to the DGGA binary rather than from the directory where this file is stored. Our
recommendation is to always use absolute paths.

7.2.3 Execution environment wrappers

DGGA can not modify the behaviour of the target algorithm and does not know how
to start a Worker in an specific architecture. For these reasons the user has to create
wrappers to adapt DGGA and the target algorithm.

The language used to create the wrappers does not matter as long as it is ex-
ecutable like a native binary. Since the wrappers do not have to perform resource
consuming tasks, we recommend to use a scripting language such as: Bash [42] or
Python [43].

Worker execution wrapper

This wrapper is in charge of the execution of the Workers, and for this reason it is
mandatory for the proper execution of DGGA. Whenever the Master needs to request
a Worker, it will execute this wrapper.

The wrapper must accept as parameters the number of CPU cores required by
the Worker and the command line used to start DGGA as a Worker. In addition, the
Master expects that the wrapper returns 0 to indicate that there has been no error,
and any other value on error.

63

Target algorithm wrapper

This wrapper is used to adapt the target algorithm to some restrictions imposed by
both the user and DGGA. It is optional, only those algorithms that do not meet the
necessary requirements will need a wrapper.

Below, we show an example of a Bash wrapper that filters the input, limits the
CPU time and the virtual memory, and filters the output for an out of memory error.

1 #!/usr/bin/env bash
2

3 # The first and second parameters are the CPU timeout and the
4 # instance. We specified that using the $cutoff and the $instance
5 # variables in the XML configuration file.
6 cpulimit=$(($1+5))
7 problem=$2
8 shift 2 # Removes $1 and $2 from $@.
9

10 cmd="/path/to/binary --input=$problem $@"
11

12 ulimit -v 2097152 # Limits memory to 2GB
13 ulimit -t $cpulimit # Limits the CPU time
14

15 bad_alloc=$($cmd 2>&1 | grep "std:: bad_alloc")
16

17 if [-n "$bad_alloc"]; then
18 # This line tells DGGA that the evaluation has failed. When printed ,
19 # DGGA will treat the evaluation as if it has not finished in time.
20 printf "Result for: crashed"
21 fi

7.2.4 Example: automatic configuration of Lingeling

In this example, we show the different steps required to tune the SAT solver lin-
geling [37] using DGGA. First, we will present a reduced version of the tuning con-
figuration files. Then, we will present the execution environment wrapper for the
solver, and finally the execution script to launch DGGA on high performance com-
puting cluster as a Sun Grid Engine job (see Chapter 2).

We assume that the user has a directory /home/user/dgga where we will put the
following files:

• dgga: the DGGA binary.

• qsub_script.sh: we will use this file to launch the Master job into the cluster.

64

• start_worker_wrapper.sh: the wrapper responsible of starting the Workers.

• lingeling_wrapper.sh: the wrapper responsible to set lingeling time and memory
restrictions.

• config/lingeling.xml : the target algorithm XML configuration file.

• config/instances.txt : the instances seed file.

• worker_logs/ : directory where we will put the output of the Workers.

• dgga_tuning_logs/ : directory where we will put the output of the Master.

XML configuration file

For the sake of readability, we have reduced the number of parameters that we will
tune in this example to 10. Note: lingeling can be configured with 240 parameters.

config/lingeling.xml :

1 <algtune>
2 <cmd>/home/user/dgga/lingeling_wrapper.sh $cutoff
3 -f $elmreleff $lkhdmisifelmrtc $elim
4 $move $rstinoutinc $unhdextstamp $deco
5 $cardocclim $liftwait $rephaseinc $instance
6 </cmd>
7
8 <!-- default parameters values -->
9 <seedgenome>

10 <variable name="__dummy__root__" value="0" />
11 <variable name="elmreleff" value="200" />
12 <variable name="lkhdmisifelmrtc" hint="categorical" value="0" />
13 <variable name="elim" hint="categorical" value="1" />
14 <variable name="move" hint="categorical" value="2" />
15 <variable name="rstinoutinc" value="110" />
16 <variable name="unhdextstamp" hint="categorical" value="1" />
17 <variable name="deco" hint="categorical" value="2" />
18 <variable name="cardocclim" value="100" />
19 <variable name="liftwait" hint="categorical" value="2" />
20 <variable name="rephaseinc" value="10000" />
21 </seedgenome>
22
23 <node type="and" name="__dummy__root__" start="0" end="0" >
24 <node type="and" name="elmreleff" prefix="--elmreleff=" start="0" end="10000" />
25 <node type="and" name="lkhdmisifelmrtc" prefix="--lkhdmisifelmrtc="

categories="0,1" />
26 <node type="and" name="elim" prefix="--elim=" categories="0,1" />
27 <node type="and" name="move" prefix="--move=" categories="0,1,2,3" />
28 <node type="and" name="rstinoutinc" prefix="--rstinoutinc=" start="1" end="1000"

/>

65

29 <node type="and" name="unhdextstamp" prefix="--unhdextstamp=" categories="0,1" />
30 <node type="and" name="deco" prefix="--deco=" categories="0,1,2" />
31 <node type="and" name="cardocclim" prefix="--cardocclim=" start="0"

end="2147483647" />
32 <node type="and" name="liftwait" prefix="--liftwait=" categories="0,1,2" />
33 <node type="and" name="rephaseinc" prefix="--rephaseinc=" start="1"

end="2147483647" />
34 </node>
35 </algtune>

Notice that in the <cmd></cmd> part, we are executing the file
lingeling_wrapper.sh, which we will present later, instead of the lingeling binary.

Instances seed file

For this example, we have used the K3 set of instances of the ACLIB [38]. We have
assumed that these instances are located in /home/user/dgga/seeds. Then, the
instances seed file should look like:

config/instances.txt :
1 ...
2 1258 /home/user/dgga/seeds/K3/K3-inst/k3-v275 -c1172/unif -v275 -c1172 -797- S58452150.cnf
3 5689 /home/user/dgga/seeds/K3/K3-inst/k3-v250 -c1066/unif -v250 -c1066 -895- S168722514.cnf
4 941231 /home/user/dgga/seeds/K3/K3-inst/k3-v250 -c1066/unif -v250 -c1066 -912- S1767016736.cnf
5 32165 /home/user/dgga/seeds/K3/K3 -inst/k3 -v300 -c1279/unif -v300 -c1279 -365- S2037425360.cnf
6 985475 /home/user/dgga/seeds/K3/K3-inst/k3-v200 -c853/unif -v200 -c853 -13- S666309010.cnf
7 86484 /home/user/dgga/seeds/K3/K3 -inst/k3 -v225 -c960/unif -v225 -c960 -51- S1204466261.cnf
8 849435 /home/user/dgga/seeds/K3/K3-inst/k3-v325 -c1385/unif -v325 -c1385 -606- S441587708.cnf
9 45612 /home/user/dgga/seeds/K3/K3 -inst/k3 -v300 -c1279/unif -v300 -c1279 -35- S1850770749.cnf

10 48921 /home/user/dgga/seeds/K3/K3 -inst/k3 -v275 -c1172/unif -v275 -c1172 -51- S826466208.cnf
11 1356 /home/user/dgga/seeds/K3/K3-inst/k3-v225 -c960/unif -v225 -c960 -445- S1858222715.cnf
12 98465 /home/user/dgga/seeds/K3/K3 -inst/k3 -v225 -c960/unif -v225 -c960 -320- S2002322624.cnf
13 5321 /home/user/dgga/seeds/K3/K3-inst/k3-v250 -c1066/unif -v250 -c1066 -790- S458306906.cnf
14 549445 /home/user/dgga/seeds/K3/K3-inst/k3-v200 -c853/unif -v200 -c853 -777- S900373011.cnf
15 54312/ home/user/dgga/seeds/K3/K3-inst/k3-v325 -c1385/unif -v325 -c1385 -215- S153041018.cnf
16 ...

Worker execution wrapper

Below, we show the wrapper that we used to start the Workers in our cluster with
Sun Grid Engine. The wrapper sets a timeout of 4 days and puts the information
printed by the Worker into: /home/user/dgga/worker_logs.

start_worker_wrapper.sh:

1 #!/usr/bin/env bash
2

3 # Expected input: <ncores > <binary_path > <dgga_parameters >
4 ncores=$1

66

5 binary=$2
6 shift 2
7

8 qsub_cmd="qsub -pe smp $ncores -l h_cpu =345600 -V -cwd -q medium.q
9 -N dgga_worker -o /home/user/dgga/worker_logs

10 -e /home/user/dgga/worker_logs"
11

12 echo "$binary $@" | $qsub_cmd

Target algorithm wrapper

The target algorithm wrapper, that we used in this example, filters the received pa-
rameters and sets the time and memory limits before executing the target algorithm.
This is the file lingeling_wrapper.sh that we used in the <cmd></cmd> part
of the XML configuration file, also notice, that the received parameters will change
depending on what we write on that part of the XML configuration file.

lingeling_wrapper.sh

1 #!/usr/bin/env bash
2

3 # See the XML configuration file to check the order of the parameters
4 binary=$1
5 # We add a grace period of 15 seconds to compensate the time consumed
6 # by the script
7 cutoff=$(($2+15))
8 shift 2 # Removes $1 and $2 from the list of parameters
9

10 ulimit -v 2097152 # 2 GB
11 ulimit -t $cutoff
12

13 $binary $@ # Executes the binary with the rest of the parameters

DGGA execution in Sun Grid Engine

Finally, the last step is to launch DGGA and wait for the results. This step may vary
depending on the cluster’s Job Scheduler. In the particular case of Sun Grid Engine,
a user must use the qsub command to launch a job. We have used the following script
to launch DGGA in our cluster, using the command:

$ qsub qsub_script.sh

Where qsub_script.sh is:

67

1 #!/bin/sh
2

3 ## Command interpreter for this job
4 #$ -S /bin/bash
5

6 ## Amount of threads/jobs in the same node
7 #$ -pe smp 1
8

9 ## This line specifies the job queue. It is strongly related to the
10 ## cluster ’s configuration , in our case long.q does not impose any
11 ## timeout to the jobs
12 #$ -q long.q
13

14 ## Directories where to put the output of the program. In this example
15 ## we have created a directory called dgga_tuninglogs.
16 #$ -o /home/user/dgga/dgga_tuninglogs
17 #$ -e /home/user/dgga/dgga_tuninglogs
18

19 ## Finally , the command line that executes the job.
20

21 /home/user/dgga/dgga /home/user/dgga/lingeling.xml /home/user/dgga/k3.
txt --master --port 12345 --nodes 2 --start -worker -wrapper /home/
user/dgga/start_worker_wrapper.sh -p 100 -g 100 -t 11 --gf 75 --tac
300 -v 5 > /home/user/dgga_tuninglogs/lingeling_k3_300.txt

After the qsub execution, we will have to wait until the scheduler executes the
job. Then, if we look at the output of the DGGA, which in the case of this example
is in the file dgga/dgga_tuninglogs/lingeling_k3_300.txt, we will see the following:

1 [0.000000] runDGGA
2 [0.000000] DGGA MASTER
3 [0.000000] PROGRAM OPTIONS:
4 [0.000000] Program name: /home/user/dgga/dgga
5 [0.000000] Parameter Tree file: /home/user/dgga/lingeling.xml
6 [0.000000] Instance Seed file: /home/user/dgga/instances.txt
7 [0.000000] ---
8 [0.000000] Generations: 100
9 [0.000000] Population size: 100

10 [0.000000] Num. Threads: 11
11 [0.000000] Pct winners: 0.125
12 [0.000000] # Instances start: 5
13 [0.000000] # Instances end: 100
14 [0.000000] Gen inst finish: 75
15 [0.000000] Seed: 1409240695
16 [0.000000] # Seeded Members: 0
17 [0.000000] Cutoff penalty multiplier: 1
18 [0.000000] Max obj evals: 2147483647
19 ...
20 [0.230000] (GGAParameter)[Name: __dummy__root; Type: Discrete; Start/End: 0/0]
21 [0.230000] (GGAParameter)[Name: wait; Type: Categorical; Domain: {0, 1}]
22 [0.230000] (GGAParameter)[Name: unhidewait; Type: Categorical; Domain: {0, 1, 2}]
23 [0.230000] (GGAParameter)[Name: unhide; Type: Categorical; Domain: {0, 1}]
24 [0.230000] (GGAParameter)[Name: unhdroundlim; Type: Discrete; Start/End: 0/100]
25 [0.230000] (GGAParameter)[Name: unhdreleff; Type: Discrete; Start/End: 0/10000]
26 [0.230000] (GGAParameter)[Name: unhdmineff; Type: Discrete; Start/End: 0/2147483647]
27 [0.230000] (GGAParameter)[Name: unhdmaxeff; Type: Discrete; Start/End: -1/2147483645]
28 [0.230000] (GGAParameter)[Name: unhdlnpr; Type: Discrete; Start/End: 0/2147483647]
29 [0.230000] (GGAParameter)[Name: unhdhbr; Type: Categorical; Domain: {0, 1}]
30 [0.230000] (GGAParameter)[Name: unhdextstamp; Type: Categorical; Domain: {0, 1}]
31 [0.230000] (GGAParameter)[Name: trnrmineff; Type: Discrete; Start/End: 0/2147483647]
32 [0.230000] (GGAParameter)[Name: trnrmaxeff; Type: Discrete; Start/End: -1/2147483645]
33 [0.230000] (GGAParameter)[Name: trnreleff; Type: Discrete; Start/End: 0/1000]
34 ...
35 [0.480000] TOURNAMENT START
36 [0.480000] Start generation 1

68

37 [0.560000] Generation 1 population: [GGAPopulation (101)]
38 [Competitive (58)]
39 [GGAGenome: 0x28fbb70; Gender: C; Age: 2; Genome: {__dummy__root: 0; elmreleff: 123; lkhdmisifelmrtc ...
40 ...
41 0.560000] [GGALearningStrategyLinear] Using 6 instances.
42 [0.560000] nextGeneration (): 1 | 22242 | /home/user/dgga/seeds/K3/K3-inst/k3 -v300 -c1279/unif -v300 -c1...
43 [0.560000] nextGeneration (): 1 | 21289 | /home/user/dgga/seeds/K3/K3-inst/k3 -v200 -c853/unif -v200 -c85...
44 [0.560000] nextGeneration (): 1 | 24341 | /home/user/dgga/seeds/K3/K3-inst/k3 -v200 -c853/unif -v200 -c85...
45 [0.560000] nextGeneration (): 1 | 27334 | /home/user/dgga/seeds/K3/K3-inst/k3 -v275 -c1172/unif -v275 -c1...
46 [0.560000] nextGeneration (): 1 | 31069 | /home/user/dgga/seeds/K3/K3-inst/k3 -v325 -c1385/unif -v325 -c1...
47 [0.560000] nextGeneration (): 1 | 28376 | /home/user/dgga/seeds/K3/K3-inst/k3 -v300 -c1279/unif -v300 -c1...
48 [0.570000] Tournament sizes for this generation: [9, 10, 10, 10, 10, 9]
49 ...
50 [53.060000] Recovering tournament results
51 [53.080000] Recovering tournament results
52 [53.090000] Recovering tournament results
53 [53.110000] Generation 53 most fit Obj: 471.566
54 [53.110000] Generation 53 most fit parameters: [GGAGenome: 0x1539770; Gender: C; Age: 1; Genome: {__d...
55 [53.120000] Generation 53 number of evaluations so far: 85416
56 [53.120000] (Winner Performance) /home/user/dgga/seeds/K3/K3 -inst/k3 -v275 -c1172/unif -v275 -c1172 -676-S...
57 [53.120000] (Winner Performance) /home/user/dgga/seeds/K3/K3 -inst/k3 -v200 -c853/unif -v200 -c853 -15-S595 ...
58 [53.120000] (Winner Performance) /home/user/dgga/seeds/K3/K3 -inst/k3 -v325 -c1385/unif -v325 -c1385 -407-S...
59 [53.120000] (Winner Performance) /home/user/dgga/seeds/K3/K3 -inst/k3 -v275 -c1172/unif -v275 -c1172 -112-S...
60 [53.120000] (Winner Performance) /home/user/dgga/seeds/K3/K3 -inst/k3 -v200 -c853/unif -v200 -c853 -825-S16...
61 [53.120000] (Winner Performance) /home/user/dgga/seeds/K3/K3 -inst/k3 -v275 -c1172/unif -v275 -c1172 -777-S...
62 [53.120000] (Winner Performance) /home/user/dgga/seeds/K3/K3 -inst/k3 -v200 -c853/unif -v200 -c853 -594-S11...
63 [53.120000] (Winner Performance) /home/user/dgga/seeds/K3/K3 -inst/k3 -v250 -c1066/unif -v250 -c1066 -972-S...
64 [53.120000] (Winner Performance) /home/user/dgga/seeds/K3/K3 -inst/k3 -v200 -c853/unif -v200 -c853 -108-S59...
65 ...

The previous log file is composed by different extracts of the one we get after
executing DGGA in our cluster. The first part, is the list of DGGA parameters, with
their associated values. Next, we can see the list of parameters that we have specified
in the XML configuration file. After the list of parameters, we can se the beggining
of the tournament and the population of the first generation. Then, we can see the
instances selected to evaluate the genomes and the sizes of the mini-tournaments.
The last part of this extract shows that the Master is recovering the results of the
evalutions, the winner of the current generation (53) and its performance.

Finally, when the execution of DGGA finishes, in our case at generation 80 be-
cause the improvement between generation 79 and 80 is lower than a fixed threshold,
we can see the best configuration that DGGA has found at the end of the output
file. The line “Final most fit command: ...”, contains the command generated using
the information of the genome that has achieved the best performance.

1 ...
2 84.460000] End generation 80
3 [84.470000] Stopping because: below improvement threshold
4 [84.470000] Final most fit Obj: 961.58
5 [84.470000] Final most fit parameters: [GGAGenome: 0x7fffccb607b8; Gender: C; Age: 2; Genome: {
6 __dummy__root: 0; elmreleff: 3790; lkhdmisifelmrtc: 1; elim: 0; move: 3; ...
7 ...
8 [84.470000] Final most fit command: /home/user/dgga/lingeling_wrapper.sh -f --elmreleff =3790
9 --lkhdmisifelmrtc =1 --elim=0 --move=2 --rstinoutinc =763 ... instance_here

69

Chapter 8

Project chronology

In this chapter, we list the chronological evolution of the project. We reported the
progress of the project every Monday, Wednesday and Friday of each week, to have
a detailed view of the project development. The project has been concluded in 87
days (about 3 months), within the period of 4 months estimated for graduate thesis
projects at the Escola Politècnica Superior of the University of Lleida.

Week 1

• Day 1

– Identified GGA missing dependencies in a Rocks Cluster distribution.
– Installed GGA dependencies in a Rocks Cluster distribution.
– Successfully executed GGA in the cluster front-end.

• Day 3

– Installed GGA from scratch in a fresh Linux installation on a VM, without
using any package of the distribution.

– Created mini-manual with all the steps to build and execute GGA and its
dependencies.

Week 2

• Day 6

– Studied the option of using MPI [44] and OpenMP [45] to create the
distributed version of GGA.

70

– Identified and issue with the GGA’s command line in the configuration file:
it does only accept white spaces as the command parameters separator.

• Day 8

– Tested the behaviour of the shared pipes with the cluster shared file sys-
tem.

– Created class diagrams of the original GGA to find potential issues.

• Day 10

– Identified original GGA classes responsibilities.

– Detected some bugs in the shared memory module.

Week 3

• Day 13

– Performed GGA stress tests in the cluster’s front-end. Everything OK.

– Performed GGA stress tests in the cluster’s medium queue. Everything
OK after changing all the paths in the configuration files from relative to
absolute.

• Day 15 Nothing due to exams.

• Day 17 Nothing due to exams.

Week 4

• Day 20

– Performed some socket connectivity tests within cluster nodes. Detected
requirements:

∗ Retrieve absolute path to the executable, not viable with argv[0].
∗ Retrieve all the IPs of the different interfaces.
∗ Create an script to start new jobs using qsub.

– Confronted some problems when integrating the raw C sockets API with
the already existing code. Exploring two solutions: creating a wrapper for
the C sockets API or using Boost Asio.

• Day 22

– Designed a connection protocol for DGGA using sockets.

71

∗ Textual protocol, ASCII only.
∗ Best effort policy: request resources in small chunks and use it as soon

as possible.
∗ The Master must be able to recover from Worker and network failures.
∗ Greeting sequence initialised by a Worker when successfully connected

to the Master.

• Day 24

– Implemented a first naive version of the communication protocol. It only
prints the messages and works with fake results.

– Implemented dummy target algorithm executions to simulate GGA results
and test the communication protocol.

– Working on a job recovery system for the Master.

Week 5

• Day 27

– Added support for IPv4 and IPv6. Using an IPv6 socket with
IPV6_ONLY deactivated.

– Children of the "qsubed" processes remain alive after the parent death.
– Tested the job recovery system without problems.
– Communication protocol successfully tested on the cluster’s medium

queue.

• Day 29

– Tested the Boost serialization library.
– Further investigation of the Boost Asio library.
∗ Higher level of abstraction.
∗ Uniform API.
∗ Cross platform.
∗ Uses O.S specific APIs (more efficient).

– Reported and fixed a non critical bug in the original GGA.

• Day 31

– Fixed some of the circular dependencies in the original GGA code.
– Moved some parts that used pointers to use constant references whenever

it was possible.
– Incorporated the Boost serialization functions to some of the fixed classes.

72

Week 6

• Day 34

– Moved code from pass by value to pass by reference and constant reference.

– Moved code that used pointers or references to use copies to remove data
dependencies between code that will run in different computers.

– Fixed a segmentation fault error, triggered by the deletion of GGAParam-
eterTree.

– Fixed GGAValue retrieve operations.

– Added ’\n’ as a valid character to separate parameters on the cmd tag in
the XML configuration file.

• Day 36

– Fixed several memory leaks on the XML parsing routine.

– Minor changes in GGATournament to isolate GGAGenome from GGAS-
elector.

Week 7

• Day 41

– Completely isolated GGASelector and GGARunner from GGATourna-
ment.

∗ Discovered possible improvements after isolating the code.

– Started DGGA Master and Worker implementation.

• Day 43

– Implemented first Master selector version.

– Moved communication from raw sockets to Boost Asio.

– Tested Master behaviour with Netcat.

– Started Remote selector first version.

• Day 45

– Tested the Master and Worker first versions in localhost.

– Cleaned up some portions of code.

73

Week 8

• Day 48

– Fixed "End of message" mark conflict with the serialized data.

– Moved memory management of GGAParameterTree, GGATreeNode and
GGAParameter from manual new and delete to boost::shared_ptr.

– Identified a bug when compiling Boost 1.55 with clang++ in OS X. The
threads library is not compiled on that platform.

– Discussion with Kevin, the author of the original tool, about the actual
design, what should be improved and which bugs are necessary to solve.

• Day 50

– Fixed error at GGASharedMemory destructor routine.

– Moved mkfifo to pipe, avoiding to leave named pipes in the file system.

– Discovered potential problems when wrapping the binaries to tune. Scripts
in bash/sh/ksh/... hold signals while a non built-in command is running.

– Tested that SGE sends signals to terminate a job to the whole process
group.

• Day 52

– Implemented a new routine to notify when a GGARunner has finished its
execution, but not tested yet.

– Added a mechanism to start Workers, based on wrapper files, in other Job
Scheduler systems different from SGE.

Week 9

• Day 55

– Moved GGASharedMemory to Boost equivalent, which is more integrated
with C++ and multi-platform.

– Added Linux special instruction to kill children processes when the parent
dies.

– Studied the option of changing the actual architecture of double fork() +
waitpid() to gather the execution times to thread() + fork() + wait4().

• Day 57

– Timeout check integrated into GGA.

74

– Changed the old architecture of fork() + waitpid() to thread() + fork() +
wait4().

– Fixed GGAGenome-GGAInstance performance propagation to next gen-
erations. It was propagated without the penalty factor.

• Day 59

– Fixed some memory leaks in the XML parameters parsing routine.

– Moved C signal() to POSIX sigaction(), which offers more control.

– Added the necessary code to execute the selection of Genomes asyn-
chronously in the remote selector.

Week 10

• Day 62

– Fixed some warnings when compiling DGGA in Rocks cluster with an
ancient version of GCC.

– Started DGGA stress tests.

• Day 64

– Started the project report.

Week 11

• Day 69

– Writing the project report.

– Started the tuning of a MaxSAT solver with DGGA. The solver is being
partially tuned the objective is to find errors in the tool.

• Day 73

– Writing the project report.

– Recovered the results of tuning the MaxSAT solver, the execution of
DGGA has finished properly.

– Relaunched the tuning of the MaxSAT solver with more parameters.

75

Week 12

• Day 78

– Writing the project report.

– DGGA stress tests simulating a busy cluster.

– Recovered the results of tuning the MaxSAT solver, something went really
wrong.

• Day 80

– Found some problems with the MaxSAT solver wrapper.

– Writing the project report.

– More DGGA stress tests.

Week 13

• Day 83

– Writing the project report.

– Started tuning the lingeling SAT solver for 30 seconds.

• Day 85

– Writing the project report.

– Recovered the results of tuning lingeling for 30 seconds, without major
problems.

• Day 87

– Writing the project report.

– Started the tuning of lingeling for 300 seconds.

• Day 89 (Extra report)

– Started the tests with the lingeling configurations although some of the
300 seconds configurations have not finished.

• Day 90 (Extra report)

– Finished the project report.

76

Chapter 9

Conclusions and future work

Through the development of this project, we have seen that automatic configuration
is crucial to exploit all the capabilities of an algorithm or solver. For example, many
of the solvers that are available today have parameters which cannot be set by the end
user. These parameters have been fixed by the developers to values that they have
found beneficial, without knowing the particular needs of the end user. Automatic
configuration allows solvers to adapt to the final environment in which they need
to perform. After the installation in the users environment, an algorithm should be
automatically configured for the common tasks it is actually used for, and without
requiring the user to learn about the algorithm parameters.

Another key aspect of this project is to realise that some applications or tools
can greatly benefit from parallelization. The global computing architecture trend is
to potentiate parallel or distributed applications. Therefore, we conclude that devel-
opers should have always in mind the potential parallelization of their applications
and design accordingly to this.

This project has also allowed me to work with different technologies what has
broaden my skills as a software engineer. In particular, I improved my skills as
a C++ programmer, after learning how the developers of the Boost project have
solved some common problems. I also learned how to exploit the resources of a
high performance computing cluster, and, at lower level, I have experimented with
different operating system APIs, to solve specific process management issues.

As future work, we have several working avenues, which is a sign of the potential
of this project:

• Improve the instance selection strategy, to improve the results when configuring

77

an algorithm using instances with different characteristics, i.e., ensure that all
the representative instances have been uniformly tested.

• Make public some internal parameters, allowing the end user (or an automatic
configuration tool) improve the results of DGGA for specific problems.

• Modify the design of the communication protocol for systems without a shared
file system.

• Implement a new performance evaluation system to exploit the resources of
heterogeneous systems like cloud computing or grids.

• Extend DGGA to allow interaction at running time in order to modify some
parameters, e.g.: request more nodes or stop the configuration process at any
moment.

Finally, this project has encouraged me to continue working in this field. I found
all that I have done within this work somehow interesting, but as any project, this
one also had its pros and cons. Writing this report has been tedious and difficult
because I am not used to write this kind of documents. However, my final impression
is positive because I have been working in what I like and I think that the final result
is a useful project.

78

Bibliography

[1] F. Rossi, P. van Beek, and T. Walsh, eds., Handbook of Constraint Programming.
Elsevier, 2006.

[2] J. R. Rice, “The algorithm selection problem,” Advances in Computers, vol. 15,
pp. 65–118, 1976.

[3] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Satzilla: Portfolio-based
algorithm selection for sat,” J. Artif. Intell. Res. (JAIR), vol. 32, pp. 565–606,
2008.

[4] L. Xu, H. Hoos, and K. Leyton-Brown, “Hydra: Automatically configuring al-
gorithms for portfolio-based selection,” in AAAI, 2010.

[5] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, “Paramils: An auto-
matic algorithm configuration framework,” J. Artif. Intell. Res. (JAIR), vol. 36,
pp. 267–306, 2009.

[6] C. Ansótegui, M. Sellmann, and K. Tierney, “A gender-based genetic algorithm
for the automatic configuration of algorithms,” in Proceedings of the 15th In-
ternational Conference on Principles and Practice of Constraint Programming,
CP’09, (Berlin, Heidelberg), pp. 142–157, Springer-Verlag, 2009.

[7] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney, “Isac - instance-specific
algorithm configuration,” in ECAI, pp. 751–756, 2010.

[8] Y. Hamadi and M. Schoenauer, “Guest editorial: special issue - revised selected
papers of the lion 6 conference,” Ann. Math. Artif. Intell., vol. 69, no. 2, pp. 149–
150, 2013.

[9] A. Biere, M. Heule, H. van Maaren, and T. Walsh, eds., Handbook of Satisfiabil-
ity, vol. 185 of Frontiers in Artificial Intelligence and Applications, IOS Press,
2009.

[10] R. Martins, V. M. Manquinho, and I. Lynce, “Parallel search for maximum
satisfiability,” AI Commun., vol. 25, no. 2, pp. 75–95, 2012.

79

[11] S. Minton, “Automatically configuring constraint satisfaction programs: A case
study,” Constraints, vol. 1, no. 1-2, pp. 7–43, 1996.

[12] A. S. Fukunaga, “Automated discovery of local search heuristics for satisfiability
testing,” Evol. Comput., vol. 16, pp. 31–61, Mar. 2008.

[13] M. Preuss and T. Bartz-Beielstein, “Sequential parameter optimization applied
to self-adaptation for binary-coded evolutionary algorithms,” in Parameter Set-
ting in Evolutionary Algorithms (F. G. Lobo, C. F. Lima, and Z. Michalewicz,
eds.), vol. 54 of Studies in Computational Intelligence, pp. 91–119, Springer,
2007.

[14] S. P. Coy, B. L. Golden, G. C. Runger, and E. A. Wasil, “Using experimental
design to find effective parameter settings for heuristics,” Journal of Heuristics,
vol. 7, pp. 77–97, Jan. 2001.

[15] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, “A racing algorithm
for configuring metaheuristics,” in Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’02, (San Francisco, CA, USA), pp. 11–18,
Morgan Kaufmann Publishers Inc., 2002.

[16] C. P. Gomes and B. Selman, “Algorithm portfolio design: Theory vs. practice,”
CoRR, vol. abs/1302.1541, 2013.

[17] B. A. Huberman, R. M. Lukose, and T. Hogg, “An economics approach to hard
computational problems,” Science, vol. 275, no. 5296, pp. 51–54, 1997.

[18] M. Oltean, “Evolving evolutionary algorithms using linear genetic program-
ming,” Evol. Comput., vol. 13, pp. 387–410, Sept. 2005.

[19] B. Adenso-Diaz and M. Laguna, “Fine-tuning of algorithms using fractional ex-
perimental designs and local search,” Oper. Res., vol. 54, pp. 99–114, Jan. 2006.

[20] F. Hutter, H. H. Hoos, and T. Stützle, “Automatic algorithm configuration based
on local search,” in Proceedings of the 22Nd National Conference on Artificial
Intelligence - Volume 2, AAAI’07, pp. 1152–1157, AAAI Press, 2007.

[21] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1st ed.,
1989.

[22] R. Marinescu and R. Dechter, “And/or branch-and-bound search for combinato-
rial optimization in graphical models,” Artificial Intelligence, vol. 173, no. 16–17,
pp. 1457 – 1491, 2009.

[23] S. Meyers, Effective C++: 55 Specific Ways to Improve Your Programs and
Designs (3rd Edition). Addison-Wesley Professional, 2005.

[24] “Gnome foundation.” http://www.gnome.org, 1997-2014.

80

http://www.gnome.org

[25] “Boost c++ libraries.” http://www.boost.org, 2001-2014.

[26] B. Stroustrup, The C++ programming language - special edition (3. ed.).
Addison-Wesley, 2007.

[27] B. Stroustrup, “Adding classes to the c language: An exercise in language evo-
lution,” Softw., Pract. Exper., vol. 13, no. 2, pp. 139–161, 1983.

[28] L. Torvalds, “Git.” http://git-scm.com, 2014.

[29] Free Software Foundation, Inc, “GNU Compiler Colection.” https://gcc.gnu.
org, 1987-2014.

[30] C. Lattner, “LLVM: An Infrastructure for Multi-Stage Optimization,” Master’s
thesis, Computer Science Dept., University of Illinois at Urbana-Champaign,
Urbana, IL, Dec 2002. See http://llvm.cs.uiuc.edu.

[31] Apple, Inc, “Mac OS X operating system.” http://www.apple.com/osx/, 2001-
2014.

[32] Free Software Foundation, Inc, “GNU Emacs.” http://www.gnu.org/software/
emacs/, 2013.

[33] Free Software Foundation, Inc, “GNU Make.” www.gnu.org/software/make,
2014.

[34] Eclipse Foundation, “Eclipse.” https://www.eclipse.org, 2014.

[35] Free Software Foundation, Inc, “The gnu project debugger.” http://www.gnu.
org/software/gdb/, 2014.

[36] J. Seward, “Valgrind.” http://valgrind.org/, 2013.

[37] A. Biere, “Lingeling sat solver.” http://fmv.jku.at/lingeling/, 2010-2014.

[38] F. Hutter, M. López-Ibáñez, C. Fawcett, M. T. Lindauer, H. H. Hoos, K. Leyton-
Brown, and T. Stützle, “AClib: a benchmark library for algorithm configura-
tion,” in Learning and Intelligent Optimization, 8th International Conference,
LION 8 (P. M. Pardalos, M. G. C. Resende, C. Vogiatzis, and J. L. Walteros,
eds.), vol. 8426 of Lecture Notes in Computer Science, pp. 36–40, Springer, 2014.

[39] A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown, “Satenstein:
Automatically building local search sat solvers from components.,” in IJCAI
(C. Boutilier, ed.), pp. 517–524, 2009.

[40] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “clasp: A conflict-driven
answer set solver,” in Proceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07) (C. Baral, G. Brewka,
and J. Schlipf, eds.), vol. 4483 of Lecture Notes in Artificial Intelligence, pp. 260–
265, Springer-Verlag, 2007.

81

http://www.boost.org
http://git-scm.com
https://gcc.gnu.org
https://gcc.gnu.org
http://llvm.cs.uiuc.edu
http://www.apple.com/osx/
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/
www.gnu.org/software/make
https://www.eclipse.org
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
http://valgrind.org/
http://fmv.jku.at/lingeling/

[41] Dice Hodings, Inc, “Download, develop and publish free open source software.”
http://www.sourceforge.net, 1999-2014. Accessed 13-August-2014.

[42] B. Fox, “Bash (unix shell).” http://www.gnu.org/software/bash/, 1989-2014.

[43] G. van Rossum, “Python programming language.” https://www.python.org/,
1991-2014.

[44] M. P. I. Forum, “MPI: A Message-Passing Interface Standard Version 3.0.” http:
//www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf, 09 2012. Chapter
author for Collective Communication, Process Topologies, and One Sided Com-
munications.

[45] OpenMP Architecture Review Board, “OpenMP application program inter-
face version 4.0.” http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf,
Jul 2013.

82

http://www.sourceforge.net
http://www.gnu.org/software/bash/
https://www.python.org/
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

	Introduction
	Objectives
	Document structure

	State of the art
	Automatic configuration algorithms
	Gender based Genetic Algorithm (GGA)

	Distributed architectures for high performance computing
	Computer cluster
	Job scheduler

	GGA architecture
	Class diagram
	Execution sequence

	DGGA architecture
	Class diagram
	New classes
	Modified classes

	Communication protocol

	DGGA implementation
	Libraries
	C++
	Boost

	Tools
	Git
	GNU C++ Compiler
	LLVM C++ Compiler
	GNU Emacs
	GNU Make
	Eclipse
	GDB
	Valgrind

	Implementation details
	Master module
	Worker module
	Parameters parsing
	Genome evaluation
	Specific Linux child process management
	Serialization
	Communication
	Signal handling

	Fixed bugs
	GGASharedMemory destructor
	GGAParameterTree destructor
	Target algorithm command parsing
	GGAParameterTree XML parsing
	Evaluation results propagation
	CPU timeout per evaluation

	Experimental evaluation
	Stress tests
	Automatic configuration of a SAT Solver

	DGGA installation and execution guide
	Installation guide
	Prerequisites
	DGGA distribution
	Third party libraries
	How to get Boost
	How to build DGGA

	Execution guide
	DGGA execution parameters
	Tuning configuration files
	Execution environment wrappers
	Example: automatic configuration of Lingeling

	Project chronology
	Conclusions and future work

