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Chapter 1

Introduction

This chapter gives a brief introduction to the topic discussed in this project. First, the

reasons that lead to the execution of this project are described. Then, the topic of this

research is introduced. After that, the set of objectives to accomplish are defined. This

chapter ends showing how this document is organized.

1.1 Motivation

Nowadays, the way we dress is an important aspect of ourselves that may influence

the opinion that the society has of us. Fashion is an ever-changing world where trends

appear and disappear each season, and what is ”in” today may be out of date tomorrow.

Also, due to the reduction of the cost of garments, people tend to own a large quantity

of garments. Those three facts, make it really hard for some people decide what to

wear or how to style a certain garment. That problem is so prevalent that many fashion

magazines have a specific section dedicated to answer style questions from the readers.

Also some on-line fashion communities have been build with the sole propose of asking

and giving advice on what to wear, or have this feature as an important one. Fashism[9],

”Go try it on”[14] are two examples of fashion communities build for their members to

ask and give advice on how to dress. Polyvore[21] and others offer this as an important

feature.

Whilst giving an answer to the user needs, all of the presented solutions have a major

drawback: they are not immediate. The time between when the user asks the question

and when he receives an answer ranges from weeks (fashion magazines) to hours(on-line

fashion communities). That makes the existing advice sources less useful as, usually, the

user, who is in the process of selecting an outfit, needs immediate feedback to make the

decision.

1
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Our motivation is to develop a system capable of automatically making recommendations

on how to style a certain garment.

1.2 The topic of this research

In this project we focus in the application of recommendation systems technology on the

fashion industry. The aim is to develop a recommendation system that given a garment,

automatically generates an outfit with that particular garment. The generated outfit

should potentially match the user taste. The problem we are trying to solve is present

in our everyday life and could be informally stated as ”How do I style that garment?”.

Recommender systems are agents that produce items recommendations (books, films,

songs, etc.) for an user. Their recommendation is based on a prediction of how interest-

ing that item will be for the user. That prediction can be made using three approaches:

using a model of the characteristics of the items, using a model of the user social envi-

ronment or a mix of both (Schafer et al. [23]).

Recommender systems have become an important research area in the later years. Part

of this interest on the topic is due to the large quantity of potential applications that

the research has.

One of this areas of application is the recommendation in e-comerce environments. In

such applications, the goal is to present the user items from the on-line store that might

be relevant to him and, thus, a potential purchase. This recommendation systems are a

keystone for many e-comerce sites such as Amazon[2] or Netflix[18]. As an example of

how important the recommendation systems are for e-comerce sites, Netfilx undertook a

1M$ prize contest[19] for the best recommendation system that over-performed the one

that the company had.

This project aims to develop a recommendation system that takes profit from the data

generated by an on-line fashion community. When queried with a garment, the system

will use that data to create an outfit that appeals to the user taste.

1.3 Objectives

In this section, the main objectives for the project are presented and described.

The main objectives of this projects are:

• Develop a data gathering agent
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• Automatize the evaluation of items similarity

• Apply learning algorithms to detect similar items

• Develop a recommendation system

The proposed recommendation system relies on the data captured from a social network

where its members combine garments from a virtual wardrobe to create outfits. Those

outfits are exposed to the other members judgement, who can express their approval

by clicking a ”I like it” button. The community also gives the chance for members to

follow other members, establishing a connection between them and thus creating a social

network.

Given that our recommendation system bases its recommendations on outfits created by

real people, this data needs to be captured. The first goal is to develop an autonomous

agent that surfs the web and captures all the relevant data that will be used later. The

captured data is: the garments in the wardrobe, the outfits created with them and

information about the community members (which outfits and garments like and which

other members are following).

The captured data contains a set of garments that are used to create the outfits. On

average, that garments are used in two or three different outfits. That poses a problem,

as when having to recommend outfits with a certain garment, that garment is going to

be used in few outfits. Also, each outfit created with the query garment will provably be

unique (there will not be two outfits with the same garments). This lack of repetition

is even worse if only the outfits relevant to the user, those created or liked by the user

or his closest community members, are taken into account. In order to overcome this

difficulty, we exploit the fact that some garments share some attributes (color, shape,

fabric, etc.) and are treated as similar by people.

The data of the garments coming from the fashion community only consists of a cate-

gorization, a textual description and an image. In order to apply learning algorithms to

detect similar garments, some attributes values needs to be extracted from the garment

data. These attributes values are extracted applying image processing techniques and

natural language analysis techniques.

With the application of learning techniques the original set of garments is divided into

subsets of similar ones. Those subsets are what we call abstract garments. Whenever

a concrete garment appears in an outfit, that concrete garment can be replaced by its

abstraction. Then the outfits with abstract garments can be grouped into similar ones,

producing abstract outfits. Two outfits (oi and oj) can be considered similar if they

have the exact number of garments and for each abstract garment in oi there is the
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same garment in oj . Given the abstraction of the query garment, the provability of

the user (or its closest community members) to have liked an abstract outfit with that

abstract garment is bigger than the provability that they have liked a concrete outfit

with the concrete query garment. This provability increment gives provides, to the

recommendation system, more information about the user taste, and as a consequence,

the ability to produce better recommendations.

The recommendation system takes as a query a garment (picture, description and cate-

gorization) and the user information. The result of a query is an outfit that is expected

to fit the user taste. To accomplish this task, the abstract outfits with the abstraction

of the query garment are selected and scored. The computed score represents how ap-

pealing is a certain abstract outfit to the user, its closest community members and the

whole community. Based on each abstract outfit score, one is selected and translated to

a concrete outfit. This concrete outfit is finally presented to the user as an answer to its

query.

1.4 Document structure

This document is structured in 6 chapters:

Chapter 1, Introduction In this chapter, First, the reasons that lead to the execution

of the project are described. Then, the topic of the research is introduced. After

that, the set of objectives to accomplish are defined. This chapter ends with the

description of the document structure.

Chapter 2, State of the art In this chapter, the relevant work on recommendation

systems in general and outfit recommendation systems in particular is analysed.

Chapter 3, Polyvore This chapter introduces the social network where the data for

the recommendation system is gathered from.

Chapter 4, Design In this chapter, an overview of the design of the whole system is

made. First a brief description of the whole recommendation system is given. Then

the modules that conform it are presented, namely the data gathering, garment

similarity, garment clustering and recommendation modules. After that, a more

detailed description is given for each module.

Chapter 5, Implementation In this chapter, details of the implementation of the

recommendation system are given.
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Chapter 6, Performance analysis In this chapter, the performance of the recom-

mendation system is assessed.

Chapter 7, Installation and execution In this chapter, the process for installing

the recommendation system is described. After that, the most relevant tasks that

can be performed with the system are described.

Chapter 8, Project planing and costs In this chapter, the planing followed to exe-

cute the project is described. After that, the costs of the project are listed.

Chapter 9, Conclusions In this chapter, the conclusions of this work are presented

and some ideas for future work are outlined.



Chapter 2

State of the art

In this chapter, the relevant work on recommendation systems in general and outfit

recommendation systems in particular is analysed.

Recommender systems are agents that produce items recommendations (books, films,

songs, etc.) for an user. Their recommendation is based on a prediction of how inter-

esting that item will be for the user. The recommendation systems can be divided into

three categories (according to the approach used for assessing the user potential interest

in the items): content-based, collaborative or hybrid (Schafer et al. [23]).

Content-based recommendation systems base the prediction of the user interest

in a new item on historical data of the user interest in other items. Based on

the characteristics of the items, the recommendation system is capable of finding

similar items to others that the user is known to like. In other words, the system

recommends items similar to other items that the user likes. This kind of rec-

ommendation systems often require the items to be characterized using a set of

attributes with machine readable values (numbers or categories).

Collaborative recommendation systems base their prediction on the similarity be-

tween the users behaviour (bought items, seen items, liked items, etc.). Being able

to find similar users to the target user (the user to whom make a recommenda-

tion), the system can recommend items that are known to be interesting for these

similar users. This kind of recommendation systems are based on the idea that

what is interesting for someone like us, will provably be interesting for us.

Hibrid recommendation systems combine both approaches (content-based and col-

laborative).

6
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In what follows, some of the most relevant applications of recommendation systems

technology in the world of fashion are described and analysed.

Sekozawa [24] proposes a garment recommendation system with an hybrid approach.

The clustering of the garments using a k-means clustering algorithm (content-based

approach). The system discovers the user taste using analytical hierarchical process

(AHP) and performs market basket analysis to find tendencies on buyers with similar

taste (collaborative approach).

The system requires a database of garments characterized by a qualitative value (from

”very bad” to ”very good”) for a series of attributes (criteria). The attributes used

are: slim build, normal and pump build (for silhouette); simple, normal and elegant (for

design); conservative, contemporary and a avant-garde (for sensitivity) and individual

system, casual system, mode system (for system). Those attributes values need to be

provided by an human expert. The attribute-based characterization of the garments is

later used to cluster them using a k-means clustering algorithm.

The users taste is captured using an AHP process. The user is requested for a preference

value for each pair of the attributes defined before. Using these preference values, the

users with similar tastes can be detected.

To apply the market basket analysis, the system requires data of garments bought to-

gether by the users. The data required has the form (garment1, garment2, garment3, confidence)

where confidence is the confidence value of the purchase of garment3 when the user

has purchased garment1 and garment2. Using the market basket analysis, the system

can make recommendations based on purchases made by similar users.

The major drawback of this recommendation system is the elevated amount of interac-

tion that it requires. First of all, each garment in the system needs to be analysed by

an human to give values to all of the observed attributes. Although feasible for small

amounts of garments, this approach becomes less practical when the database of gar-

ments grows to several hundred of thousands of garments (the size of the database used

for our recommendation system). The system also requires the user to explicitly state

his taste through a series of surveys. The need for the user to explicitly input his taste

is a drawback (as reported in the conclusions of the work).

Harada, Okamoto, and Shimakawa [12] propose an outfit recommendation system based

on the similarity between garments (content-based approach). The authors propose to

build a complex model of the outfits. The garments are characterized using the concepts

of type and style. The type of a garment is characterized by a category (cardigan, long-

sleeve t-shirt, etc.) and the covered area (long skirt, knee length skirt, half pants, etc.).

The style of a garment is characterized by the attributes colour, pattern, material and
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shape. An outfit is characterized by the structure of the garments that compose it and

the style of the outfit. The structure of the outfit is composed by two hierarchies: one

for the upper part of the body and other for the lower. The position of each garment

that composes the outfit, in any of both hierarchies, is directly related to its physical

position in the outfit (the the layering). The style of an outfit is characterized using the

attributes: colour, pattern, material and shape. The value of each of these attributes is

derived from the values of the same attribute of the garments that compose the outfit.

The amount each garment contributes to the values of the outfit attributes depends on

the position that the garment occupies in the structure of the outfit(the layering).

The system relies on historical data of outfits (represented as already described) worn

by the user. The system also requires what the authors call a policy graph. A policy

graph is a graph that represents the valid combinations of garment types for an user

depending on the position of those garments (layering). For instance, using the policy

graph, an user might state that she does not want to wear a pair of leggings beneath a

mini-skirt.

With all that information, the system is capable of extract the most common outfits

worn by the user. Based on those common outfits, the system presents new outfits

introducing slight variations.

This approach to the outfit recommendation problem proposes a complete outfit char-

acterization. Also, the policy graph provides a deep understanding of the user taste.

Both aspects combined make it possible, for the recommendation system, to create new

outfits that will fit the user taste. Despite of that, the major drawback of the system

is the amount of data required for each single outfits. Describing the outfits with the

proposed structure is tedious for an end user and can not be easily automatized.

Shen, Lieberman, and Lam [25] propose an hybrid recommendation system focused on

making recommendations to the user depending on the occasion he is attending (a dinner

with the boss, a night out with friends, etc.). The garments are characterized by a brand,

a type (jeans, trowsers, etc.) and a style. The style is a six-tuple of values (between 0

and 10). Each value represents the accordance of the garment with an style (luxurious,

formal, funky, elegant, trendy and sporty).

To query the system, the user inputs a textual description of the occasion he is going to

attend. With the application of common sense reasoning on the query text, appropriate

garments are selected. This selection is done inferring the desired style from the query

and searching garments with that style. The system learns with its usage, if the user

decided to combine a T-shirt with a pair of trousers and sport shoes to go out with
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his friends, next time the user asks for an outfit for the same occasion, the system will

present a similar outfit.

The major novelty of this approach is that it takes into account the specific situation

and the weather. It also proposes a more user-friendly interface, given that, it allows to

query the system using natural language. The major drawback of this recommendation

system is that the values for the six-touple used to characterize a garment style need to

be provided by an human.

In general, the major drawback presented by the analysed recommendation systems

approaches is the necessity of many human interaction. This interaction is required

either for providing a characterization of the outfits and garments, or a characterization

of the user taste. This high level of interaction from the users make it difficult for the

presented approaches to be applied into real world scenarios where there are hundreds

of thousands of garments and outfits.



Chapter 3

Polyvore

This chapter introduces the social network where the data for the recommendation

system is gathered from.

3.1 Polyvore

Polyvore is a social network centred on the world of fashion. Through the web page

http://www.polyvore.com/ its users can upload new garments providing a picture, a

small textual description an its category. All the uploaded garments conform what we

call the digital wardrobe. Most of the pictures come directly from the manufacturer web

site, and are pictures of the garment alone (no model) in front of a white background.

Figure 3.1: Virtual wardrobe

Figure 3.1 shows a screen shot of the virtual wardrobe, at the left side appears the

categories of the garments. At right side the garments belonging to a particular category.

Figure 3.2 shows a screen shot of a garment page, with the garment image at the left

10
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Figure 3.2: Page of a garment, with its picture, textual description and category

and the textual description and category at the right (see figure A.1 for the full list of

categories supported for the recommendation system).

Polyvore offers a tool to combine garments from the wardrobe, plus other decorative

elements and clothing accessories, to create outfits (see figure 3.3). The outfits created

with that tool are visible to the whole community and other members can visit their

page ( see figure 3.4), vote on them (like them) and leave comments.

Figure 3.3: Outfit creation tool

Occasionally a contest is created where the goal is to craft the best outfit given an

inspiration topic (i.e. summer, movies) and/or some garments restrictions (i.e. only

garments from the new collection of a certain brand). Those contest are open to all the

members of the community who can upload their outfits and vote for other ones. When

the contest is over, the wining outfits are those with the highest number of votes. Apart

from the contest prize (i.e. clothes, money,...), the winners are awarded with trophies.
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Figure 3.4: Outfit page

Each member of the community has its own profile where all his contributions to the

community can be seen. There is listed, among others, the outfits he has created, the

outfits he has voted for, the members this member follows and the ones following him.

Figure 3.5: Member profile page with the list of outfits created by him, outfits liked,
following...

Given the high user participation allowed by the site, and the highly active community

behind Polyvore is a great source from where to gather valuable information from real

fashion lovers.



Chapter 4

Design

This chapter provides a description of the design of the recommendation system. First

a brief description of the whole system is given. Then the modules that conform it

are presented, namely the data gathering, garment similarity, garment clustering and

recommendation modules. Also, their interaction is described. After that, a more

detailed description is given for each module.

4.1 Design overview

The initial approximation to the recommendation system was as follow:

When presented a query from a user about a garment, the system would search for all

the outfits that had that particular garment. Those outfits would then be scored based

on the likelihood of fitting the user taste. Finally one of those outfits would have been

chosen applying a roulette algorithm.

When analysing the data from Polyvore, we found a problem with the sparsity of the

data. The number of times a certain garment is part of an outfit is low (about 1.5

times). The sparsity is even bigger within the outfits created or liked by the user. This

means that, when making a recommendation for a certain garment, there were not many

eligible outfits.

To overcome this problem, we propose the generalization of the data. By simply ob-

serving the different garments, one can see that some of them are very similar. Some

garments share the same shape, color, pattern, etc. We propose to cluster all the similar

garments, those clusters are what we call abstract garments. If then we replace the

original garments from the outfits by their abstraction, we will find that some of these

13
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outfits are composed by the same abstract garments. The outfits composed by abstract

garments are what we call abstract outfits. One abstract outfit is composed by all the

concrete outfit that, after replacing its garments for abstract garments, have all those

abstract garments in common.

This generalization process allows us to reduce the data sparsity. Artificially increasing

the number of times the garments appear in outfits. This leads to a larger number of

possible outfits for a certain garment.

When answering a query with a garment and an user, the recommendation system

collects all the abstract outfits with the abstraction of the query garment. For each

abstract outfit it computes a score indicating the relevance of that outfit to the user.

One of those abstract outfits is selected based on its score. A concrete outfit is selected

at random from the list of concrete outfits that compose the selected abstract outfit.

Finally, the query garment replaces one of the selected outfit garments with the same

category. The answer given to the users is this concrete garment.

The proposed recommendation system has been split into four different modules that

work together to fulfil the recommendation task. Each module performs an specific task

and interacts with one or more modules. The modules are:

Data gathering module This module is an interface of Polyvore, its purpose is to

gather all the required data for the other modules. It exposes methods to gather

members, outfits and garments from the fashion community. The data is gathered

making http requests to the site and parsing the response. It also provides some

utilities to ”clean” the captured data.

Garment similarity module This module takes as input the garments gathered by

the data gathering module. It processes their images and textual descriptions to

compute an overall similarity index for each pair of garments. This process is done

applying image processing techniques and natural language analysis techniques.

Garment clustering module This module takes as input the data from the garment

similarity module and, applying clustering algorithms, clusters the similar gar-

ments together. This clusters are what we call abstract garments. Replacing the

garments from the outfits by their abstraction, a set of abstract outfits is created.

Recommendation module This module is the core of the recommendation system.

When presented a query with a garment and an user, computes a score for every

abstract garment with the abstraction of the query garment. The abstract outfit

with the best score is then translated back to a concrete outfit and returned as the

answer to the query.
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4.2 Recommendation process overview

In this section, the recommendation process is described in depth.

Figure 4.1: Recommendation process activity diagram

Figure 4.1 shows all the steps made by the recommendation system to answer a query.

The process starts with a query containing the id of the garment that the users wants

to combine, and the id of the user that makes the query. The subsequent steps to be

taken are divided into two groups. First all the data related to the garment and the

user is captured from Polyvore(a). Once the system has all the necessary data, the

recommendation process takes place (b).
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To be able to provide a good recommendation to the user, the system needs data about

his taste and also data about the garment he wants to combine. The process of gathering

data takes care of this necessity.

First, all the data related to the user is captured from Polyvore. The captured data

contains the outfits he has created, the outfits he has liked and the garments that

compose those outfits. Additionally, the system captures the members this user follows,

as well as the outfits they have created and liked, and the garments from those outfits.

All this data is stored in the database for future reference.

As explained before, the recommendation process is made using abstract outfits rather

than concrete ones. For this reason, the new data captured (the outfits and garments

that weren’t in the local database) need to be clustered.

Ideally, the system should re-cluster all the data, delete the abstract outfits and abstract

garments and execute the clustering process again. This isn’t done for two reasons:

• The process of clustering the garments is computationally expensive.

• The ratio between recently captured garments and garments already in the database

is small, which would result in small differences between the old clusters and the

new ones.

Instead, the most suitable abstract garments is assigned to each new garment. Then the

abstract outfits are recalculated.

The last step of the data capturing phase of the recommendation process, is to gather

the query garment from Polyvore. This new garment also needs to be clustered.

After all the necessary data is gathered and processed, the recommendation step takes

place.

In this step all the abstract outfits that contain the abstraction of the query garment are

scored. After scoring all that abstract outfits, one of them is selected using a roulette

algorithm. Then, from the collection of concrete outfits that belong to the selected

abstract outfit, one is selected at random. This outfit is modified, replacing one of its

garments, that has the same category of the query garment, for the query garment.

Finally, the concrete outfit is returned as answer to the query.

4.3 Data gathering module

The recommendation system relies on a social network as the source of data for mak-

ing the recommendations. This module is an interface of Polyvore, providing a set of
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Figure 4.2: Captured objects and their relations

functions that query the site for data. This data is later used for the rest of the rec-

ommendation system. In particular, the captured data contains the following objects:

members, garments and outfits and their relations.

Figure 4.2 shows a diagram of the captured objects and their relations. From the the

object Member: the attribute num trophies is the number of trophies the member has,

num outfits likes is the real number of members that like an outfit created by him,

num outfit views is the number of members that have seen an outfit created by him

and num following is the real number of members that are following him. From the

object Outfit: the attribute num likes is the real number of members that like the

outfit and num views is the number of members that have seen the outfit.

Given that we don’t have full access to the Polyvore database, and we are just work-

ing with a subset of their data1, the aggregation attributes (num outfits likes and

num following from Member and num likes from Outfit) might be inconsistent with

the captured data. For instance, the attribute num likes of a captured outfit can be

bigger than the number of captured members that have liked that outfit. Note that we

used the term ”real” when describing those attributes to stress that this data is coming

from Polyvore and it reflects the real values for those attributes.

1At the beginning of the project, we sent an e-mail requesting access to Polyvore database. We
explained the recommendation system that we were developing and asked for permission to access their
data for research purposes. As of September 2013 we have not received an answer.
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Since Polyvore has no public API available to access its data, we have developed a set of

scripts to automatically gather it. Through a series of HTTP requests and the parsing

of the responses, the scripts are able to retrieve the objects listed above.

Figure 4.3: Outfit with the list of garments that compose it

When capturing the data associated with an outfit, we apply a filtering process to elimi-

nate all the unnecessary data. An outfit is composed by garments, accessories and other

elements that decorate the composition (letters, portraits, flowers,....). Even though all

those elements configure the outfit, and the score of the outfit surely is influenced by

them, our recommendation system is only prepared for dealing with garments. For this

reason, any outfit component that does not belong to a category that we support (see

appendix A), is not captured. For instance, figure 4.3 shows an outfit composed by three

garments, a pair of shoes, a purse and other decorative element (images of a newspaper,

a cat, etc). From that outfit, only the three garments will be captured.

For convenience and better interoperability between the data capturing scripts, and also

the other modules, the data captured by those scripts is stored in CSV files (see section

5.4).

4.4 Garment similarity module

The goal of this module is to compute an overall similarity index for each pair of gar-

ments within the same category. We define the overall similarity index as a weighted

aggregation of the similarity indexes with respect to the attributes observed for those

garments.

In the fashion world many attributes are used to provide a precise characterization of

a garment. Given the reduced data set we have for the garments, the automation of

the detection of those attributes is beyond the scope of this project. To simplify the
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problem, we have reduced the observed attributes to a subset. The observed attributes

are:

For all types of garments: colour, pattern, shape, fabric and category

For tops: neckline and sleeves

For bottoms: hemline

As described in the previous section, the data relative to the garments gathered from

the social network consists only in a category, a picture and textual description. To be

able to compare the garments in terms of the attributes recently enumerated, the value

for those attributes needs to be computed. We propose to compute those values from

the image of the garments and/or from the textual description. This computation is

performed applying image processing and natural language analysis techniques.

Even though most of the observed attributes values can be easily extracted from the

image of a garment by humans, is hard to automatize its computation. This is due to the

way the pictures are taken. For instance, when searching the type of sleeves a top has, in

certain pictures the sleeves can be close to the body, folded at the middle, perpendicular

to the body or quite angled. This difficulty also arises when detecting the neckline,

hemline, fabric and shape. As a consequence, some of the observed attributes values are

only computed from the textual description and for some other only an approximation

is used (see section 4.4.1.2).

Once the values for the observed attributes are computed, a similarity index with respect

to each attribute from different garments needs to be obtained.

In what follows, we present the different techniques used to compute values for the

observed attributes. For each attribute we also describe the similarity function used to

compare two garments.

4.4.1 Image processing

Image processing techniques are applied to compute the similarity index with respect to

colour, pattern and shape. In what follows, we present the techniques used to compute

those similarity indexes.
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4.4.1.1 Colour similarity

To analyse the similarity between two garments with respect to their colours, the his-

togram of both garments is computed. Both histograms are compared using a distance

function to get the similarity index.

The histogram of an image represents the provability distribution of each color from a

certain color model to appear in the image. The original images are represented in the

RGB color model using the cubic representation. Before computing the histograms from

those images, they are translated to the HSV representation of the RGB color model.

HSV divides each color into 3 separated components:

Hue (H) A value from 0 to 360 representing all the possible pure colors.

Saturation (S) A value form 0 to 100 representing the amount of white in the mix. A

pure color without white is fully saturated while a color mixed with white is less

saturated.

Value (V) A 0 to 100 value representing how much light is reflected by the color. A

color with value 0 don’t reflect any light and is perceived as black, while a color

with value 100 reflects all the light.

This translation is done because the former representation (HSV), is known to pre-

serve better the perceptual similarity between colors. That is, two colors close in the

representation are perceived as similar by human.[15].

The histogram is computed over the H and S components of the HSV image, and the

values are quantized to 30 and 32 levels (bins) respectively to reduce the computational

complexity.

The similarity index between the images is computed applying a distance function to

their histograms. Among all the possible distance functions, we have experimentally

concluded that the correlation [26] gives us the best results. The correlation between

two histograms can be expressed as:

d(H1, H2) =

∑
I (H1(I)− H̄1)(H2(I)− H̄2√∑

I (H1(I)− H̄1)2
∑

I (H2(I)− H̄2)2

where
¯

Hk =
1

N

∑
J Hk(J) and N is the total number of histogram bins.

The background of the images takes more than 30% of the image area, and does not

give any information of the similarity of the garments in terms of colors. Computing

the histogram including the background produces histograms with very high provability
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for white color, reducing the provability of the colors used in the garment. This results

in histograms with similar colors distributions. To avoid that, a mask that excludes the

background is computed. The black area of the mask is defined by all the white color

pixels ((250, 250, 250)RGB ± 5). This mask is used to exclude the background area of

the computation of the image histogram.

(a) Original image (b) Mask image

Figure 4.4: Original image and mask image of a garment

Figure 4.4 shows the original image of a garment and the image mask, black pixels in

the image mask cover the background while white pixels cover the garment area.

(a) (b)

(c) (d)

Figure 4.5: Original image and edges image of two garments



Chapter 4: Design 22

a b c d

a - 79.03 -0.81 -1.17

b 79.03 - -0.88 -1.50

c -0.81 -0.88 - 47.09

d -1.17 -1.50 47.09 -

Table 4.1: Similarity matrix of histograms of garments from figure 4.5. The values
have been multiplied by 100.

Table 4.1 shows the similarity matrix for the histograms of figure 4.5. As expected, there

is a strong correlation between the two pink garments (a,b) and between the two dark

ones (c,d), but the correlation between the pink garments and the dark ones is much

lower.

4.4.1.2 Pattern similarity

There exists a vast number of different patterns: floral, dotted, animal print, stripped,

etc. The task of recognizing all those patterns and computing their similarity is far

beyond the scope of this project. As an alternative, we propose the measurement of

noise as a naive and less accurate metric to get some information about the similarity

between patterns.

We define the garment noise as the provability of a pixel of the garment image to belong

to a garment edge. An edge is a point in an image where there is an accentuated change

in the brightness of its surrounding pixels. Applying the Canny edge algorithm [5] to a

gray scale image of the garment, a black and white image is obtained, where white pixels

represent edges. Therefore, the value of noise is the provability of a pixel to belong to

an edge, i.e., the provability of a pixel to be white

With this new metric, the noise for garments with intricate patterns or graphical ele-

ments will be higher than the noise for plain coloured items.

Figure 4.6 shows a comparison of the edges image generated for two different garments.

The left column shows the original images and the right column shows the edges image of

those garments. As can be seen, the garment in the figure (a) presents an intricate floral

pattern. Its edges image (b) outlines that pattern, producing an image with a higher

noise, 25.47% image (excluding the background) is white. In contrast, the garment in

figure (c) has no pattern, only a plain color. For this garment, the edges image (d)

only outlines the contour of the garment and few details, only 3.47% of the edges image

(excluding the background) is white.



Chapter 4: Design 23

(a) Original image (b) Edges image with a noise
value of 0.2547

(c) Original image (d) Edges image with a noise
value of 0.0347

Figure 4.6: Original image and edges image of two garments

The similarity index for a pair of garments with respect to their pattern is:

1−min(1,
(noisea ∗ 100− noiseb ∗ 100)2

z2
)

Where noisea and noiseb are the noise values of the garments. The constant z is the

maximum noise dissimilarity allowed, the value that maps to a similarity of 0. We have

experimentally concluded that the value for z should be 20.

4.4.1.3 Shape similarity

We define the shape similarity as the accumulated similarity of the ratio width/height

between both garments in each point in the garment. That is, each point between the

top of the garment and its bottom. We have chosen to compare the proportions rather

than the widths of the garments because the first measure is invariant to scale. The

similarity function can be expressed as:

sim(g1, g2) =
∑

0≤y≤100

1−min(
((

(Wg1 (y)
hg1

∗ 100)− (
Wg2 (y)
hg2

∗ 100))2

z2
, 1)
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Where Wg1(y) is the width of the garment g1 at the y% of its height. The term
Wg1 (y)
hg1
∗100

represents the proportion between the width of a garment at a point and its total height

hg1 (between the garment top and bottom). This value usually ranges between 0 and

100, given that the garments normally are wider than taller. The squared dissimilarity

between the garments width at a certain point is expressed as ((
(Wg1 (y)

hg1
∗100)− (

Wg2 (y)
hg2

∗
100))2. This value has been squared to stress the difference in proportions as the value

grows. A dissimilarity index ranging from 0 to 1 form the dissimilarity index of the

garments at a certain point (the squared difference of those garments) is computed with

min(
((

(Wg1 (y)

hg1
∗100)−(

Wg2 (y)

hg2
∗100))2

z2
, 1) where z2 is the maximum dissimilarity permitted, the

index of dissimilarity that maps to 1. We have experimentally concluded that the value

of z will be 15.

(a) (b)

(c) (d)

Figure 4.7: Images of garments

a b c d

a - 88.61 33.15 17.15

b 88.61 - 34.05 49.32

c 33.15 34.05 - 89.55

d 17.15 49.32 89.55 -

Table 4.2: Similarity matrix of histograms of garments from figure 4.5. The values
have been multiplied by 100.



Chapter 4: Design 25

Table 4.2 shows the shape similarity indexes of each pair of garments from figure 4.7. As

can be seen, the pairs of garments (a,b) and (c,d) have a much higher similarity index

than the pairs (a,c), (a,d), (b,c) or (b,d). This similarity indexes reflect the fact that the

former pairs are much more similar in shape than the later ones.

4.4.2 Description processing

The main goal of description processing is to compute values for attributes that are not

easily observed by the image processing module. Those attributes are the hemline, type

of sleeves, neckline, fabric, shape and pattern.

The textual description of the garments is a short text with no more than 200 words

written in natural language, full of specific terminology related to the fashion industry.

The natural language origin of those textual descriptions gives place to the usage of

synonyms and similar expressions to express the same facts. For example:

Black silk print top with fan pleat. The fan pleat sits on the right hand

shoulder. Short sleeves. The hemline falls to the hips. A zip fastening

runs down the back. A stylish top that can be worn day or night with skinny

trousers and towering heels. Pleats are on trend.

Short-sleeve dolman tee with banded bottom and spot-print graphic

detail.

Brown short sleeved Bottega Veneta polo neck. The hemline falls to

the hips. A chic knit for fall, this Bottega polo neck in an autumnal tone, is

the perfect piece to team with a pencil skirt or cropped trousers and heels

for a smart daywear look.

This three paragraphs show the textual description of three different garments. All

those garments have short sleeves, but in each textual description, the expression used to

describe that fact is different (short sleeves, short-sleeve and short sleeved respectively).

To overcome the ambiguity of the human language, a dictionary of synonyms is defined

for each searched term. Figure 4.8 shows a snippet of the synonyms dictionary of the

term ”one quarter length sleeve”. When processing the textual descriptions, any time

this term appears or any of its synonym, the garment will be given the value associated

with the term for that attribute.
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<value name="one quarter length sleeve" id="5">

<synonym name="1/4 length sleeve"/>

<synonym name="1/4 sleeve"/>

<synonym name="short sleeves"/>

<synonym name="short sleeved"/>

</value>

Figure 4.8: Snippet of the attributes synonym dictionary

The similarity index with respect to an attribute observed in the textual description is

as follows: if both values are the same, the similarity index is 1, if they are different, the

similarity index is 0.

4.5 Garment clustering module

As explained in the introduction of this chapter, the reduced amount of times that a

certain garment appears in outfits poses a problem when making recommendations. To

overcome this difficulty we use a clustering algorithm with a similarity function based

on the attributes described in the previous section. The goal of this module is to cluster

the original data to reduce its sparsity.

Using the similarity indexes given by the garment clustering module (see section 4.4), a

similarity matrix per category is built. The overall similarity index for two garments is

a weighted aggregation of different similarity indexes, one for each observed attribute:

colour, pattern, shape, fabric, neckline, sleeves and hemline.

Using a spectral clustering algorithm, the garments belonging to each category are clus-

tered. Those cluster are what we call abstract garments. Once the abstract garments

are computed, the abstract outfits are created.

Spectral clustering is a clustering technique which relies on the eigenstructure of a simi-

larity matrix to partition elements into disjoint clusters. The resulting clusters have the

property that elements in the same cluster have high similarity and elements in different

clusters have low similarity.

The similarity functions described in the previous section will be used to produce a 3D

similarity matrix (m3D). This matrix has a size of n ∗ n ∗ k where n is the number of

garments and k is the number of similarity functions used to compare the garments. To

obtain a 2D similarity matrix (m2D) for the clustering process, the 3D matrix is reduced

to a 2D matrix of n ∗ n whose value m2D[i][j] is the result of applying
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g1 g2 g3 g4 g5 g6

o1 X X X

o2 X X X

o3 X X

(a) Initial data

ga1 : g2 g4

ga2 : g3 g5

ga3 : g1 g6
(b) Abstract and con-
crete garments rela-
tion

ga1 ga2 ga3
o1 X X X

o2 X X X

o3 X X

(c) Initial data having re-
placed the concrete gar-
ments for the abstract ones

ga1 ga2 ga3
oa1 X X X

oa2 X X

(d) Duplicated outfits
joined into abstract outfits

Figure 4.9: Process of obtaining abstract garments and abstract outfits

∑
0≤l<k

(m3D[i][j][l] ∗ w[l])

Where w is a positive integer array that sums to 1. w[l] is the specific weight (between

0 and 1) given to that particular similarity function.

Figure 4.9 shows the different steps of the clustering process. Sub-figure a is a represen-

tation of the original data where each outfit, denoted by oi has many garments, denoted

by gj .

After applying the clustering process described before, the initial garments are clustered.

The resulting clusters, denoted by gak , are what we call abstract garments. Sub-figure

b shows which garments belong to each of the abstract garments obtained after the

clustering of the original data.

Sub-figure c shows the original data after replacing the outfits with their abstraction.

As can be seen, some of the outfits share exactly the same abstract garments, and

therefore, are the same. For instance, o1 and o2 have all their abstract garments in

common (ga1 ,ga2 ,ga3).

The outfits that share the same abstract garments are grouped together (sub-figure d).

Those groups, denoted by oal , are what we call abstract outfits.

4.6 Recommendation module

The recommendation module is the core module of the recommendation system. Its goal

is to create an outfit with the provided garment. The resulting outfit should fit the user

taste.
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Given a query from an user about a garment, the module analyses a set of abstract

outfits that contains the abstraction of the query garment. For each abstract outfit, a

score is computed using a custom defined score function. Then, one of those abstract

outfits is chosen. Finally, the system, presents the user a concrete outfit (an outfit made

with concrete garments) out of the chosen abstract outfit.

In what follows, the score function used to asses each abstract outfit is described. After

that, the recommendation process is explained in depth.

4.6.1 Score function

The goal of the score function is to assess how likely an outfit is going to be liked by the

user. The function must give better scores to those outfits that are going to be liked the

most, and a worse score to those that are not. To this end, the proposed score function

takes into account the relevance of an outfit to the user, his closest community members

and the rest of the community.

The proposed function is:

score(oa) =

∑
o∈oa

(

user taste︷ ︸︸ ︷
(userLiked ∗ wu) +

followed members taste︷ ︸︸ ︷
#followedLikes

#followed
∗ wf +

community taste︷ ︸︸ ︷
(

#likes

#views
∗min(1,

#view

r
)) ∗ wc)

count(oa)

The score of an abstract outfit oa is the sum of the individual scores of the concrete

outfits (o) that conform that abstract outfit. This sum is divided by the number of

concrete outfits count(oa).

The score can be divided in 3 separated scores: user taste, followed members taste and

community taste.

User taste: The taste of the user that makes the query is introduced by the term

userLiked ∗ wu. Where userLiked is a binary variable with the value being 1(0) if the

user has (has not) liked the outfit. The constant wu weights the importance of the user

assessment of the outfit in the global outfit score.

Followed members taste: Although the recommender system uses the data from

a large and active fashion community, and we have applied clustering techniques, the

impact of the user taste in an outfit evaluation might still be low. This can be true if the



Chapter 4: Design 29

user making the query does not participate very much in the social network by means

of liking outfits.

One way to get more feedback from the user is by taking into account the other members

he follows. When a member follows another one, we can assume that he agrees with

the other member taste. The term #followed−likes
#followed ∗ wf takes into account the data

coming from the members that the user making the query follows (followed members).

Where #followed − likes is the number of followed members that liked the outfit and

#followed is the total number of members the user is following. The constant wf

weights the impact of the followed members assessment of the outfit in the global outfit

score.

Community taste: To get more data from the community, a term that represent the

taste of the whole community has been added.

The quotient #likes
#views represents the percentage of people that liked the outfit. To avoid

an outfit that has been visited one time and liked one time to have a better score than

one that has been visited 300 times and liked 250, the term #likes
#views ∗ min(1, #view

r ) is

introduced. This term weights the score based on the number of times the outfit has

been visited. The more the outfit has been visited, the closer its score will be to the

value of #likes
#views . The constant r fixes the minimum number of times an outfit must have

been visited to have the result of #likes
#views . The term #likes

#views ∗ min(1, #view
r ) represents

the score given by the whole community. Again, the term wc weights the importance of

the community assessment of the outfit in the global outfit score.

The summation of the 3 weight parameters wu, wf and wc is 1.

4.6.2 Recommendation process

The recommendation process starts by gathering all abstract outfits (oai ) that have the

abstraction of the query garment as one of its garments. A list of pairs (oai , si) is created.

For each pair (o′i, si), si is the score given to the abstract outfit (oai ) using the previously

described score function. Then, from this list of abstract outfits and their scores, an

abstract outfit is selected using a roulette algorithm.

The fitness proportionate selection algorithm, also known as roulette algorithm, is a

genetic operator used in genetic algorithms for selecting potentially useful individual

from a population based on their fitness value. The provability of selecting the individual
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ii is:

pi =
fi∑

0≤j<n
(fj)

where fi is the fitness value of the individual ii and n is the size of the population.

To select an individual, the algorithm computes a random number r between 0 and 1.

The selected individual is the first one that satisfies the following conditions:

∑
0≤j<i

(pj) ≤ r

and

i = n− 1 or
∑

0≤j<i+1

(pj) > r

This algorithm is more likely to select the individuals with a higher fitness value, but

also leaves a chance for those with lower fitness values to be selected.

In our application of the roulette algorithm, the population is the list of abstract outfits

that have the abstraction of the query garment as one of its components. The fitness of

an individual (abstract garment) is the score given to that abstract garment using the

previously described score function.

We have chosen to apply this selection algorithm because it introduces some randomness

in the selection of the concrete garment that will be given as a response, whilst being

strongly influenced by the score given to the outfits (the fitness value).

Once the abstract outfit is selected, a concrete outfit is chosen at random from the

outfits that conform the selected abstract outfit. Then, one of the garments from this

concrete outfit, that has the same category as the query garment, is replaced by the

query garment. This needs to be done to ensure that the query garment is a component

of the returned outfit. Finally the modified concrete outfit is returned as answer to the

query.
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Implementation

In this chapter, a description of the implementation of the recommendation system is

given. First, the technologies used are listed and briefly described. Then, the general

structure of the solution is presented. After that, each package that composes the

solution is described in depth.

5.1 Technologies

During the implementation of the proposed recommendation system the following tech-

nologies have been used:

Java General-purpose, object oriented computer programming language developed by

Sun Microsystems. This language has a syntax influenced by the C/C++ pro-

gramming languages. The code developed for the recommendation system has

been mainly written using this language [34], [20].

Python Widely used general-purpose, high-level programming language. Its design

philosophy emphasizes code readability, and its syntax allows programmers to

express concepts in fewer lines of code than would be possible in languages such as

C. This language has been used to write all the scripts that gather the data from

Polyvore and parse it. It was chosen for its simplicity and for allowing a rapid

coding thanks to its high level syntax [36], [22].

Hibernate Object-relational mapping (ORM) library for the Java language, providing

a framework for mapping an object-oriented domain model to a traditional rela-

tional database. Developed by Red Hat and distributed under the GNU General

Public License (GNU GPL) [11]. This library is used to provide the persistence

31
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layer of the recommendation tool. Even though its usage implies a certain over-

head in the storage and retrieval of the data, it has been used to cut the time

spent in the development of the data persistence layer [33], [7].

OpenCV (Open Source Computer Vision Library) is an open source computer vision

and machine learning software library. OpenCV was built to provide a common

infrastructure for computer vision applications and to accelerate the use of machine

perception in the commercial products. Developed by Itseez and released under

a BSD. This library is used in conjunction with its Java bindings developed by

Samuel Audet and others [3], and released under GNU GPL v2. It is used in the

garment similarity module to compute attributes values from the garment images.

It has been chosen for its maturity and speed [27], [28].

MySQL open-source relational database management system (RDBMS) developed by

Oracle and released under the GNU GPL v2 license. It is used in the persistence

layer of the recommendation system [35], [28].

Weka (Waikato Environment for Knowledge Analysis) is a popular suite of machine

learning software written in Java, developed at the University of Waikato, New

Zealand. Weka is free software available under the GNU GPL [31]. The suite is

used in the garment clustering module, in conjunction with the spectral clustering

algorithm implementation by Luigi Dragone released under the GNU GPL license

[8].

Colt Library that provides a set of Open Source Libraries for High Performance Sci-

entific and Technical Computing in Java. Developed by the CERN who holds its

copyright. This library is a dependency of the spectral clustering algorithm [6].

libXML2 XML C parser and toolkit developed for the Gnome project (but usable

outside of the Gnome platform), it is free software available under the MIT License.

This library, in conjunction with the Python bindings written by Dave Kuhlman

[16], is being used by the Python scripts to parse the HTML web pages from

Polyvore [30].

A part from the technologies recently described, during the execution of the project, the

following software has been used:

Windows 8 Windows 8 is a version of Microsoft Windows (an operating system devel-

oped by Microsoft) for use on personal computers, including home and business

desktops, laptops, tablets, and home theatre PCs. This software is released under

the license Microsoft CLUF [37],[17].
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Notepad++ Notepad++ is a free source code editor and Notepad replacement that

supports several languages. Running in the MS Windows environment, its use is

governed by GPL License [13].

Eclipse Is a multi-language Integrated development environment (IDE) comprising a

base workspace and an extensible plug-in system for customizing the environment.

It is written mostly in Java. This software is released under a Eclipse Public

License (EPL) [10].

MySQLWorkBench MySQL Workbench is a unified visual tool for database archi-

tects, developers, and DBAs. MySQL Workbench provides data modeling, SQL

development, and comprehensive administration tools for server configuration, user

administration, backup, and much more. MySQL Workbench is available on Win-

dows, Linux and Mac OS X [1].

Texmaker Texmaker is a free, modern and cross-platform LATEXeditor for linux, macosx

and windows systems that integrates many tools needed to develop documents with

LaTeX, in just one application. This tool is licensed under the GNU GPL Version

2 [4].

5.2 Packages overview

The implementation of the proposed recommendation system is divided into six packages:

Core This package contains all the classes and interfaces that implement the domain

model objects. The domain model objects are: member, garment, outfit, category,

abstract garment and abstract outfit. This package also contains the mapping of

those classes to the data base. This package also contains other utility classes.

dataGathering This package contains a set of Python scripts to capture data from

the social network. This package also contains a series of Java classes that allow

the integration of those scripts with the rest of the system. This package is the

implementation of the data gathering module (see section 4.3).

garmentsSimilarity This package contains all the classes to obtain each similarity

index (shape similarity, pattern similarity, color similarity and description similar-

ity) of a certain pair of garments and their overall similarity index. This package

is the implementation of the garment similarity module (see section 4.4).

garmentsClustering This package contains the classes for clustering the garments,

creating the abstract garments and creating the abstract outfits. This package is

the implementation of the garment clustering module (see section 4.5).
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recommender Package with the classes that make recommendations to answer the

queries from the users. This package is the implementation of the recommendation

module (see section 4.6).

graphicalTools Package with the implementation of different graphic tools to visually

analyse and manipulate the data. These tools are created to view the garments

in the system, view the outfits, create clusters, view the abstract outfits and make

queries.

Except some parts of the package dataGathering, all the code has been implemented

using Java. The rest of the code has been implemented using Python.

Having given a brief description of all the package that compose the system, in the

following sections each of them will be analysed more deeply.

5.3 Core package

This package contains all the classes and interfaces that implement the domain model

objects. This package also contains the mapping of those classes to the data base.

Finally, the package also contains other utility classes.

The classes in this package are divided in the following packages:

rob.ors.core.model.api and rob.ors.core.model.impl

This packages contains the classes and interfaces that implement the domain model

objects. The domain model objects are: member, garment, outfit, category, abstract

garment and abstract outfit.

Figure 5.1 shows a class diagram with all the interfaces from the model objects, while

figure 5.2 show a class diagram of all the classes that implement the model objects. As

can be seen, each class from the model has its own interface and the implementation.

5.3.1 Persistence layer

To store the data captured from Polyvore, as well as, the data generated by the recom-

mendation system, a persistence layer is needed.

The persistence of the recommendation system data has been implemented using a rela-

tional database. The storage and retrieval of the Java objects is managed by an ORM.
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Figure 5.1: Classes diagram of the system model classes

Although using a ORM in an application such as this can introduce some overhead, we

decided to use it as it reduces the time spent in the implementation of the persistence

layer.

The database has been implemented using MySQL. The file, found in the root of this

package, CREATE.sql contains a SQL script to create the database schema.

Figure 5.3 shows the diagram of the database.

The ORM being used is Hibernate. The XML files with the configuration of the mapping

between the Java objects and the database tables can be found at the root of the core

package. Files AbstractGarment.hbm.xml, AbstractOutfit.hbm.xml, Category.hbm.xml,

ConcreteGarment.hbm.xml, ConcreteOutfit.hbm.xml and Member.hbm.xml are the

configuration files for their respective Java model objects. These files contain the def-

initions of how the object attributes will be mapped to database table columns. File

hibernate.cfg.xml is the Hibernate general configuration file. This file specifies the

database connection parameters.

rob.ors.core.polyvore

The class PolyvoreCategoryTree contains a static representation of the garment cat-

egories used by Polyvore, as well as some convenience methods for traversing it and

obtaining the garments in each category.
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Figure 5.2: Classes diagram of the system model classes implementation

rob.ors.core.utils

The class GarmentRemover is an utility class used to remove from the system elements

that are not garments, get the ids of those elements and check if an id belongs to the list

of removed elements. We implemented the later two functionalities to avoid re-capturing

elements that have already been removed from the system.
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Figure 5.3: Database diagram

rob.ors.core.config

The only class contained in this package is the class Paths. This class has a series of

static strings with the paths for various files and directories used by the rest of the code.

5.4 DataGathering package

This package is the implementation of the data gathering module (see section 4.3). The

package contains two separated sources: the Python scripts for querying Polyvore, and a

set of Java classes to integrate the Python scripts into the system. This Java classes allow

the execution of these scripts directly from Java and also reading the coma separated

values (CSV) [32] files created by those.

The format of the CSV files generated by the Python scripts is as follows:
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outfits.csv Id;Age;#Views;#Likes;Garments

garments.csv Id;Category;Age;#Views;#Saves;Description

members data.csv Id;Outfits;Liked;Following;Followers

members summary.csv Id;#Outfit views;#Outfit likes;#trophies;#Followers

The CSV format has been chosen to easy the communication between the multiple data

gathering scripts. Each script is in charge of gathering a certain piece of data, but it

might rely on data gathered by another script. For instance, the script getoutfits.py

used to get data to initially populate the database (explained before), reads the ids of

outfits from the file members data.csv, which is generated by the script getmembers.py.

5.4.1 Python scripts

The Python scripts found in the data gathering package are the following:

getmembers.py This script reads the file member summary.csv. For each member in

the file, captures and stores its data. If the file is empty, the script starts capturing

the member with id 349251. The order followed for capturing the members is

based on the weighted aggregation of the values #Outfit views; #Outfit likes;

#trophies and #Followers. All the captured data is stored in two CSV files:

members summary.csv and members data.csv using the CSV formats explained

before.

getoutfits.py This script reads the CSV file users.csv (the output form getmembers.py).

For each member in the file, captures all the data relative to the outfits created

by that member. The captured data is stored in the file outfits.csv using the

CSV format explained before.

getgarments.py This script reads the CSV file outfits.csv (the output from getoutfits.py).

For each outfit in the file, captures the data of the garments that compose it. The

captured data is stored in the file garments.csv using the CSV format explained

before.

getGarment.py, getOutfit.py, getMember.py These scripts receive as parameter

an object id (garment, outfit and member id respectively). They capture the

object data and print it out in the CSV format explained before. Those scripts

allow capturing garments, outfits and members directly from the Java code.
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garmentgetter.py, membergetter.py, outfitgetter.py The goal of this classes is to

capture the data for of certain object (garment, member and outfit respectively).

All of them have the method get data. This method receives as parameter the

object id and returns a dictionary with the captured data. All those classes extend

the class CommonGetter found in commongetter.py. This class provides a set of

methods used to query Polyvore and analyse the HTML response.

dataFileUtils.py A file with common functions to read and write CSV files.

getImage.py A script that receives as parameter the id of a garment an downloads its

image from Polyvore.

taxonomy.py Class that reproduces the categories used by Polyvore.

dataAnalysis.py Collection of scripts that provide statistics about the captured data.

Among others, they compute the percentage of garment captured form the outfits

created by the users, the mean number of times a garment appears in outfits, etc.

To be able to respond queries, the system needs to be populated with an initial set of

users, outfits and garments. From this data the initial abstract garments and abstract

outfits will be created. Also, this data is used for the community assessment of possible

outfits, calculated during the recommendation process. To capture this initial data, the

scripts getmembers.py, getoutfits.py, getgarments.py have been developed (For

further information on how to populate the system, see section 7.2).

5.4.2 Java code

The Java code found in the data gathering package is divided in the following packages:

rob.ors.informationGathering.filler

This package contains 3 classes for reading data from the CSV files generated by the

Python scripts and store it in the database. These classes are: FillGarmentsFromFile,

FillOutfitsFromFile and FillMembersFromFile. These classes read the garments,

outfits and members CSV files respectively and store the data in the database.

rob.ors.informationgathering.getters

This package contains 3 classes (GarmentGetter, OutfitGetter and MemberGetter)

to get data of garments, outfits and members respectively, from the local database,
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when available, or from the web when necessary. These classes have the methods

getGarment(Integer iid, boolean update, int deepness), getOutfit(Integer iid,

boolean update, int deepness) and getMember(Integer iid, boolean update, int

deepness). These methods receive as parameters the id of the object to capture, a

boolean indicating the request for updating the local data if found, and the deepness

allowed. The flag update indicates if the local data, if existent, must be updated. When

set to true, if the requested object exists in the local database and its age is bigger than

the maximum age allowed, the data will be fetched again from Polyvore. The age of

an object is the number of days that have passed since it was captured from Polyvore.

The maximum age allowed is set to 30 days. This technique of locally catching the data

allows to reduce the request to Polyvore and makes the recommendation process faster.

The deepness parameter indicates how deep the current call will go into fetching the

related objects to the object being obtained. For instance, when calling getGarment

with the deepness parameter set to 0, only the garment will be captured. For a deepness

value of 1, the garment will be obtained from Polyvore and the outfits that use that

garment (including the garments that compose these outfits). For a deepness value of 2,

the garment will be obtained from Polyvore, the outfits that use that garment (includ-

ing the rest of the garments that compose these outfits) and the outfits where the later

garments are used (including the rest of the garments that compose these outfits). This

technique allows to control how much data is captured from Polyvore. The deepness

parameter can take any positive value or 0.

5.5 GarmentSimilarity package

This package is the implementation of the garment similarity module (see section 4.4).

The package contains all the classes used to compute the values for all the observed

attributes. The package also contains the classes used to compute the similarity indexes

between garments with respect to the observed attributes. Finally, the package also

contains the classes used to compute the overall similarity index between a pair of

garments.

The package is divided into three packages:

rob.ors.garmentssimilarity.imageProcessing

This package contains the implementation of the image processing techniques described

in the sub-section 4.4.1. The package contains all the classes for computing the values

of all the attributes observed from the garment images. These attributes are: colour,
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shape and pattern. This package also contains a class to extract the background mask

from a garment.

The classes found in this package are:

BackgroundExtractor This class has the method colorMaskIpl(IplImage src). This

method receives as a parameter a garment image and returns the image of the

garment mask.

HistogramExtractor This class has the method CvHistogram[][] getHSPatchHistogram(

IplImage src, CvMat itemMask, float relativePatchSize). This method re-

ceives as parameters a garment image, its mask and the relative image patch size.

An image patch is defined as a region of the said image 1. This method returns an

array of histograms for the garment image. The number of histograms computed

depend on the parameter relativePatchSize. This parameter, with a value ranging

from 0.1 to 1, indicates the size of the patches into which the image is divided. A

value of 0.5 means that the patches will have a size of half of the image, that is,

the image will be divided in 4 patches. The return of the method is an array of

histograms, one fore each patch.

ItemProportionsExtractor This class has the method float[] getItemProportions(

CvMat itemMask). This method receives as a parameter the garment mask and

returns an array of 100 positions. This array contains the values of the proportion

between the garment width at every percentage of its total height (from 1 to 100,

with an step of 1), and the total height.

NoiseDetection This class has the method noiseValue(IplImage image,CvMat mask).

This method receives as parameters a garment image and its mask and returns

the value of the noise found in the garment.

rob.ors.garmentssimilarity

The only class in this package, GarmentsComparator, has 3 methods to obtain a simi-

larity index for each of the observed attributes in a garment image, that is colour, shape

and pattern. These methods are:

patchHistogramSimilarity( IplImage i1,CvMat m1, IplImage i2, CvMat m2, float pSize)

This method receives as parameters two pairs (garment image, garment mask).

1When applying image similarity techniques based on histogram similarity, it is a common approach
to divide the compared images into regions (patches). Although our implementation of the image
processing module follows this approach, we have experimentally concluded that the patch size value
that give us better results is 1. That is, we divide the garments images in only one patch.
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The method returns the histogram similarity index of the garments. The param-

eter pSize (from 0 to 1) indicates the relative size of each patch to be compared.

The final similarity index is the mean of the similarity index of each pair of his-

tograms histArrayg1[i], histArrayg2[i] where histArrayg1 and histArrayg2 is the

histogram array of garment 1 and 2, respectively.

noiseSimilarity(IplImage i1,CvMat m1, IplImage i2, CvMat m2) This method

receives as parameters two pairs ( garment image, garment mask). The method

returns the similarity index between the garments based on their noise value. This

value is computed using the class NoiseDetection.

widthsSimilarity(float[] anItemProportions, float[] anotherItemProportions)

This method receives as parameters two arrays of garments proportions and re-

turns the similarity index based on the shape of those garments. The arrays of gar-

ments proportions are computed using the method getItemProportions(CvMat

itemMask) from the class ItemProportionsExtractor.

rob.ors.itemssimilarity.textProcessing

This package contains the implementation of the textual description processing tech-

niques described in the sub-section 4.4.2. The goal of the classes from this package is to

compute a value for each attribute observed in the textual description.

The class DescriptionProcessor has the method getAttributesFromDescription(Garment

garment). This method receives as parameter a Garment instance and assigns a value

to every attribute described in the file attribute.xml (see appendix B). This method

traverses all the file attributes.xml. For every attribute tag in that file, the method

searches if the garment description has any of the possible values associated with this

attribute. If found, that garment is assigned that value for that particular attribute. If

none of the possible values is found, a default value is assigned.

The file attributes.xml is a XML file that contains, for each observed attribute from

the garment description, a list of all its possible values and its synonyms. Figure 5.4

shows an example of an attribute from the file attributes.xml. Each attribute has

a name and an id. Also a defaultId, that is the id of the default value that will be

assigned to a garment that do not have any of the attribute possible values. Between

the tags < values >< /values > all the possible values for the attribute are listed.

Each value has a name and id. Inside each value are defined the possible synonyms,

that is, all the other expressions that map to that value. In the given example, the term

”above the knee” will be mapped to the value ”above knee”. Finally, the definition of
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<attribute name="hemline" id="4" defaultId="13">

<values>

<value name="above knee" id="5">

<synonym name="above the knee"/>

<synonym name="above the knees"/>

<synonym name="above knees"/>

</value>

</values>

<automatic-synonyms>

<append term=" length"/>

<append term="-length"/>

</automatic-synonyms>

</attribute>

Figure 5.4: Snippet of the attributes synonym dictionary

an attribute also has a list of automatic synonyms. Those are characters added to the

beginning of a value or any synonym (prepend) or to the end of it (append) to create a

new synonym for the value. For instance, in the given example, the automatic synonym

defined as < append term = ” lengt”/ > in conjunction with the value above knee will

create the new synonym above knee lengt. The automatic synonyms are applied to the

attributes values itself or any of its synonyms.

AttributeD and AttributesDictionary are a Java translation of the attributes.xml

file. AttributeDictionary has a collection of AttributeD which has a collection of its

possible values.

5.6 GarmentsClustering package

This package is the implementation of the garment clustering module (see section 4.5).

The package contains the classes for clustering the garments and creating the abstract

garments and abstract outfits.

Figure 5.5 shows a class diagram with the most important classes from the garment

clustering module. In what follows, the most relevant classes will be described.

CompoundSimilarityMatrix

As explained in the previous chapter, the spectral clustering technique used requires

a similarity matrix of the elements to be clustered. This matrix is a square matrix

(m) where each value (m[i][j]) contains the similarity value between garments i and j.

Despite that, our similarity matrix is composed by multiple slices, one for each similarity



Chapter 5: Implementation 44

Figure 5.5: Classes diagram of garment clustering module

function used to compare the garments. The similarity matrix is implemented in the

class CompoundSimilarityMatrix. This class internally holds a n∗n∗k matrix instance

of DoubleMatrix3D, where n is the number of garments and k is the number of slices,
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one for each similarity function used.

The method computeSimilarityMatrixComponents(int[] slices) computes the 3D

similarity matrix of the garments for the specified slices (similarity functions). This

method divides the matrix into smaller sub-matrices, and computes their similarity. This

allows to store all the images of the garment being compared an their masks in memory,

and reduce the time spent loading images from the file system. We have experimentally

concluded that the sub-matrices size should be 100*100. This value could not be set

to the total of the garments being clustered, as that produced out of memory errors.

Those sub-matrices can also be computed in parallel, having n threads each of them

computing an array of sub-matrices.

Once the 3D similarity matrix m3D has been computed, the method getSimilarityMatrix()

returns a 2D similarity matrix (m2D). The matrix m2D of size n ∗ n is obtained from

the matrix m3D applying the following function to each pair of indexes i,j:

m2D[i][j] =
∑

0≤l<k

(m3D[i][j][l] ∗ w[l])

Where w[l] is the specific weight (between 0 and 1) given to that particular similarity

function. The summation of all the values of w is 1.

With the methods writeToFile(String) and readFile(String), the 3D similarity

matrix can be stored in a file and loaded from it.

The constructor of the class takes as input the ids of the garments to cluster and a in-

stance of CompoundSimilarityFunctionBuilder initialized with the appropriate simi-

larity function builders (explained later).

SimilarityFunction

Each similarity function must extend the abstract class SimilarityFunction that pro-

vides common functionalities. The class CompoundSimilarityFunction is a special

implementation of SimilarityFunction that holds many similarity functions inside,

each one with its specific weight.

Each SimilarityFunction instance is build using an special class SimilarityFunctionBuilder.

This class allow the parametrization of the similarity function with the passed param-

eters. This structure has been developed to allow the parallel computation of the sim-

ilarity matrix. Conversely, the class CompoundSimilarityFunction has associated the

class CompoundSimilarityFunctionBuilder.
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The classes DescriptionSimilarityFunction, HistogramSimilarityFunction,

NoiseSimilarityFunction and WidthSimilarityFunction are concrete similarity func-

tions that compute the similarity between garments based on their description, colour,

pattern and shape respectively.

MySpectralClustering

The class MySpectralClustering is the implementation of the spectral clustering al-

gorithm, based on the one by Luigi Dragone. This class has the method public void

buildClusterer(int[] garments, CompoundSimilarityMatrix similarityMatrix).

This method receives as parameters an array of garments ids (the training set) and a

CompoundSimilarityMatrix initialized with the appropriate garments and an instance

of CompoundSimilarityFunctionBuilder.

As result of this call, the cluster where any garment from the training set belongs can be

obtained using the method int getTrainingInstanceCluster(int garmentId). Any

garment not belonging to the training set can then be clustered using the method int

clusterInstance(int garmentId). This method returns the cluster of the training set

garment that is less distant to the garment to cluster.

5.7 Recommender package

This package is the implementation of the outfit recommendation module (see section

4.6). The package contains the class Recommender. This class has the method Outfit

makeRecommendation(Integer uid, Integer garmentId) that receives as parameters

an id of a Polyvore user and an id of a garment. The return of this method is a

ConcreteOutfit that contains the ConcreteGarment identified by gatmentId as one of

its garments.

The pseudo code for the method is as follows:

(1) GetMemberData(uid);

(2) queryGarment = GetConcreteGarmentData(garmentId );

(3) queryAbstractGarment = GetGarmentAbstraction(queryGarment );

(4) possibleAbstractOutfits = GetAbstractOutfitsWithAbstractGarment(queryAbstractGarment );

(5) possibleAbstractOutfitsWithScores = ScoreAbstractOutfits(possibleAbstractOutfits ,member );

(6) selectedAbstractOutfit = RouletteSelectAbstractOutfit(possibleAbstractOutfitsWithScores );

(7) responseOutfit RandomSelectConcreteOutfit(selectedAbstractOutfit );

(8) responseOutfit = ReplaceWithGarment(responseOutfit ,queryGarment );

(9) return responseOutfit;
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First (1) the data for the member is obtained. If local data exists for the user and it

is not older than a certain age, this data is used. If not, the recommendation system

queries Polyvore for the data of the user and its closest members. This data includes

the outfits created or liked by them as well as the garments that compose those outfits.

After gathering the new data, the new captured garments are clustered and the abstract

outfits are recreated.

Then (2), the data for the query garment is obtained. Again, if the data exists in the

local database and it is not older than a certain age, this data is used. If not, the data

is fetched from Polyvore.

The step (3) obtains an abstract garment out of the original query garment. If the

query garment comes from the local database, the garment already has an abstract

garment assigned. On the contrary, when the query garment has been fetched in the

last operation, the garment needs to be assigned an abstract garment. Applying a simple

clustering algorithm, the query garment is compared with every other garment in the

database that already has an abstract garment. The resulting abstract garment is the

one that is assigned to the garment closer to the queryGarment, the one with the bigger

overall similarity index.

Step (4) gets a list of all the abstract outfits that have the queryAbstractGarment as

a component. These abstract outfits are then scored using the score function (see sub-

section 4.6.1) (5). Applying a roulette selection algorithm (see section 4.6), an abstract

outfit is selected (6). Then, at random, one of the concrete outfits that compose this

abstract outfit is selected (7). Finally, from the selected concrete outfit, one of the gar-

ments whit the same category as the query garment is replaced by the query garment.

The resulting concrete outfit is returned as an answer to the query.

5.8 GraphicalTools package

This package contains graphical tools for analysing the data, detecting elements that are

not garments and clustering the garments. The package contains the following classes:

AbstractOutfitsViewer This class allows the user to view the abstract outfits currently

in the system. This class uses the class AbstractOutfitsPanel to show all the

outfits.

ConcreteOutfitsPanel This class allows the user to see the concrete outfits in the

system.
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RecommendationPanel This class creates a graphical tool that allows the user simulate

queries to the system. After entering an id of a member and an id of a garment,

the system will compute the possible recommendations and show them to the user.

ClustersPanel This class creates a graphical tool that allows the user to visualize the

garments grouped by categories. It also allows the user to cluster those garments

using the similarity functions already presented. With this tool, the user can

specify the appropriate parameters for the clustering algorithm.

SuspiciousGarmentsPanel This class creates a graphical tool that traverses all the

garments in the database and shows those that provably are not garments, elements

like decorative images, images of garments worn by models, clothing accessories

categorized as garments, etc. An element is considered as potentially not being a

garment if any of the following is true:

• The difference between the maximum and minimum proportions of the gar-

ment image (being the proportion the quotient between the width at a certain

point and the total height, not including the background), is less than a cer-

tain threshold.

• The image background area with respect to the total garment image area

is bigger than a certain value or smaller. This detects images that cover

practically all the image area, or just a small part.

View This class creates a frame where the already presented graphical tools are dis-

played.

In section 7.2, all the recently presented graphical tools are described in depth.
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Performance analysis

Some of the processes performed by the recommendation system are very computational

expensive. In particular, the processes that consume the more resources are the com-

putation of the garments similarity matrix and the clustering of the garments. In this

chapter, we experimentally analyse the performance of these processes and provide some

ideas on how to improve them.

The experimentation has been conducted using a computer with the following specifica-

tions:

CPU Intel Core i7-3630QM 2.4GHz

Graphics card NVIDIA GeForce GT 640M with 2GB dedicated VRAM

RAM 8GB DDR3

Primary HD OCZ VERTEX 2 SATA II 2.5” SSD

Secondary HD Serie ATA 750GB

OS Windows 8 64-bit

6.1 Similarity matrix computation

Computing the similarity matrix of a set of garments requires: loading the garments

images, computing the images masks and computing the similarity index for each of

the observed attributes. The computation of the various similarity indexes is performed

using image processing techniques and natural language analysis techniques (see section

5.5). Given the amount of garments to compare, the described processes require a lot

49
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time (s) %

load images and compute masks 65.63 18.63

compute histogram similarity 114.18 32.41

compute shape similarity 47.58 13.50

compute noise similarity 109.89 31.19

compute description similarity 14.97 4.25

Table 6.1: Table showing the time spent in each of the steps of the similarity matrix
computation and the percentage over the overall time.

of computational power. In what follows, we analyse the performance of the process of

computing the similarity matrix of a set of garments.

Table 6.1 shows the time spent in each of the steps of the similarity matrix computation

of a set of 468 garments. The first column shows the absolute time while the second

column shows the percentage over the total time. The last column of the table shows

the percentage of time spent on each of the steps over the total time.

As can be seen, the time spent computing the similarity matrix for a set of garments

is mainly spent in applying the histogram similarity function and the noise similarity

function. This is because these processes require the application of image processing

techniques to the garments images and masks. Although the shape similarity function

also requires the application of image processing techniques, the time spent for that

function (13.50%) is nearly a third of the time spent computing the histogram similarity

(32.41%) and the noise similarity (31.19%). This is due to the optimized implemen-

tation of the shape similarity function. When computing the similarity matrix slice

corresponding to the shape similarity of a set of garments, the widths of each garment

are only computed once. In contrast, when computing the slice corresponding to the

noise similarity function, the garment edges image of a garment is computed each time

it is compared with another garment. The same happens with the histogram similarity

function, each time a garment is compared its histograms are extracted. To reduce the

time spent computing the similarity matrix of a set of garments, the noise similarity

function and histogram similarity function should avoid re-computing the data each

time a garment is compared. That is, they should avoid recomputing the garment edge

images and the garment image histograms array respectively.

Although there is still room for improvement in the computation of the similarity matrix,

this task is very computational expensive. In what follows, we will analyse the time spent

computing the similarity matrix of sets of garments with different number of garments.

From the observations, we will determine the function that describes that value.
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#garm. 145 179 288 327 486 716 904 1010

#comp. 10585 16110 41616 53628 118341 256686 409060 510555

time 28.87 44.22 113.07 162.22 350.76 848.91 1322.00 1663.66

tpc 0.0027 0.0027 0.0027 0.0030 0.0029 0.0033 0.0032 0.0032

Table 6.2: Table showing the number of garments comparisons made, the time spent
and the average time spent per comparison when computing the similarity matrix of

various sets of garments.
”#garm.” stands for ”number of garments”.

”#comp.” stands for ”number of comparisons”.
”tpc” stands for ”time per comparison”

num. garments 145 179 288 327 486 716 904 1010

observed time 28.87 44.22 113.07 162.22 350.76 848.91 1322.00 1663.67

expected time 31.72 48.28 124.72 160.72 354.66 769.66 1225.91 1530.08

Table 6.3: Table showing the observed time spent computing the similarity matrix of
different sets of garments, and the expected time.

Table 6.2 shows the number of garments comparisons made, the time spent and the

average time spent per comparison when computing the similarity matrices of various

sets of garments. The row num. comparisons shows the number of comparisons made

during the computation of the similarity matrix. This value corresponds to the num-

ber of elements in the lower triangular matrix of the similarity matrix. This is true

because, when computing the similarity matrix values, only the lower triangular matrix

is computed. This simplification can be done because the similarity function used is

commutative (similarity(i, j) = similarity(j, i)). The number of comparisons made is

given by the formula n2−n
2 +n, where n is the number of garments. The row time shows

the observation of the time spent computing the the similarity matrix. This value is the

mean of four observations. The row mean time per comparison shows the mean of the

time spent doing a garment comparison ( time
num. comparisons).

Table 6.3 shows the comparison between the observation of the time spent computing

the similarity matrices of various sets of garments, and the expected time. The expected

time spent computing the similarity matrix of a garment set is:

meanTimePerComparison× (
n2 − n

2
+ n)

where meanTimePerComparison (0.0029969022) is the mean of the values from the

row mean time per comparison from the table 6.2 and n is the number of garments in

the set.

Figure 6.1 shows the plot of the data from the table 6.3. As can be seen, there is a
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deviation between the observed time and the expected time (the mean deviation is 6%).

Despite that, the expected time is an informative measure of the time that will take to

compute a similarity matrix.
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Figure 6.1: Garments clustering observed time and estimated time

6.2 Clustering

The second most computational expensive task performed by the recommendation sys-

tem is the clustering of the garments. Once the similarity matrix of a set of garments

has been computed, a spectral clustering algorithm is applied to that similarity matrix

to compute the clusters. Table 6.4 shows the relation between the number of gar-

ments of a set and the time spent computing its clusters. The values from the column

clustering time are the mean of four observations of the time spent clustering the gar-

ments. The alpha−star parameter of the clustering algorithm was set to 0.999. Column

meanclusteringtimepergarment is the result of applying clustering time
garments . The correlation

value between the number of garments and the clustering time is 0.906.
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garments clustering time (s) mean clustering time per garment

486 4 0.0082

716 19 0.0265

757 24 0.0317

798 27 0.0338

804 27 0.0335

901 55 0.0610

904 58 0.0641

1010 68 0.0662

1099 113 0.1028

1192 160 0.1342

1299 150 0.1154

1319 155 0.1175

1428 200 0.1400

1506 240 0.1593

1622 345 0.2127

1668 409 0.2452

1907 706 0.3702

Table 6.4: Table showing the observations of the time spent clustering various sets of
garments

Figure 6.2 shows the comparison between the clustering time observed and an the ex-

pected time. The expected value is given by the formula expected(x) = 1.0×10−9×x3.608.

This formula has been obtained using an exponential regression technique. Although

there is a deviation between the expected value and the observed value, we can conclude

that it is a good approximation.
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Chapter 7

Installation and execution

In this chapter, first, the installation process of the recommendation system is described.

There, the steps that need to be taken to get the system working are explained. After

that, the most relevant tasks that can be accomplished with the recommendation sys-

tem are described. For each of these tasks, the steps needed to accomplish them are

explained.

7.1 Installation

To install the recommendation system, the following steps need to be taken:

Install Java Standard Edition (SE) 1.7.X. The software and all the related documentation

can be found at http://www.oracle.com/. When installing it, the version appropriated

for the operating system (32-bits or 64-bits) needs to be chosen.

Download the source code an the initial data from the repository1. Place them in

any folder of the file system with world read permissions. Grant full read and write

permissions to the data folder and any of its contents.

Install MySQL 5.5 Community Edition. The software and all the related documentation

can be found at http://dev.mysql.com/. Execute the script CREATE.sql found in the

package Core. This script will create a database called get dressed test with all the

necessary tables.

Install OpenCV 2.4.3. The software and all the related documentation can be found

at http://opencv.org/. Instructions on how to install it in various platforms can be

found at http://opencv.org/quickstart.html.

1https://github.com/rsprat/outfit-recommendation-system.git
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Install JavaCV 0.3. The software and all the related documentation can be found at

https://code.google.com/p/javacv/.

Install Eclipse Juno. The software and all the related documentation can be found at

http://www.eclipse.org/.

Install Python 2.7.X. The software and all its related documentation can be found at

http://www.python.org/.

Install LibXML2. The software and all its related documentation can be found at

http://www.xmlsoft.org/.

Install Hibernate 4.1. The software and all its related documentation can be found at

http://www.hibernate.org/.

Open the project from Eclipse. Under project properties/Java build path/Libraries,

configure the paths to the libraries.

Modify the Java class Paths according to the paths to the source code and initial data.

Modify the file hibernate.cfg.xml found in the package core and set the appropriate

parameters for the database connection.

To execute the Java code, write the following in the VMarguments text box under Run/

Run configuration/Arguments:

-Djava.library.path="C:/ Program Files/javacv/javacv -src/src/main/java/com/googlecode/javacv/cpp"

-Dlog4j.configuration=file:/${workspace_loc:outfitRecommendationSystem }/ logconfig.lcf

-Xmx1000m

The argument −Djava.library.path should point to the JavaCV installation folder.

7.2 Execution

In this section, the most relevant tasks that can be accomplished with the recommenda-

tion system are described. For each of these tasks, the steps needed to accomplish them

are explained.

Gather members initial data

To obtain a initial set of data relative to the fashion community members, we execute the

Python script getmembers.py located in the folder \informationGathering\dataRetrival.

This script starts gathering the data of a member (the one with id 349251) and keeps

https://code.google.com/p/javacv/
http://www.eclipse.org/
http://www.python.org/
http://www.xmlsoft.org/
http://www.hibernate.org/
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on gathering data of members he follows. For each gathered member, the members

he follows are also gathered and so forth. All the captured data is stored in the files

member data.csv and member summary.csv in the folder \informationGathering\dataRetrival
\captured. Once the desired amount of data is captured, the script can be stopped. At

any time, the script can be executed again and will continue gathering members data

staring with the data that has not been already captured.

Gathering outfits initial data

Once the script getmembers.py has been executed and data about the members has

been gathered, the data of the outfits created by those members can be gathered.

The Python script getoutfits.py, located in the folder /informationGathering/

dataRetrival, reads the data of the members gathered by the script getusers.py.

For each member, traverses the list of outfits created by him, and for each outfit gathers

its data. The data of the outfits is stored int the file outfits.csv located in the folder

/informationGathering/dataRetrival/captured. The script can be stopped at any

time. When re-executed, it will continue gathering the outfits that are not already in

the outfits file.

Gather garments initial data

Once the script getoutfits.py has been executed and data about the outfits has

been gathered, the data of the garments that compose those outfits can be gathered.

The Python script getgarments.py, located in the folder /informationGathering/

dataRetrival, reads the data of the outfits gathered by the script getoutfits.py. For

each outfit, traverses the list of garments that compose it and gathers its data. For

the gathered outfits, the data is stored in the file garments.csv located in the folder

/informationGathering/dataRetrival/captured. The images of those outfits are

stored in the folder /informationGathering/dataRetrival/captured/images. For

the outfits that do not have a category or a textual description, its ids are stored in

the file nogamrnets.csv located in the folder /informationGathering/dataRetrival/

captured.

Import garments data

Once the data of the garments has been gathered from Polyvore and stored in CSV

files, this data can now be stored in the database. To import the data from the CSV

files to the database, we use the class FillGarmentsFromFile found in the package
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rob.ors.informationGathering.filler. Executing the main method of this class, all

garments found in the file garments.csv are inserted in the database, excluding those

found in the file nogamrnets.csv.

Import outfits data

Once the data of the outfits has been gathered from Polyvore and stored in CSV

files, this data can now be stored in the database. To import the data from the

CSV files to the database,we use the class FillOutfitsFromFile found in the package

rob.ors.informationGathering.filler. Executing the main method of this class, all

outfits found in the file outfits.csv are inserted in the database.

Import users data

Once the data of the members has been gathered from Polyvore and stored in CSV

files, this data can now be stored in the database. To import the data from the CSV

files to the database, we use the class FillMembersFromFile found in the package

rob.ors.informationGathering.filler. Executing the main method of this class,

all members found in the file members.csv are inserted in the database.

Find not desired elements

Even though when gathering the garments, those that did not have an appropriate

category or a description where discarded, some undesired elements might still exist. To

remove these elements from the recommendation system,a visual tool has been developed

(figure 7.1). The method showSuspiciousGarmentsPanel() from the class View found

in the package rob.ors.informationVisualitzation shows a visual tool for detecting

not desired elements. This tool analyses all the garment images and shows these that

matches a defined criteria (see section 5.8). These elements can be deleted by clicking

their image.

Create abstract garments and abstract outfits

The generalization of the data involves the computation of the garments similarity ma-

trices, the clustering of these garments (creating the abstract garments) and the creation

of the abstract outfits.
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Figure 7.1: Visual tool for detecting non desired elements

The method createSimilarityMatricesForAllCategories from the class Cluster

found in the package rob.ors.garmentsclustering.clustering computes the 3D sim-

ilarity matrix of each category. After the execution of this method, the folder /informationGathering/

dataRetrival/captured/output will contain a list of files called sim i.txt where i is

the id of a category. Each of those files will contain the different similarity matrices

slices (one for each similarity function used) of the garments of a category.

After the similarity matrices for all the categories have been computed, the clustering al-

gorithm can be applied to create the abstract outfits. The method createAbstractGarments

ForAllCategories from the class Cluster found in the package rob.ors.garmentsclustering

.clustering creates the abstract outfits of each category. For each category, the

3D similarity matrix file found in the folder /informationGathering/dataRetrival/

captured/output is read. That 3D similairty matrix is reduced to a 2D similarity ma-

trix using the follwing weights: 0.5 for the colour similarity, 0.3 for the shape similarity,

0.2 for the noise similarity and 0.0 for the description similarity. Once the 2D similarity

matrix is computed, the garments are clustered and the abstract clusters are stored in

the database.
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Figure 7.2: Visual tools for clustering the garments

The garments can also be clustered using a visual tool created for this task. The

methodshowClustersPanel(boolean readFiles) from the class View found in the

package rob.ors.informationVisualitzation shows a visual tool for clustering the

garments. The parameter readFiles indicates if the similarity matrices are to be read

from the folder /informationGathering/dataRetrival/captured/output or are to be

computed on the fly.

Figure 7.2 shows a screen-shot of the visual tool for clustering the garments. At the

top of the window, different parameters can be modified to affect the clustering results.

Those parameters are:

Num garments the number of garments to be clustered.
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Alpha the alpha-star value for the clustering algorithm. This value, ranging from 0.01

to 1, affects the deepness of the cuts performed by the algorithm, and thus, the

number of resulting clusters.

similarityFunctionWeight the different weight values used to aggregate the 3D sim-

ilarity matrix into a 2D similarity matrix. Those values, raging from 0 to 1, are

separated by semicolons.

The button ”Go” applies the changes made to the recently described parameters. The

drop down box allows the user to choose the category to cluster. Finally, the button

”Store clusters” stores the current clusters in the database. At the bottom of the window,

the resulting clusters can be seen. The garments are divided in columns that represent

clusters. If the user clicks the red button next to a garment, this will be removed from

the category and stored in the no garments table.

After creating the abstract garments, the abstract outfits can be created. The method

createAbstractOutfits from the class Cluster found in the package rob.ors.garmentsclustering.

clustering creates those abstract outfits based on the abstract garments in the system.

See abstract outfits

After having created the abstract garments and abstract outfits, we can observe the later

ones using the class View. This class has the method showAbstractOutfitsPanel()

that shows a visual tool for analysing the abstract outfits.

Figure 7.3 shows a screen shot of the visual tool to analyse the abstract outfits. At

the top of the window, there is a drop down menu for selecting the abstract outfit

to visualize. Each element from this drop down has the form abstractOutfitId # :

outfitCount items : garmentCount where abstractOutfitId is the id of the abstract

outfit, outfitCount is the number of concrete outfits that conform this abstract outfit

and garmentCount is the number of abstract garments that this abstract outfit has.

When an abstract outfit is selected from the drop down menu, the concrete outfits that

conforms it are shown beneath. Each concrete outfit is displayed in a row. If the number

of concrete outfits that conform the abstract outfit being analysed is greater than the

number of concrete outfits that can be shown, the concrete outfits are paginated.

Simulate a query to the system

After having performed the previous steps, we can now simulate the recommendation for

a certain user about a garment. The class View has the method showRecommendationPanel()



Chapter 7: Installation and execution 62

Figure 7.3: Visual tool for analysing the abstract outfits

that presents an user interface for simulating those answers. Figure 7.4 shows a screen

shot of the visual tool that simulates answers to queries. At the top of the window, there

are two input fields, one for the member id, and another for the garment id. After filling

the fields and pressing the ”Go” button, the recommendation system processes the query

and presents the results. Beneath the input field, the image of the query garment are

shown. Beneath that image, for each abstract outfit, a concrete outfit representing that

abstract outfit, is shown. The concrete outfit shown is selected at random from the list

of concrete outfits that compose the abstract outfit. Each concrete outfit is displayed

on a single line with the score for the abstract outfit that is representing at the left.
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Figure 7.4: Visual tool for simulating answers to queries



Chapter 8

Project planing and costs

In this chapter, the process followed to develop the recommendation system is described.

After that, the costs of the project are listed.

8.1 Project planing

After the problem to solve was clearly stated, the execution of the current project was

divided into the following tasks:

Search existing solutions During the execution of this task, various on-line solutions

related to the garments/outfits recommendations where explored. For each solu-

tion, its pros and cons where analized.

Design the recommendation system This task consisted in the design of the recom-

mendation system structure. During this process, the modules that compose the

solution where defined. For each module, its major functionalities where described

as well as the module interaction with the rest of the modules.

Select a data source After having designed the recommendation system, many po-

tential sources of data for the proposed recommendation system where studied.

Among all the possible sources, Polyvore was chosen given the amount of data it

could provide.

Implement the core module This task included the implementation of the domain

model objects and the data persistence layer.

Implement the information gathering module During the execution of this task,

the scripts that that gather data from Polyvore were developed. Also the the Java

classes to integrate these scripts with the recommendation system where developed.
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Implement the garment similarity module This task included the implementation

of the processes for extracting attributes values from the garment images and tex-

tual descriptions. This task also included the implementation of the similarity

functions used to compare two garments based on these attributes.

Implement the garment clustering module This task included the implementa-

tion of the processes for clustering the garments based on their similarities. Apart

from that, this task also included the implementation of the process for construct-

ing the abstract outfits.

Implement the recommendation module This task included the implementation

of the process for making recommendations to answer user queries.

8.2 Costs

The costs of the project can be divided into: costs derived from the human resources

needed, and costs derived from the software licences and hardware. In what follows, a

listing of these costs is given:

8.2.1 Human resources

The human resources needed for the execution of the project are directly related with

the time spent in the execution of the same.

Table 8.1, shows the time spent in each task and sub-task from the project plan. The

times where precisely measured using an on-line time tracking tool called Toggl[29]. For

each task, the required profile for performing it is shown. Two different profiles have

been required for this project: analyst and developer. The analyst profile is focused on

analysing the problem, researching existing solutions and designing the recommendation

system. This profile has been assigned a hourly wage of 20e. The developer profile is

focused on the implementation of the recommendation system designed by the analyst.

The developer profile has been assigned a hourly wage of 10e.

As can be seen, the implementation of the garment similarity module has been the

most time consuming task. This is because a lot of effort has been putt in deciding

the appropriate attributes that should be observed for computing the similarity between

garments. During the implementation of the garment similarity module, the computa-

tion of many attributes values form the garment image and garment textual description

was explored. Finally, from all the explored solutions, it was decided to use the ones

described in Chapter 4.4.



Chapter 8: Project planing and costs 66

ta
sk

su
b

-t
as

k
h

ou
rs

re
q
u

ir
ed

p
ro

fi
le

co
st

(e
)

S
ea

rc
h

ex
is

ti
n
g

so
lu

ti
on

s
17

an
al

y
st

34
0

D
es

ig
n

th
e

re
co

m
m

en
d

a
ti

o
n

sy
st

em
40

an
al

y
st

80
0

S
el

ec
t

a
d

at
a

so
u

rc
e

5
an

al
y
st

10
0

Im
p

le
m

en
t

th
e

co
re

m
o
d

u
le

57
57

0

Im
p

le
m

en
t

th
e

J
av

a
m

o
d

el
cl

as
se

s
25

d
ev

el
op

er
25

0

Im
p

le
m

en
t

th
e

p
er

si
st

en
ce

la
y
er

32
d

ev
el

op
er

32
0

Im
p

le
m

en
t

th
e

in
fo

rm
a
ti

o
n

g
at

h
er

in
g

m
o
d

u
le

57
57

0

Im
p

le
m

en
t

th
e

d
at

a
ga

th
er

in
g

sc
ri

p
ts

40
d

ev
el

op
er

40
0

Im
p

le
m

en
t

th
e

J
av

a
in

te
gr

at
io

n
of

d
at

a
ga

th
er

in
g

sc
ri

p
ts

17
d

ev
el

op
er

17
0

Im
p

le
m

en
t

th
e

ga
rm

en
ts

si
m

il
a
ri

ty
m

o
d

u
le

80
80

0

Im
p

le
m

en
t

th
e

im
ag

e
fe

at
u

re
s

ex
tr

ac
ti

on
60

d
ev

el
op

er
60

0

Im
p

le
m

en
t

th
e

te
x
tu

al
d

es
cr

ip
ti

on
an

al
y
si

s
20

d
ev

el
op

er
20

0

Im
p

le
m

en
t

th
e

ga
rm

en
ts

cl
u
st

er
in

g
m

o
d

u
le

32
d

ev
el

op
er

32
0

Im
p

le
m

en
t

th
e

v
is

u
a
l

to
ol

s
37

d
ev

el
op

er
37

0

T
o
ta

l
32

5
38

70

T
a
b
l
e
8
.1
:

L
is

ti
n

g
of

th
e

ti
m

e
sp

en
t

p
er

fo
rm

in
g

th
e

ta
sk

s
a
n

d
su

b
-t

a
sk

s
th

a
t

co
m

p
o
se

d
th

e
p

ro
je

ct
.

T
h

e
co

st
o
f

ea
ch

ta
sk

is
a
ls

o
li

st
ed

.



Chapter 8: Project planing and costs 67

8.2.2 Software and hardware resources

The execution of this project has been done using mostly open source software and tools

(for a list of the technologies used see section 5.1). The only privative software used has

been a copy of Windows 8.

The only hardware requirements for this project has been the personal computer used.



Chapter 9

Conclusions

In this chapter, a summary of the accomplished work is given and the biggest problems

faced during the process are described. Finally, some ideas for future work are outlined.

In this project, we have explored the application of recommendation systems to the world

of fashion. We have proposed a system capable of making recommendations on how to

style a certain garment for a particular user. That is, our recommendation system is

capable of, given a garment and a user, create an outfit that matches the user’s taste

and includes the query garment.

The recommendations given by our system are based in real outfits created by a com-

munity of fashion enthusiasts. The recommendation process starts by searching all the

abstract outfits that contain the abstraction of the query garment. Then, the system

gives a score to those abstract outfits, based on how likely they are to fit the taste of

the user, its closest community members or the whole community. Finally, one of those

abstract outfits is selected and translated to a concrete outfit. This concrete outfit is

then sent as a response to the query.

We have introduced the concept of abstract garments and abstract outfits to overcome

the sparsity of the original data. We defined an abstract garment as a cluster of gar-

ments. These clusters have been created applying an spectral clustering technique using

a custom similarity function. The similarity function used computes an overall similarity

index. This overall similarity index is the weighted aggregation of different similarity

indexes with respect to various observed attributes (colour, shape, pattern, etc.). The

values for those attributes are computed using image processing techniques and natural

language analysis techniques.

The most challenging problem faced during the execution of this project has been to find

a suitable methodology to reduce the data sparsity through clustering the garments. A
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big effort has been put on identifying significant attributes for comparing the garments

and designing the procedures to compute the values for those attributes.

Another problem faced during the execution of this project has been the access to the

data. Polyvore does not expose a public API, and our request for having access to

their database has been unanswered. Given that, have developed a series of scripts to

automatically gather the data from the HTML sent by the web site. Although have

gathered a subset of the data to work with it, we haven’t been able to access the whole

database.

As a result of the work done, we have published an open-source recommendation system

that given a query from an user about a certain garment, is capable of creating an outfit

that fits the user’s taste.

9.1 Future work

The future lines to extend this project might be:

Improve data source: find an on-line fashion community that is willing to collaborate

in the project, allowing access to its database.

Improve garment clustering: one of the key aspects of the recommendation system

is the clustering of the garments. Although we have developed a clustering process

that, from our point of view, is on the right track for providing meaningful results,

more work needs to be done in this area. If the time constraints would not have

been so strict, we would have, for example, explored the possibility of improving

the detection of patterns in the garments. We are sure that improvements in the

clustering of the garments would carry improvements in the overall results.

Improve recommendation process: improvements can be made to the recommen-

dation process. For instance, exploring different selection algorithms rather than

the roulette algorithm for the selection of a concrete outfit from an abstract out-

fit. Another possible improvement would be to select the score function weights

(wu, wf and wc) depending on how much data we have for a certain user. For

instance, a user that actively participates in the fashion community by creating

and liking outfits should have a bigger value for the wu than a user with less par-

ticipation. This way the user’s taste would be more prevalent in recommendations

for users about whom we have more information on his taste.

Members clustering: analyse the social network and find clusters of members with

similar taste. Right now, the recommendation system is highly dependent on the
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data about the outfits the user has created or liked. Making it necessary for the user

to be active in the social network. The system needs this interaction to gather data

about the user taste. To make the system more exploitable, it would be interesting

to eliminate the necessity for the user to participate in the community. To this

end, one of the possible solutions would be to cluster the community members

based on their taste. Extracting the most characteristic outfits created by those

clusters, we could create a user classification algorithm based on a decision tree.

Then, when a user from whom we do not have any previous data, wants to make a

query to the system, he would first be presented with a series of outfits. With his

assessment on those outfits, the decision tree would be able to assign that user to

a cluster of existing members. This way, we would automatically have some data

about the taste of the user.

Apply the recommendation system: the proposed recommendation system, or a

slight modification of it, can be used in many real applications. In this project we

have focused on giving advice on how to style a certain garment. Another possible

application would be to recommend the purchase of new garments. Having a

digital version of the user wardrobe, it could be possible to give advice on which

new garments are more suitable for the user based on how many new outfits the

user can create with those garment. This tool could be implemented into end user

applications or even used as a recommendation system for e-commerce sites.



Appendix A

Garments categories

Figure A.1 shows the list of garment categories the recommendation system supports.

The structure of the categories as well as their name and ids are the same as the ones

used in Polyvore.
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Fashion 1

Clothing 2

Dress 3

Day 4

Cocktail 5

Grown 6

Skirt 7

Mini 8

Knee length 9

Long 10

Tops 11

Blouse 17

Cardigan 18

Sweater 19

Sweatshirts & hoodies 20

Sweatshirts 4495

Hoodies 4496

Tank 104

T-shirt 21

Tunic 15

Outwear 23

Coat 24

Jacket 25

Blazers 236

Vest 26

Jeans 27

Bootcut 238

Boyfriend 240

Skinny 237

Straight 236

Wide 239

Pants 28

Cappry & Croped 332

Legins 241

Short 29

Jumpsuit & Romper 242

Jumpsuit 243

Romper 241

Figure A.1: Full list of garments categories from the virtual wardrobe, the number
aside of every category is the category identification number.



Appendix B

Contents of the file attribute.xml

Figure B.1 shows the content of the file attributes.xml. For further reference on the

structure of this file, please read the description of the the implementation of the garment

similarity package (section 5.5).
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<?xml version="1.0" encoding="UTF-8"?>

<root>

<attribute name="neck" id="1" defaultId="25">

<values>

<value name="v" id="1">

<synonym name="’v’"/>

</value>

<value name="drapped" id="2"/>

<value name="halter" id="3"/>

<value name="square" id="4"/>

<value name="crew" id="5"/>

<value name="scoop" id="6"/>

<value name="boat" id="7">

<synonym name="bateau"/>

</value>

<value name="turtle" id="8">

<synonym name="polo"/>

<synonym name="turtleneck"/>

</value>

<value name="off-shoulder" id="9">

<synonym name="off-the-shoulder"/>

</value>

<value name="sweetheart" id="10"/>

<value name="keyhole" id="11"/>

<value name="cowl" id="12"/>

<value name="round" id="13"/>

<value name="plunging" id="14"/>

<value name="jewel" id="15"/>

<value name="one-shoulder" id="16" >

<synonym name="one shulder"/>

</value>

<value name="peter pan" id="17">

<synonym name="peter-pan"/>

</value>

<value name="sailor" id="18"/>

<value name="mandarin" id="19"/>

<value name="roll" id="20"/>

<value name="cutout top" id="21"/>

<value name="funnel" id="22"/>

<value name="draped" id="23"/>

<value name="slash" id="23"/>

<value name="high" id="23"/>

<value name="twisted neckline" id="24"/>

<value name="UNKNOWN" id="25"/>

</values>

<automatic-synonyms>

<append term=" neck"/>

<append term=" neckline"/>

<append term=" necklined"/>

<append term=" collar"/>

</automatic-synonyms>

</attribute>

<attribute name="pattern" id="2" defaultId="12">

<values>

<value name="floral" id="1">

<synonym name="flowery"/>

<synonym name="flowered"/>

</value>

<value name="plain" id="2"/>

<value name="spot" id="3">

<synonym name="spotted" />

<synonym name="spotty"/>

</value>

<value name="stripe" id="4">

<synonym name="striped"/>

</value>

<value name="tartan" id="5"/>

<value name="animal" id="6"/>

<value name="check" id="7">

<synonym name="checked"/>

<synonym name="checkered"/>

</value>

<value name="crocodile" id="8"/>

<value name="plaid" id="9"/>

<value name="polka dot" id="10">

<synonym name="polka dotted"/>

<synonym name="polka-dotted"/>

</value>

<value name="pattern" id="11">

<synonym name="patterned"/>

</value>

<value name="plain" id="12"/>

</values>

<automatic-synonyms>

<append term=" print"/>

</automatic-synonyms>

</attribute>

<attribute name="fit" id="3" defaultId="6">

<values>

<value name="wide" id="1">

<synonym name="roomy"/>

</value>

<value name="baggy" id="2">

<synonym name="loose"/>

<synonym name="loosy"/>

<synonym name="oversized"/>

</value>

<value name="narrow" id="3"/>

<value name="thigh" id="4">

<synonym name="fitted"/>

<synonym name="close" />

<synonym name="skinny"/>

</value>

<value name="stretch" id="5"/>

<value name="UNKNOWN" id="6"/>

</values>

<automatic-synonyms/>

</attribute>

<attribute name="hemline" id="4" defaultId="13">

<values>

<value name="floor length" id="1">

<synonym name="floor"/>

<synonym name="falls to the floor"/>

</value>

<value name="ankle" id="2"/>

<value name="midcalf" id="3"/>

<value name="below knee" id="4">

<synonym name="below the knee"/>

<synonym name="below the knees"/>

<synonym name="below knees"/>

</value>

<value name="above knee" id="5">

<synonym name="above the knee"/>

<synonym name="above the knees"/>

<synonym name="above knees"/>

<synonym name="above knee"/>

</value>

<value name="at knee" id="6">

<synonym name="at the knee"/>

<synonym name="at the knees"/>

<synonym name="at knees"/>

<synonym name="at knee"/>

<synonym name="knee length"/>

</value>

<value name="mid thigh" id="7">

<synonym name="mid thigh"/>

</value>

<value name="hip high" id="8"/>

<value name="hankerchief" id="9"/>

<value name="diagonal" id="10"/>

<value name="mordern-but" id="11"/>

<value name="asymmetric" id="12"/>

<value name="UNKNOWN" id="13"/>

</values>

<automatic-synonyms>

<append term="lengt"/>

<append term="-length"/>

</automatic-synonyms>

</attribute>

<attribute name="sleve" id="5" defaultId="31">

<!--http://fashionsizzle.com/?p=6630-->

<values>

<value name="sleeveless" id="1">

<synonym name="sleeveless"/>

<synonym name="sleeve less"/>

</value>

<value name="long sleeve" id="2"/>

<value name="cap sleeve" id="3"/>

<value name="three quarter length sleeve" id="4">

<synonym name="3/4 length sleeve"/>

<synonym name="3/4 sleeve"/>

</value>

<value name="one quarter length sleeve" id="5">

<synonym name="1/4 length sleeve"/>

<synonym name="1/4 sleeve"/>

<synonym name="short sleeves"/>

</value>

<value name ="leg of mutton sleeve" id="6"/>

<value name="angel sleeve" id="7"/>

<value name="petal sleeve" id="8"/>

<value name="peasant sleeve" id="9"/>

<value name="juliet sleeve" id="10"/>

<value name="ragland sleeve" id="11"/>

<value name="lantern sleeve" id="12"/>

<value name="batwing sleeve" id="13"/>

<value name="butterfly sleeve" id="14"/>

<value name="gigot sleeve" id="15"/>

<value name="bell sleeve" id="16"/>

<value name="bishop sleeve" id="17"/>

<value name="dolman sleeve" id="18"/>

<value name="gigot sleeve" id="19"/>

<value name="fitted point sleeve" id="20"/>

<value name="hanging sleeve" id="21"/>

<value name="pagoda sleeve" id="22"/>

<value name="paned sleeve" id="23"/>

<value name="poet sleeve" id="24"/>

<value name="kimono sleeve" id="25"/>

<value name="paned sleeve" id="26"/>

<value name="regland sleeve" id="27"/>

<value name="set in sleeve" id="28"/>

<value name="two piece sleeve" id="29"/>

<value name="puffed sleeve" id="30">

<synonym name="puff sleeve"/>

</value>

<value name="UNKNOWN" id="31"/>

</values>

<automatic-synonyms>

<append term="s"/>

</automatic-synonyms>

</attribute>

<attribute name="strap" id="6" defaultId="3"> <!-- tiras -->

<values>

<value name="strap" id="1">

<synonym name="straps"/>

</value>

<value name="strapless" id="2"/>

<value name="UNKNOWN" id="3"/>

</values>

<automatic-synonyms/>

</attribute>

<attribute name="skirt-type" id ="7" defaultId="22">

<values>

<value name="a line" id="1"/>

<value name="mini" id="2"/>

<value name="bubble" id="3"/>

<value name="tulip" id="4"/>

<value name="full skirt" id="5"/>

<value name="circular skirt" id="6"/>

<value name="flared skirt" id="7"/>

<value name="wrap skirt" id="8"/>

<value name="umbrella skirt" id="9"/>

<value name="dirndle skirt" id="10"/>

<value name="gored skirt" id="11"/>

<value name="straight skirt" id="12"/>

<value name="tube skirt" id="13"/>

<value name="pleated skirt" id="14"/>

<value name="asymetric skirt" id="15"/>

<value name="ballerina skirt" id="16"/>

<value name="culotte" id="17"/>

<value name="broomstick skirt" id="18"/>

<value name="kilt" id="19"/>

<value name="gathered" id="20"/>

<value name="pencil" id="21"/>

<value name="UNKNOWN" id="22"/>

</values>

<automatic-synonyms/>

</attribute>

</root>

Figure B.1: Contents of the file attributes.xml.
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